
Unsupervised Estimation of
Subjective Content Descriptions
Magnus Bender∗, Tanya Braun†, Ralf Möller∗ and Marcel Gehrke∗

∗University of Lübeck
Institute of Information Systems

Ratzeburger Allee 160, 23562 Lübeck
{bender, moeller, gehrke}@ifis.uni-luebeck.de

†University of Münster
Computer Science Department
Einsteinstr. 62, 48155 Münster
tanya.braun@uni-muenster.de

Abstract—An agent in pursuit of a task may work with a cor-
pus containing text documents. One possible task of the agent is
to retrieve documents of similar content and highlight relevant lo-
cations in retrieved documents. To perform information retrieval
on the corpus, the agent may need additional data associated with
the documents. Subjective Content Descriptions (SCDs) provide
additional location-specific data for text documents. However, the
agent needs SCDs referencing sentences of similar content across
various documents in the corpus and most text documents are
not associated with SCDs. Therefore, this paper presents UESM,
an unsupervised approach to estimate SCDs for text documents,
i.e., to associate any corpus with SCDs. In an evaluation, we show
that the performance of UESM is on par with latent Dirichlet
allocation, while UESM provides SCDs referencing sentences of
similar content.

I. INTRODUCTION

An agent in pursuit of a task, explicitly or implicitly defined,
may work with a corpus of text documents as a reference
library. From an agent-theoretic perspective, an agent is a
rational, autonomous unit acting in a world fulfilling a defined
task, e.g., providing document retrieval services given requests
from users. We assume that the corpus represents the context
of the task defined by the users of the retrieval service, since
document retrieval is not an end in itself. Further, documents
in a given corpus might be associated with additional location-
specific data making the content nearby the location explicit by
providing descriptions, references, or explanations. We refer to
these additional location-specific data as Subjective Content
Descriptions (SCDs) [1].

Associating documents with SCDs support agents in the
task of information retrieval (IR). Returning to our agent
providing an document retrieval service, it is valuable for the
agent to have for each sentence references to similar sentences
in the documents across its corpus. Such references can be
modeled by SCDs being associated with the sentences. In
our understanding, each SCD represents a concept or topic
mentioned in the corpus. Whereby, each SCD’s concept is
implicitly defined by the content of the sentences referenced
by each SCD. Thus, the sentences of an SCD are similar.

Let us have a closer look why sentence similarity
can help with the IR task. Given a corpus of three
documents {d1, d2, d3}, dealing with three different car

models, and each document consisting of ten sentences
{di = (sdi1 , s

di
2 , . . . , s

di
10)}3i=1, the agent could be interested in

the SCDs t1 and t2. SCD t1 is referencing the sentences
sd22 and sd18 because both sentences are about the engine’s
horsepower. Thus, t1 represents the concept engine power.
Furthermore, SCD t2 represents the concept car manufacturer
because it references two sentences sd37 and sd12 about the
car’s manufacturer. Then, the agent returns d1 and highlights
sd18 answering a request about sentence sd22 because both sen-
tences cover engine power. So for this request, the additional
information of t1 turned out to be useful.

However, most corpora are not associated with SCDs nor
contain references to sentences representing the same con-
cepts. In a first step, we are interested to identifying simi-
lar sentences—preferably in an unsupervised manner. Then,
using the identified similar sentences, we form SCDs, where
each SCD represents a different concept in the corpus and
references multiple locations in text documents of the corpus.
Later, we enrich the SCDs in an semi-supervised fashion.

In addition to the applications of SCDs just described, SCDs
can support agents by performing the following tasks:

(i) Estimating SCDs for a single previously unseen text doc-
ument using the Most Probably Suited SCD (MPS2CD)
algorithm [2],

(ii) classifying a text document as related, extended, revised,
or unrelated to a corpus [2],

(iii) moving the SCDs from one corpus to another similar
corpus by adapting the SCDs’ domain [3],

(iv) separating SCDs and actual content being interleaved in
text documents [4],

(v) enriching SCDs in a corpus already sparsely associated
with SCDs [5], or

(vi) detecting complementary documents to a corpus [6].

