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Abstract

This paper is concerned with knowledge graph embedding with background knowl-
edge, taking the formal perspective of logics. In knowledge graph embedding, knowledge—
expressed as a set of triples of the form (a R b) (“a is R-related to b”)—is embedded into
a real-valued vector space. The embedding helps exploiting geometrical regularities of the
space in order to tackle typical inductive tasks of machine learning such as link predic-
tion. Recent embedding approaches also consider incorporating background knowledge, in
which the intended meanings of the symbols a, R, b are further constrained via axioms of
a theory. Of particular interest are theories expressed in a formal language with a neat
semantics and a good balance between expressivity and feasibility. In that case, the knowl-
edge graph together with the background can be considered to be an ontology. This paper
develops a cone-based theory for embedding in order to advance the expressivity of the
ontology: it works (at least) with ontologies expressed in the description logic ALC, which
comprises restricted existential and universal quantifiers, as well as concept negation and
concept disjunction. In order to align the classical Tarskian Style semantics for ALC with
the sub-symbolic representation of triples, we use the notion of a geometric model of an
ALC ontology and show, as one of our main results, that an ALC ontology is satisfiable in
the classical sense iff it is satisfiable by a geometric model based on cones. The geometric
model, if treated as a partial model, can even be chosen to be faithful, i.e., to reflect all and
only the knowledge captured by the ontology. We introduce the class of axis-aligned cones
and show that modulo simple geometric operations any distributive logic (such as ALC)
interpreted over cones employs this class of cones. Cones are also attractive from a machine
learning perspective on knowledge graph embeddings since they give rise to applying conic
optimization techniques.

1. Introduction

The idea of embedding words or other forms of data into low-dimensional continuous vector
spaces has gained much attention as it provides means to connect reasoning with machine
learning. Approaches that map individual instances such as words to vector spaces have
already been proven useful in various tasks (Goldberg & Levy, 2014; Pennington, Socher, &
Manning, 2014; Levy & Goldberg, 2014), yet these approaches cannot grasp the relational—
or more generally: the predicate-logical—structure underlying the data. Consequently, the
embedding idea was pushed further (see, e.g., Nickel, Tresp, and Kriegel (2011), Bordes,
Usunier, Garćıa-Durán, Weston, and Yakhnenko (2013) and, for an overview, Wang, Mao,
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Wang, and Guo (2017)) in order to design embeddings of knowledge graphs. As usual, a
knowledge graph is defined to be a set of triples of the form (a R b) for objects a and
b and relations R. The idea of embedding knowledge graphs was even pushed further
to account also for background knowledge, say an ontology consisting of axioms in some
(expressive) logic (Mehran Kazemi & Poole, 2018; Kulmanov, Liu-Wei, Yan, & Hoehndorf,
2019). Embeddings support several reasoning operations and have quickly gained massive
attention. Moreover, embeddings may also be regarded as a cognitively justified structure
for representing concepts (Gärdenfors, 2000) and reasoning with them.

Many classical approaches of knowledge graph embeddings such as TransE (Bordes et al.,
2013) suffer from a lack of full expressivity in the sense laid down by Mehran Kazemi and
Poole (2018): given a knowledge graph and a set of triples known to be true (positive set)
as well as triples that are known to be false (negative set), the embedding is said to be fully
expressive if it maps the relations and constants into a space such that (a R b) holds in
the embedding iff it is in the positive set and (a R b) does not hold iff it is in the negative
set. The lack of (full) expressivity of classical approaches to knowledge graph embeddings
is due to a decision on how to model relations R: rather than following the classical logic
approach, relations are modelled with computationally feasible data structures (e.g., in
case of TransE by vector translations) that fit into the general mathematical framework of
continuous embeddings. In fact, following the translation approach of TransE one can see
that the induced logic is not that of arbitrary relations but that of functional relations only
since entities that are said to be related must be located relative to one another with a
relation-specific but fixed translation.