Whereby, all the approaches have in common that initially a
corpus associated with SCDs is needed. More precisely, an
SCD matrix—built on the corpus associated with SCDs—is
used to model the SCDs and their locations in the documents
of the corpus. Therefore, this paper presents Unsupervised
Estimator for SCD Matrices (UESM), an approach to estimate
an SCD matrix for any corpus in an unsupervised manner.



Thus, UESM associates any corpus of text documents with
SCDs. Mainly, UESM detects similar concepts referenced in
the text documents of the corpus and then forms an SCD,
which groups all occurrences of the same concept.

UESM works on any corpus of text documents, in contrast
to the tentative approaches using Wiktionary1 or OpenIE [7],
e.g., used in the evaluations of [4] or [3], respectively. Ad-
ditionally, supervised learning, e.g., using Wiktionary, is not
always possible. For example, Wiktionary can only be used
for corpora about fields where it contains enough definitions.

Summarized, UESM allows for estimating an SCD matrix
and thus SCDs for any corpus. Hence, UESM enables the
above described approaches to be applied to any corpus
without need for SCDs on the corpus in beforehand, as UESM
provides the required SCD matrix.

Moreover, each estimated SCD represents a topic of the
corpus, which is why an SCD matrix can be interpreted as
a topic model of the corpus. A well-known topic modelling
technique is Latent Dirichlet Allocation (LDA) [8]. In contrast
to LDA, UESM associates each sentence in the corpus with
an SCD, while LDA associates each single word with a topic
and each text document with a topic distribution. An SCD
consists of multiple referenced sentences in the corpus and
the sentences’ overall word distribution, while LDA’s topics
consist of a distribution of words associated with each topic.
Hence, associating SCDs with sentences instead of words or
text documents is the important difference.

The remainder of this paper is structured as follows: First,
we recap the basics of SCDs, especially of the SCD matrix.
Second, we describe the problem of estimating SCDs in an
unsupervised manner and our solution UESM. We introduce
three methods for UESM, namely a greedy, a K-Means [9],
and a DBSCAN [10] based method. Third, we compare UESM
with its three methods in an evaluation against the well-
know LDA. Finally, we look at related work and conclude
afterwards.

II. PRELIMINARIES

This section specifies notations and recaps the basics of
SCDs.

A. Notations

First, we formalize our setting of a corpus.

• A word wi is a basic unit of discrete data from a
vocabulary V = {w1, . . . , wL}, L ∈ N.

• A sentence s is defined as a sequence of words
s = (w1, . . . , wN ), N ∈ N, where each word wi ∈ s
is an element of vocabulary V . Commonly, a sentence is
terminated by punctuation symbols like “.”, “!”, or “?”.

• A document d is defined as a sequence of sentences
d = (sd1, ..., s

d
M ), M ∈ N.

• A corpus D represents a set of documents {d1, . . . , dD},
D ∈ N.

1https://www.wiktionary.org/

• An SCD t is a tuple of the SCD’s additional data C and
the referenced sentences {s1, ...., sS}, S ∈ N. Thus, each
SCD references sentences in documents of D, while in
the opposite direction a sentence is associated with an
SCD.

• A sentence associated with an SCD is called SCD win-
dow, inspired by a tumbling window moving over the
words of a document. Generally, an SCD window might
not be equal to a sentence and may be a subsequence
of a sentence or the concatenated subsequences of two
sentences, too. Even though, in this paper, an SCD
window always equals a sentence.

• For a corpus D there exists a set g called SCD set
containing K associated SCDs

g(D) =

{
tj =

(
Cj ,

⋃
d∈D

{sd1, ...., sdS}

)}K
j=1

.

Given a document d ∈ D, the term g(d) refers to the set
of SCDs associated with sentences from document d.

• Each word wi ∈ sd is associated with an influence
value I(wi, s

d) representing the relevance of wi in the
sentence sd. For example, the closer wi is positioned to
the object of the sentence sd, the higher its corresponding
influence value I(wi, sd). The influence value is chosen
according to the task and might be distributed binomial,
linear, or constant.

B. Subjective Content Descriptions

SCDs provide additional location-specific data for docu-
ments [1]. The data provided by SCDs may be of various
types, like additional definitions or links to knowledge graphs.
However, in this paper we do not focus on the additional data,
instead we focus on how to determine which sentences belong
to one SCD.

Kuhr et al. use an SCD-word distribution represented by
a matrix when working with SCDs [1]. The SCD-word dis-
tribution matrix, in short SCD matrix, can be interpreted
as a generative model. A generative model for SCDs is
characterized by the assumption that the SCDs generate the
words of the documents. We assume that each SCD shows a
specific distribution of words of the referenced sentences in
the documents.

Before we describe UESM, we outline the details of SCD
matrices and an algorithm training an SCD matrix δ(D) for a
corpus D given the SCD set g(D) in a supervised manner.

The SCD matrix δ(D) models the distributions of words for
all SCDs g(D) of a corpus D and is structured as follows:

δ(D) =



w1 w2 w3 · · · wL

t1 v1,1 v1,2 v1,3 · · · v1,L

t2 v2,1 v2,2 v2,3 · · · v2,L
...

...
...

...
...

...
tK vM,1 vK,2 vK,3 · · · vK,L



https://www.wiktionary.org/


Algorithm 1 Supervised estimation of SCD matrices δ(D)
1: function BUILDMATRIX(D, g(D))
2: Input: Corpus D; Set of SCDs g(D)
3: Output: SCD-word distribution matrix δ(D)
4: Initialize an K × L matrix δ(D) with zeros
5: for each document d ∈ D do
6: for each SCD t = (C, {sd1, ..., sdS}) ∈ g(d) do
7: for j = 1, ..., S do . Iterate over sentences
8: for each word wi ∈ sdj do
9: δ(D)[t][wi] += I(wi, s

d
j )

10: return δ(D)

The SCD matrix consists of K rows, one for each SCD in
g(D), and each row contains the word probability distribution
for the SCD. Therefore, the SCD matrix has L columns, one
for each word in the vocabulary of the corresponding corpus.

The supervised estimation of an SCD matrix is described
in Algorithm 1. Given a corpus D, the algorithm iterates over
each document d in the corpus and the document’s SCDs. For
each associated SCD t, the referenced sentences sd1, ..., s

d
S are

used to update the SCD matrix. Thereby, the row of the matrix
representing SCD t gets incremented for each word in each
sentence by each word’s influence value.

Finally, the SCD matrix needs to be normalized row-wise to
meet the requirements of a probability distribution. However,
we skip the normalization because multiple calculations on
small decimal values on a computer reduce the accuracy. Later,
we use the cosine similarity with the rows of the matrix and the
cosine similarity does a normalization by definition. Thus, by
skipping the normalization, we save computational resources
and get slightly more accurate results.

Next, we present UESM, which estimates an SCD matrix
δ(D) without needing the SCD set g(D).

III. UNSUPERVISED ESTIMATION OF SCD MATRICES

This section introduces UESM, the Unsupervised Estimator
for SCD Matrices. Algorithm 2 outlines UESM. The SCD
matrix represents in its rows each SCD found in the corpus.
Whereby, each row contains the word distribution of the
sentences associated with the row’s SCD. UESM is also a topic
estimation algorithm because each SCD represents a concept
in the corpus and the SCD references the sentences dealing
about this concept.

In the beginning, UESM only gets a corpus of text docu-
ments for wich the SCD matrix has to be estimated. Com-
monly, a sentence is associated with an SCD and each SCD
references one or multiple sentences. UESM initially starts
by associating each sentence to one unique SCD. The SCD’s
word distribution of each SCD then only contains the words of
the referenced sentence. Lines 10 - 14 of Algorithm 2 show
how to create this initial SCD matrix, which consists of a
row for each sentence in the document’s corpus. The word
distributions are calculated using the influence value the same
way as in Algorithm 1.