These observations motivate research on embeddings that shift the compromise between
geometrical models constructible by means of learning and capabilities to capture underlying
domain structure towards richer logical structures. This paper proposes a new embedding
of ontologies expressed in a concept-centred logic (such as a description logic) into a real-
valued vector space. The embeddings works for various such logics, but as a case in example
we consider the description logic ALC (Schmidt-Schauß & Smolka, 1991) which provides
restricted forms of existential and universal quantifiers as well as concept negation and
concept disjunction and is a common semi-expressive description logic that allows us to
go beyond what can be captured with geometric models considered for knowledge graph
embeddings so far. The popularity of ALC makes it worthwhile to study new approaches
related to it. To the best of our knowledge, this is the first approach capable of concept
negation and disjunction as it occurs naturally in many ontologies. Our main result states
that anALC ontology is satisfiable in a classical sense iff it is satisfiable by a geometric model
that interprets all concept descriptions as cones (concretely: axis-aligned cones). We derive
this result by first considering the Boolean part of ALC ontologies and then generalizing it
to full ALC. The geometric models we use are partial and thus allow some uncertainty to
be retained, i.e., if x is only known to be a member of the union of two atomic concepts,
then our partial model will not commit to saying to which atomic concept x belongs. Put
differently, we need partial models in order to represent the knowledge contained in the
ontology faithfully : exactly those axioms derivable from the ontology should be represented
in a partial model. Partial models introduce interesting possibilities into the realm of
knowledge graph embeddings when learning from incomplete data. A learner constructing
an embedding from data is no longer forced to commit to all feature values of an instance,
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Figure 1: Overview of steps in achieving a geometric embedding for description logic ALC
.

but only to those backed up by the data available and thus is able to incorporate incomplete
information in the learning process without being forced to make assumptions about the
missing features.

In summary, this paper makes two contributions: First, by detailing an embedding of
ALC we show a way of how logic-level expressivity of knowledge graph embeddings can be
advanced to semi-expressive concept languages involving negation. We achieve this result
by exploiting the geometric structure of cones and the algebraic-logic structure induced by
the operations of classical set intersection and polarity from linear algebra. Second, we
present a so-called geometric model that is faithful and allows uncertainty in data to be
retained in a knowledge graph embedding. Faithful models can be obtained by interpreting
the algebraic-logic structure of a specific class of cones.

This paper continues by reviewing related approaches. Section 3 summarizes ALC,
Section 4 introduces al-cones and discusses their motivation. In Section 5 we present an
embedding for propositional ALC and show its completeness. Section 6 then considers full
ALC. For orientation, the steps towards achieving the geometric model for full ALC are
also summarized in Figure 1. Section 7 sketches how to use our embedding approach for
learning. The paper concludes with a brief discussion of the results.

2. Related Work

A class of contemporary research areas in AI is involved with the integration of two or
more distinct subfields of AI, sometimes referred to as hybrid AI. One of these areas is
involved with the integration of knowledge representation (KR) and machine learning (ML)
techniques, aiming at various goals such as empowering an agent to reason about knowl-
edge it has learned or to advance machine learning performance by exploiting background
knowledge. These questions are particularly relevant to so-called Knowledge Graph Em-
beddings (briefly referred to as embeddings), which connect learning in terms of computing
an embedding of concepts in a real-valued vector space to some form of reasoning carried
out by geometric operations (see Ji, Pan, Cambria, Marttinen, and Yu (2021), Wang et al.
(2017) for an overview). Put differently, the aim of embeddings from a ML perspective is
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to advance from learning single concepts to learning ontologies, and to exploit ontologies as
constraint specification for deriving statistical models from data.

An example for the latter approach in a typical ML task is laid down by Deng, Ding,
Jia, Frome, Murphy, Bengio, Li, Neven, and Adam (2014). The main application considered
there is object classification on pictures w.r.t. some set of labels (puppy, dog, cat, etc.) The
authors consider ontologies of a very simple type called HEX-graph. The HEX-graph con-
sists of nodes for Boolean labels (corresponding to atomic concepts) and edges that stand
either for subsumption (leading to hierarchies of concepts, the “h” in “hex”, example: pup-
pies are dogs) or for disjointness of concepts (called exclusion, the “ex” in “hex”; example:
cats are disjoint from dogs). In Description Logic (DL) terminology as used in this paper
to characterize ontologies, the expressivity of HEX-graphs is a fragment of propositional
ALC where only atomic negation is allowed and where conjunction or disjunction are not
supported. Deng et al. (2014) then describe a standard model used in the given ML task
(concretely: pairwise conditional random fields) and show how to encode the constraints of
the hex-graph as additional factors in that model. By presenting a more expressive embed-
ding based on the logic ALC, this paper aims to advance the foundations for integrating
machine learning and reasoning.