Algorithm 2 Unsupervised Estimator for SCD Matrices δ(D)
1: function UESM(D, m, [θ,] [K,] [ε, ms])
2: Input: Corpus D; Method with hyperparameters, i.e.,
3: m = Greedy and threshold θ,
4: m = K-Means and number of SCDs K, or
5: m = DBSCAN, distance ε, and threshold ms
6: Output: SCD-word distribution matrix δ(D)
7: Initialize an (

∑
d∈DM

d)×L matrix δ(D) with zeros
8: l← 0
9: . Build initial SCD matrix

10: for each document d ∈ D do
11: for each sentence sd ∈ d do
12: for each word wi ∈ sd do
13: δ(D)[l][wi] += I(wi, s

d)

14: l← l + 1

15: . Use method m to merge rows
16: if m = Greedy then
17: repeat . Detect similar rows and merge
18: (ri, rj)← MOSTSIMILARROWS(δ(D))
19: δ(D)[ri]← δ(D)[ri] + δ(D)[rj ] . Sum rows
20: δ(D)[rj ]← Nil . Delete row
21: until SIMILARITY(ri, rj) < θ
22: else
23: . Create clusters of similar rows
24: if m = K-Means then
25: clusters← KMEANS(δ(D),K)
26: else
27: clusters← DBSCAN(δ(D), ε,ms)
28: for each cluster c ∈ clusters do
29: . Create sum of all cluster’s rows in first row
30: ri ← FIRSTROW(c)
31: δ(D)[ri]←

∑
rj∈c δ(D)[rj ]

32: for each row rj ∈ c do
33: if ri 6= rj then . Delete all non-first rows
34: δ(D)[rj ]← Nil

35: return δ(D)

Next, the sentences representing the same concept have to
be found and grouped into one SCD. Thereby, we differentiate
between three methods to detect similar rows in the initial SCD
matrix. Lines 16 - 34 of Algorithm 2 show the three methods
and how the rows are merged. The main idea of merging
two rows is to sum up the quantities of each word in both
distributions of words and deleting the second row from the
matrix.

To identify similar sentences, UESM has three different
methods. The first is a greedy approach followed by two well-
known clustering techniques, K-Means and DBSCAN.

a) Greedy by Similarity: The first method greedily se-
lects the next two rows to merge. It calculates the cosine
similarity between all rows, containing the word distributions,
in the matrix and always merges the two most similar rows.
This is repeated until the similarity between the two most
similar rows is below the threshold θ (Algorithm 2 lines 17



- 21). Thus, with a lower threshold less SCDs with more
referenced sentences each will be estimated and a higher
threshold leads to more SCDs with less referenced sentences.

The calculation of the cosine similarity between all rows is
realized as a matrix multiplication:

Sδ(D) =
δ(D)· δ(D)T

‖δ(D)‖2 · ‖δ(D)‖T2

The numerator represents the dot product between each row
of the matrix to each other and the denominator contains the
lengths of each row to normalize the matrix’s rows, as ‖v‖2
represents a vector of the euclidean norm of each row in v
and the symbol · the matrix multiplication. Numerator and
denominator are matrices of size K × K each, which are
then divided element-wise to form the cosine similarity matrix
Sδ(D). After doing so, Sδ(D) contains the cosine similarity
between each pair of rows in the matrix δ(D). The two most
similar rows in δ(D) can now be identified by searching for
the highest value in Sδ(D), of course without searching the
diagonal. Row and column index of the highest value in Sδ(D)

represent the most similar rows in δ(D).
Matrix multiplications on huge matrices can be computa-

tionally expensive. In case of the SCD matrix, it is a sparse
matrix and sparse matrix multiplication is reasonably fast.
Additionally, the euclidean norms of the rows can be cached
and updated partially for the changed rows, only.

b) K-Means: One well-know clustering techniques is K-
Means [9]. We will not get into the details how K-Means
works, but focus on how to apply K-Means. K-Means is
initialized with K centroids whereof each centroid represents
a cluster. Each point is assigned the nearest centroid in terms
of the euclidean distance using a vector representation of
the point. Iteratively the clusters are optimized by aligning
each centroid in the center of all the points contained in the
centroid’s cluster.