From a KR perspective, embeddings provide a form of model in the sense of logic, also
called geometrical model due to the geometric nature of embeddings. Reasoning is then per-
formed by operations on the geometrical model. A particular challenge in grounding logic
reasoning in machine learning models is to bridge between semantics underlying learning
and reasoning. One example to such neural-symbolic reasoning are Logic Tensor Networks
(LTN) (Serafini & d’Avila Garcez, 2016; Badreddine, d’Avila Garcez, Serafini, & Spranger,
2021) that ground a many-valued first-order logic in real values of a deep learning architec-
ture of tensor networks (Socher, Chen, Manning, & Ng, 2013) (thus the name Logic Tensor
Networks). The logic of LTN is a Fuzzy Logic based on degrees of satisfiability. Atoms
are grounded with degrees of probabilities and predicates as functions over these probabil-
ities. In contrast to the probability-based approach of LTNs, the approach presented in
this paper allows concepts to be modeled as geometric objects and predicates as geomet-
ric operations. Moreover, though our approach does not rely on fuzzy reasoning, it allows
uncertainty to be captured in partial models—in particular in so-called faithful models. As
a last contrasting point to LTNs, let us mention that our contribution to embeddings is to
ground the semi-expressive logic ALC exactly in a real-valued geometry without the need of
hyper-parameters that need to be tuned for aligning sub-symbolic and symbolic semantics.

Several approaches to knowledge graph embeddings are derived from the basic idea
of the seminal TransE approach (Bordes et al., 2013) that is illustrated in Figure 2 (a).
TransE interprets objects, respectively concepts, as vectors in a real-valued vector space.
Relations are interpreted as translations of these vectors. For example, Figure 2 (a) shows
the words ‘man’ and ‘woman’ related by a translation r that could mean ‘female form of’.
This type of embedding allows analogical reasoning of the following kind: based on the
relation between man and woman what would be a possible counterpart X of uncle? In
order to answer the question, the translation r that connects ‘man’ to ‘woman’ can be
applied to ‘uncle’, obtaining ‘aunt’. Though TransE was enormously successful it is also
limited with respect to the kinds of background knowledge it can account for. For example,
concepts usually have an extension, i.e., have an associated set of objects falling under
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Figure 2: (a) Illustration of TransE; (b) Approach using spheres for EL++ concepts; (c) Quasi-
chained Datalog with convex sets

them. Hence, they cannot be represented as single vectors. This problem has motivated the
consideration of geometric models (Gutiérrez-Basulto & Schockaert, 2018), i.e. embeddings
that are motivated by classical Tarskian style semantics.

One recent approach along this line that is based on the geometric interpretation of
knowledge graph embeddings is presented by Kulmanov et al. (2019). Here, the lightweight
description logic EL++ (Baader, Brandt, & Lutz, 2005) is considered as a means to express
background knowledge. The approach is still committed to the idea of TransE of interpreting
relations as translations but invokes the idea of geometric models to interpret concepts as
(geometrically shaped) sets of vectors. In the case of the approach of Kulmanov et al. (2019)
these geometrically shaped sets for embedding concepts are open n-balls with a fixed radius.
Figure 2 (b) illustrates this with the concept ‘uncle’ and ‘aunt’ represented as spheres of
objects, but still with relations being vector translations (of instances of the concepts). The
method of Kulmanov et al. (2019) is limited due to the restricted constructions available in
the lightweight description logic EL++, which in particular has no full concept negation—in
contrast to the description logic ALC, which is in the focus of this paper.

Gutiérrez-Basulto and Schockaert (2018) define geometric interpretations as classical
interpretations of an ontology with two specific constraints: the domain is a Euclidean
space of some dimension m and the interpretations of all (n-ary) relations are constrained
to convex sets over n-wise Cartesian products of Rm, i.e., Rnm. So in contrast to classical
knowledge graph embeddings and also to Kulmanov et al. (2019), relations (of arbitrary
arity n) are interpreted (classically) by n-wise Cartesian products and (non-classically)
requiring them to be convex sets. Figure 2 (c) illustrates the approach: Concepts, i.e.,
unary relations, such as ‘uncle’ or ‘aunt’ are interpreted by arbitrary convex sets (depicted
as oval and polygon in the figure). Also relations of arity n > 1 are interpreted by convex
sets. In our illustration the convex sets for binary relation r would be situated in R4 since
the concepts are embedded in R2. Pairs contained in relation r are as indicated by the
bowed edges not further constrained and not directed in a fixed way. The approach of
(Gutiérrez-Basulto & Schockaert, 2018) achieves ontologies expressed as rules in datalog±