We run K-Means on the rows of the SCD matrix to detect
clusters of similar rows in the initial SCD matrix. Each row
represents a point and the word distribution is the vector
representation of this point. After K-Means is finished, we
merge the rows of the matrix included in the same cluster
(Algorithm 2 lines 28 - 34). Hence, the number of clusters is
equal to the number of SCDs in the end. As hyperparameter
the number of SCDs to estimate K is specified. Additionally,
a factor to multiply with the initial number of sentences in the
corpus or a technique to estimate a good number of cluster
for K-Means on the corpus may be used [11].

c) DBSCAN: Another well-know clustering technique is
DBSCAN [10]. In contrast to K-Means, DBSCAN is able to
detect concave structures in data and works density based.
DBSCAN clusters two points together if both are in a neigh-
borhood, the distance making up a neighborhood is defined
by the hyperparameter ε. A cluster then grows by adding all
points in the neighborhood to the same cluster. Additionally,
there is a minimum samples threshold ms which defines the
minimum number of points needed to form a cluster.

We run DBSCAN on the cosine similarity matrix Sδ(D)

and again merge the rows of the matrix included in the same
cluster (Algorithm 2 lines 28 - 34).

Comparing the three methods, when using K-Means the
number of SCDs to estimate K has to be specified in before-
hand. The greedy method and DBSCAN determine the number
of SCDs on their own. Though, the greedy method needs
a similarity threshold θ and DBSCAN ε and the minimum
samples threshold ms.

We use DBSCAN and K-Means because each method
represents a clustering method following a different approach,
i.e., density based and distance based clustering. We can not
predict which clustering method works better for a given
corpus. As typical for greedy methods, we expect the greedy
method working well for higher thresholds and more SCDs to
estimate, while for smaller thresholds and a small number of
SCDs, the greedy method will miss the global optimum.

We have now proposed UESM including how to determine
similar sentences based on three different methods greedy,
K-Means, and DBSCAN. Next, we describe and discuss the
workflow, dataset, and implementation used in our evaluation
along with the results comparing UESM against LDA.

IV. DISCUSSION AND EVALUATION

After we have introduced UESM with its three methods,
we present an evaluation. First, we describe the used corpus
and evaluation metrics. Finally, we present the results of the
evaluation and demonstrate the performance of UESM in
comparison to LDA.

A. Dataset

In this evaluation we use the Bürgerliches Gesetzbuch
(BGB)2, the civil code of Germany, in German language as
corpus. However, OpenIE can not be used on this German
language text and thus it is a example where we need UESM.
The BGB is freely available and can be downloaded as
XML file. Therefore, it is easily parsable and processable.
As the corpus is a law text it consists of correct language,
i.e., punctuation and spelling follow the orthographic rules.
Thus, less preprocessing and no data cleaning is needed.
Furthermore, the words used in text documents have a clear
meaning and mostly the same words are used instead of using
synonyms.

The entire corpus consists of 2 462 law paragraphs and
overall 8 020 sentences which are used as SCD windows. Each
law paragraph contains between 1 and 45 sentences with an
average of 3.3 sentences. The vocabulary consist of 5 294
words, where each sentence is between 1 and 51 with an
average of 10.9 words long.

B. Metrics

Topic models are trained unsupervised using statistical
methods, thus, the topics gained by LDA are statistically
optimized but may not match human judgement of good

2https://www.gesetze-im-internet.de/bgb/, Englisch translation https://www.
gesetze-im-internet.de/englisch_bgb/

https://www.gesetze-im-internet.de/bgb/
https://www.gesetze-im-internet.de/englisch_bgb/
https://www.gesetze-im-internet.de/englisch_bgb/


topics. In general, automatically evaluating the quality of a
model from a human point of view is a difficult task. A
common measure to evaluate the interpretability of topics
regarding human judgement is coherence. Röder et al. [12]
compare and evaluate multiple coherence measures against
human judgement as gold standard. The authors gain the
best results using the CV measure. However, due to negative
correlations and problems reproducing the CV values in their
paper, Röder does not recommended to use the CV coherence
any more3. Therefore, in our evaluation we use the UMass
coherence calculated using Gensim’s coherence model.

Furthermore, the number of referenced SCD windows per
SCD is relevant. For example, having 1 000 SCD windows
and 100 SCDs, each SCD should have a similar number
around 10 referenced SCD windows. It would be bad, if 99
SCDs reference 1 window each and the 1 remaining SCD
references the remaining 901 windows. Therefore, we evaluate
the number of referenced windows per SCD. Besides showing
all numbers of referenced windows, we also show the numbers
only for SCDs with two or more referenced windows, i.e.,
we interpret SCDs with only one referenced window as an
irrelevant SCD to omit.

For LDA an evaluation of referenced documents per topic
is not necessary, as the training ensures a similar number of
referenced topics per document.

C. Workflow and Implementation

UESM is implemented using Python and runs inside a
Docker container. The implementation uses the libraries Gen-
sim4, NumPy5, and NLTK6. The evaluation of UESM follows
this workflow:

(i) Extract the law paragraphs from the BGB’s XML file
and divide each paragraph into its sentences, which are
then used as initial SCD windows.

(ii) Lowercase all characters, tokenize the sentences into
words, stem the words, and eliminate stop words from
a wordlist containing 232 German words. These four
tasks are called preprocessing tasks. Preprocessing a text
of a document transforms the text in a more digestible
form for machine learning algorithms and increases their
performance [13].

(iii) Form an initial SCD matrix where each row contains
the word probability distribution for one sentence of the
corpus.

(iv) Apply UESM with one of the three methods greedy, K-
Means, or DBSCAN to detect similar rows in the SCD
matrix. Afterwards, merge the similar rows or the rows
in the same cluster by summing the distributions’ values.
We run each method with different hyperparameters
influencing the number of SCDs estimated. To be able

3"The usage of the CV coherence is not recommended anymore!", stated on
https://github.com/dice-group/Palmetto/wiki/How-Palmetto-can-be-used, last
accessed 24. September 2022

4https://radimrehurek.com/gensim/
5https://numpy.org/
6https://www.nltk.org/

to show the results of all methods in one figure, we
represent the results by the number of SCDs estimated.
We show this number of SCDs by the reduction of the
number of windows in percent, i.e., if an initial SCD
matrix of 8 020 rows is reduced to 802 rows, the matrix
is reduced by 90 %. For example, in this case K would
have been 802 for the method K-Means.

(v) Calculate the UMass coherence using Gensim for the
newly estimated SCD matrix on the corpus. Hereby, for
each SCD the word probability distribution is used to
determine the 20 most probable words of the referenced
SCD windows. For each SCD these 20 words are inter-
preted as the SCD’s topic.

For comparison, we train two topic models by LDA using
Gensim and the hyperparameters α = 0.01 and β = 0.05.
Small α and β lead the model to assign each document a
single topic with a high probability, this matches the idea of
associating an SCD window with one SCD. We train models
with different numbers of topics and represent the number of
topics by the reduction of the number of documents given to
the model in percent, analogously to the reduction described
in (iv) previously.

a) LDA Windows: This topic model is trained on the
8 020 sentences as documents. Therefore, the model’s docu-
ment topic distributions allow to determine the topic of each
sentence and thus the model’s topics are comparable to the
SCDs referencing multiple sentences in the corpus. However,
LDA is not designed to be trained with very short documents
like single sentences.

b) LDA Documents: This topic model is trained on the
2 462 law paragraphs as documents and applies LDA in its
typical fashion with medium sized documents. However, using
this model’s document topic distributions it is not possible to
determine the topic of each sentence, as each of the model’s
documents contain more than one sentence.

Again, we calculate the UMass coherence for each topic
model directly using Gensim’s functionality.

D. Results

In this section, we present the results gained using UESM
and the previously described workflow.