(Cal̀ı, Gottlob, & Lukasiewicz, 2009), which admits rules with existentials in the head
of the rule (alias tuple-generating dependencies) and integrity constraints, i.e., rules of
the form ∀x⃗ψ(x⃗) → ⊥ with a conjunction of atoms ψ(x⃗). Their main result is that an
ontology consisting of quasi-chained rules is satisfiable classically iff it is satisfiable by a
geometric interpretation where all relations are interpreted by convex sets. An existential
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rule [B1 ∧ · · · ∧ Bn → ∃X1, . . . , Xj .H1 ∧ · · · ∧ Hk is called quasi-chained iff each atom
Bi shares maximally one variable with the variables of all atoms coming before it, i.e.,
(var(B1) ∪ . . . var(Bi−1)) ∩Bi ≤ 1.

The use of convex sets for the interpretation of relations can be justified by their im-
portance as, on the one hand, computationally feasible data structures as used in convex
optimization (Boyd & Vandenberghe, 2004) and, on the other hand, as a linguistically and
cognitively justified structure for representing concepts (Gärdenfors, 2000).

Convexity is preserved under many operations, in particular it is preserved under inter-
section and projection, which are the main operations expressible in the allowed fragment
presented by Gutiérrez-Basulto and Schockaert (2018). Interestingly, due to the use of in-
tegrity constraints, these ontologies implicitly use some aspect of negation, namely that of
disjointness. And, in fact, Gutiérrez-Basulto and Schockaert (2018) show that quasi-chained
datalog± covers several well-known logics—some of them from the family of description log-
ics. But neither one can cover full negation: implicitly, negation is allowed to occur on the
right hand side as atomic negation, but not as negation on the left hand side of a rule.
The latter case negation would allows us, for example, to express coverage aspects which
amounts to the use of disjunction. The restriction in their language is not surprising as
convexity is neither preserved under set complement nor under set union which are the two
algebraic operations they consider.

In our approach, we try to do both, stick to convexity and allow for full negation
by identifying a set of geometric structures that can be equipped with suitable algebraic
operations. As Gutiérrez-Basulto and Schockaert (2018), we also presume finite satisfiability
of the ontology but work dually by constructing concepts on the axes and then placing
individuals on these. The reason is that we incorporate an additional structure, namely
a scalar product, which in turn induces the negation operator. This one constrains the
potential places in which the negations of concepts can be placed. This, in particular,
prevents adapting the quasi-chainedness property which was defined for Datalog± but not
defined for ALC.

Generalizing the notion of full expressiveness (Mehran Kazemi & Poole, 2018) we con-
sider in our approach various notions of faithfulness that express to what extent an em-
bedding represents the knowledge of an ontology. Hohenecker and Lukasiewicz (2020) are
also interested in learning embeddings of a knowledge base that are faithful in the following
sense: the embedding models exactly the entailments of the knowledge base. But there is
a main difference to our approach regarding the entailments: The kind of knowledge base
is that of a database with integrity constraints. Hence the kind of reasoning considered
by Hohenecker and Lukasiewicz (2020) is that of reasoning with a closed world assumption
(actually they also consider local forms of the closed world assumption), and not that of
reasoning over genuine ontologies, which adhere to the open world semantics. As a conse-
quence, the kind of negation considered by Hohenecker and Lukasiewicz (2020) is that of
negation as failure and not that of full classical negation as in our case.

3. The Description Logic ALC

We are going to work with the description logic ALC (Schmidt-Schauß & Smolka, 1991;
Baader, 2003). We assume that there is a DL vocabulary (signature) given by a set of
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Name Syntax Semantics

top ⊤ ∆I

bottom ⊥ ∅
conjunction C ⊓D CI ∩DI

disjunction C ⊔D CI ∪DI

negation ¬C ∆I \ CI

universal quantifier ∀R.C {x ∈ ∆I | For all y ∈ ∆I : If (x, y) ∈ RI then y ∈ CI}
existential quantifier ∃R.C {x ∈ ∆I | There is y ∈ ∆I s.t. (x, y) ∈ RI and y ∈ CI}

Table 1: Syntax and semantics for the DL ALC

constants Nc, a set of role names NR and concept names NC . The ALC concepts (concept
descriptions) over NC ∪NR are described by the grammar

C −→ A | ⊥ | ⊤ | ¬C | C ⊓ C | C ⊔ C | ∃R.C | ∀R.C

where A ∈ NC is an atomic concept, R ∈ NR is a role symbol, and C stands for arbitrary
concepts. For readability, ∃Rn+1.C = ∃R.∃Rn.C, where ∃R1.C = ∃R.C. A classical ALC
interpretation is a pair (∆, (·)I) consisting of a set ∆, called the domain, and an interpreta-
tion function (·)I which maps constants to elements in ∆, concept names to subsets of ∆,
and role names to subsets of ∆×∆. The semantics of arbitrary concept descriptions for a
given interpretation I is given in Table 1. An ontology O is defined as a pair O = (T ,A)
of a terminological box (TBox) T and an assertional box (ABox) A. A TBox consists of
general inclusion axioms (GCIs) C ⊑ D (“C is subsumed by D”) with concept descriptions
C,D. C ≡ D abbreviates {C ⊑ D,D ⊑ C}. An ABox consists of a finite set of assertions,
i.e., facts of the form C(a) or of the form R(a, b) for arbitrary concepts C, roles R and
a, b ∈ Nc.

An interpretation I models a GCI C ⊑ D, for short I |= C ⊑ D, iff CI ⊆ DI . An
interpretation I models an ABox axiom C(a), for short I |= C(a), iff aI ∈ CI and it
models an ABox axiom of the form R(a, b) iff (aI , bI) ∈ RI . An interpretation is a model
of an ontology (T ,A) iff it models all axioms appearing in T ∪ A. An ontology O entails
a (TBox or ABox) axiom ax, for short O |= ax, iff all models of O are also models of ax.
A concept C is the most specific concept (msc) for an ABox-element a and an ontology O,
if O ⊨ C(a) and for all concepts C ′, O ⊨ C ′(a) entails O ⊨ C ⊑ C ′. The quantifier rank
for arbitrary concepts C is defined as the maximal nesting of quantifiers in it. Formally,
for an ALC concept define the quantifier rank by recursion as qr(A) = 0, qr(¬C) = qr(C),
qr(C1⊓C2) = qr(C1⊔C2) = max{qr(C1), qr(C2)}, and qr(∃R.C) = qr(∀R.C) = qr(C)+1.

Each TBox T generates a Boolean algebra, the so-called Lindenbaum-Tarski algebra
(Tarski, 1935). The reason why we consider the Lindenbaum-Tarski algebra will become
clear later, we just note here that in order to apply the theory of ortholattices (see Sect. 4.2.1
below), on which our treatment of negation rests, we have to algebraize the ontology. The
Lindenbaum-Tarski algebra can be defined for any theory in any logic. We show here how
it can be defined for an ALC TBox T . For concepts C,D let ∼ be the relation defined by
C ∼ D iff T |= C ⊑ D and T |= D ⊑ C. Relation ∼ is an equivalence relation inducing for
each concept C an equivalence class [C]. Define operations ⊓, ⊔, ¬ on the equivalence classes
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by setting [C]⊓ [D] = [C⊓D], [C]⊔ [D] = [C⊔D] and ¬[C] = [¬C]. As the relation ∼ is not
only an equivalence relation but a congruence relation w.r.t. ⊓,⊔,¬, the given equalities
are indeed well-defined and one can show that the equivalence classes fulfil the axioms of a
Boolean algebra. Just for completeness, we show here for the case of negation that indeed
the logical operations on the equivalence classes are well-defined: ¬[C] is defined by [¬C].
Taken any other representative D of the class [C], i.e. [D] = [C] or, equally, C ∼ D. By
definition this means T |= C ≡ D. But then by definition of the entailment relation and
the definition of ¬ for concepts we also have T |= ¬C ≡ ¬D, in other words [¬C] = [¬D].
Hence, indeed ¬ on the equivalence classes is well defined. All Lindenbaum-Tarksi algebras
that we consider in this paper have a meet operator ∧ and hence induce a lattice with the
order a ≤ b defined by a∧ b = a. So it makes sense to talk about algebraic atoms (see 4.2.1)
in Lindenbaum-Tarski algebras.