In Figure 1, the coherences of the three methods using
UESM and both topic models are shown. The UMass scores
calculated by Gensim are negative, higher values are better.
On the left side, the reduction of the number of windows
is small, thus many SCDs are created. Going to the right,
the number of SCDs decreases, e.g., the rightmost triangle of
greedy similarity represents 834 SCDs gained from initially
8 020 windows.

The lines of DBSCAN, greedy similarity, K-Means, and
LDA Documents are all close together, while LDA Windows
shows poor results far below all other lines. This demonstrates
that LDA Windows is not capable of estimating SCDs in an
unsupervised manner, because the windows used as documents
are too small. LDA Documents however demonstrates the
UMass score a good topic model reaches on the BGB and

https://github.com/dice-group/Palmetto/wiki/How-Palmetto-can-be-used
https://radimrehurek.com/gensim/
https://numpy.org/
https://www.nltk.org/
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Figure 1. UMass coherence of the three methods using UESM and the coherences of both topic models trained using LDA for comparison.

UESM using K-Means reaches similarly good values. UESM
works well with greedy similarity and less reduction of
windows, but K-Means becomes better for more reduction.
DBSCAN is quite unstable and the amount of reduction
is difficult to configure using the hyperparameters ε and
number of minimum samples ms. Although, the coherences
of DBSCAN are good, we later see in Figure 2 why DBSCAN
is not a good choice.

To summarize, using UESM with K-Means yields coher-
ences on par with LDA. However, LDA is not able to estimate
SCDs what UESM does.

In Figure 2 for each of the three methods two plots are
shown. In the upper row, for each percentage of reduction the
numbers of referenced windows are shown by boxplots on a
logarithmic scale. The lower row shows the same, but SCDs
referencing only one window are omitted. We focus on the
lower row: For K-Means and greedy similarity most SCDs
reference less than 10 windows, which is a good number of
references. However, there are also many outliers referencing
more windows. For K-Means the largest number of references
is 952 and 1 741 with greedy similarity. An SCD referencing
1 741 windows references 21 % of the corpus and it is hard
to imagine that 21 % of the corpus share the same concept.
Again, this demonstrates that greedy similarity does not work
well with a high reduction of the number of windows.

Using DBSCAN there are more SCDs referencing a large
number of windows, which also implies that there are many
SCDs referencing only one window. Also, the largest number
of references is 3 832 for DBSCAN, which means that a single
SCD references 48 % of the corpus. An SCD referencing
nearly half of the corpus can not be good. Furthermore, only
this single SCD can reference 48 % of the sentences, while
no other SCD can reference the same sentences.

Summarized, K-Means shows an overall very good distribu-
tion of referenced windows per SCD and greedy similarity is

good, too. Though, DBSCAN generates an SCD referencing
nearly half of the corpus. Thus, DBSCAN should not be used.

V. RELATED WORK

Before we conclude, we take a look at related work. Adding
data to corpora of text documents has been investigated for a
long time [14]. Often the data associated with a corpus is
denoted as an annotation.

In the beginning of natural language annotation, most
annotations had to be added manually to the corpora. Even
today, crowdsourcing can be used to manually annotate text
documents [15]. Furthermore, semi-automatic and automatic
annotation systems were developed, too, e.g., OpenIE [7].
Thus, unsupervised corpus annotation remains an important
field of research.

In the context of SCDs, we interpret an SCD as a corpus
annotation and in context of this paper, an SCD annotates
multiple sentences of similar concepts all over the corpus’ text
documents. Topic models assign a distribution over the topics,
estimated by the model itself, to each text document in the
corpus and each topic is characterized by a distribution of oc-
curring words in the topic’s documents. Thus, similarly to the
topics of a topic model, UESM associates text documents with
SCDs representing concepts. A well-known topic modelling
technique is LDA [8]. LDA is a generative model representing
documents as a probability distribution over topics. Many
extensions have been proposed to optimize the performance of
LDA, e.g., the author-topic model [16], which extends LDA
to couple each author of a document with a multinomial over
words, and the dynamic topic model [17], which allows for
analysing topic changes over time.

Documents assigned with a similar distribution over the
topics, are assumed to be similar in terms of an topic model.
However, LDA’s perception of similar documents may not
always match the human perception of similar documents [18].
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Figure 2. Number of windows referenced by one SCD for the three different methods of UESM. In the lower row, SCDs referencing only one window are
omitted.

UESM uses greedy similarity, K-Means or DBSCAN to
identify similar sentences. Another technique to find similar
sentences in a corpus of text documents is Similar Short Pas-
sages Identifier (SiSP) [19]. SiSP first extracts features from
the sentences and then creates clusters of similar sentences.
The authors evaluate the clusters found by SiSP against human
labeled sentences. UESM may be used with SiSP, however,
SiSP was developed for the Portuguese language.

A further idea is to cluster sentences hierarchically [20].
In difference to the clustering techniques used by UESM,
the authors start with a sentence in the corpus and build a
hierarchical clustering from this sentence. The hierarchical
clustering has a tree-like structure, i.e., after staring from
the first sentence, the tree branches across multiple levels to
different concepts in the corpus.

Clustering can not only be used to identify similar sen-
tences, it can also help to annotate sentences with their
sentiment [21]. The authors assume, that two sentences in the
same cluster have a similar sentiment and thus they can enrich
the number of labels in a sparsely labeled corpus. In cases,
where short sentences do not contain enough shared words to
apply the cosine similarity, a ranking of the suitable clusters
for each sentence can be used [22] to increase the performance
of clustering techniques.

Text summarization is another field of research, where
clusters of similar sentences are used. Thereby, the idea is
to remove most of the similar sentences and only keep one
sentence from each cluster. SimFinder [23] clusters small
pieces of text, like sentences, into tight clusters. Unlike UESM,
SimFinder does not work unsupervised, as it needs feature
words in beforehand.

Another approach for text summarization is to extract the
word vectors from each sentence and weight each word using
tf-idf [24]. Then, the weighted word vectors are clustered
using the cosine similarly with K-Means [9], again, from
each cluster one sentences makes up the summary [25]. This
approach overlaps with UESM in using word vectors, the
cosine similarity, and K-Means. However, the authors pursue
only the goal of text summarization, while UESM uses three
methods and represents the concepts and topics of a corpus in
the estimated SCD matrix.

VI. CONCLUSION

This paper introduces UESM with three methods, namely
K-Means, greedy similarity, and DBSCAN. UESM estimates
SCD matrices for corpora of text documents in an unsuper-
vised manner. Thereby, UESM detects sentences of similar
concepts or topics in a corpus and then associate the same
SCD to these similar sentences.



An SCD matrix for a corpus can be interpreted as a topic
model of the corpus. Hence, the well-known LDA [8] is used
to evaluate the performance of UESM. We use the UMass
coherence to evaluate the quality of each model and show,
that especially UESM using K-Means performs as good as
LDA. Whereby in particular, LDA does not estimate an SCD
matrix, but especially the SCD matrix is needed by approaches
introduced by Kuhr et al. [2], [3] and Bender et al. [4],
[6]. UESM enables the authors’ approaches to be used in an
unsupervised manner, i.e., without needing SCDs for a corpus
in beforehand. Generally, without a focus on SCDs, UESM
provides a new and powerful technique to create a topic model
for a corpus.

Overall, the evaluation shows that UESM using K-Means
can keep up with LDA, while the greedy method is only
slightly less powerful. Because DBSCAN associates too many
sentences with the same SCD, DBSCAN is not suitable for
most use-cases.

So far, we have introduced an SCD as a tuple of the SCD’s
additional data C and the referenced sentences. In this paper,
we put efforts in finding the referenced sentences but we did
not estimate the data C. Thus, currently we only get the word
probability distribution and the referenced sentences for each
SCD without C. Future work will focus on estimating C, which
is similar to automated topic naming for topic models [26].
Additionally, we will focus on more approaches applying
the SCD matrix to solve natural language processing related
problems.
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