4. Al-Cone Models

Our geometric interpretations are based on axis-aligned cones (al-cones) which form a sub-
class of the class of convex cones. We assume that a Euclidean space E (a vector space over
the real numbers R) with a scalar (dot) product ⟨·, ·⟩ is given. For illustration purposes we
will usually assume the real vector space Rn to be equipped with the scalar product defined
as follows: ⟨v, w⟩ :=

∑n
i=1 vi · wi = vT · w. While we restrict examples to this common

scalar product, it is worth noting that our approach only requires ⟨·, ·⟩ to be a positive
semi-definite bilinear form.

A closed convex cone X is a non-empty set that fulfils the following property: if v, w ∈ X,
then also λv+µw ∈ X for all λ, µ ≥ 0. The scalar product is necessary to define the polarity
operator on cones. The polar cone X◦ of a cone X is defined as follows:

X◦ = {v ∈ Rn | For all w ∈ X : ⟨v, w⟩ ≤ 0}

In case of the usual scalar product vT ·w the polar cone X◦ contains all vectors that differ
in orientation by at least 90 degrees from any vector contained in X. For example, Figure 3
(a) shows three al-cones: X spanning the top-left quadrant, Y along the positive x axis,
and Z along the negative y axis. Figure 3 (b) portrays their polar cones, X◦ spanning
the bottom right quadrant, Y ◦ covering the halfplane {(x, y)|x < 0} and Z◦ the halfplane
{(x, y)|y > 0}. Figure 3 (c) includes cone U which is not an al-cone; we later use this
example to exemplify special properties of cone structures only exhibited by al-cones.

The scalar product also justifies the choice of closed (and not arbitrary) convex cones.
To explain, first note, that the scalar product induces a norm ∥v∥ =

√
⟨v, v⟩. This again

induces a topology built on open balls Bϵ(v) := {w ∈ E | ∥w− v∥ < ϵ}. In turn, this notion
induces the open sets O ⊆ E of a topology on the Euclidean space E: O is called open iff
for any v ∈ O there there is ϵ > 0 and a ball Bϵ(v) completely contained in O. Closed sets
of the topology are defined as set complements E \ O of open sets O. The closed convex
cones are closed w.r.t. this topology.

The reason for working with (topologically) closed cones is simplicity. Otherwise, at
least for the case of al-cones, we would not be able to guarantee that—with set intersection
as the conjunction operation—a distributive logic is induced.
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Figure 3: Examples of axis-aligned cones (al-cones) and their polars. Figure (a) shows three al-cones
X, Y , Z and (b) their corresponding polar cones that are used to represent negation (in sub-figure
(b) for visual clarity). Figure (c) shows al-cones X, Y together with cone U which is not an al-cone
and its polar cone U◦. We revisit this example to illustrate that al-cones constitute a special family
of cones, namely one that exhibits properties of a Boolean algebra.

In the sequel, we use the term “cone” to refer to convex cones. Important cones are
the so-called n-orthants or n-hyperoctants. For dimension n = 2 these are the 4 quadrants.
Using the abbreviations R+ = {x ∈ R | x ≥ 0} and R− = {x ∈ R | x ≤ 0} we can define the
2n n-dimensional hyperoctants H(b1,...,bn) with bi ∈ {+,−} by Rb1 × · · · × Rbn .

Cones can be constructed by unions of neighboring hyperoctants. Consider next to
+, −, also the value u (for union) and define Ru = R. Then the axis aligned unions of
hyperoctants are defined as sets Rb1 × · · · × Rbn with bi ∈ {+,−, u}. By further allowing
for projections of all the sets mentioned above to the axes of the space we get the al-cones.
(Just for completeness we note that a projection is a mapping P : E −→ X of all elements
of the space E onto a X where each vector in E is assigned the nearest point in X. But in
the following we will not require this notion of projection anymore.)

X is an al-cone :⇔ X = (Xi)1≤i≤n = X1 × · · · ×Xn, where Xi ∈ {R,R+,R−, {0}}

So, in n dimensions we have 4n possible al-cones. An illustration of all al-cones in R2 is
given in Figure 4. In that figure we use an abbreviated notation. For example, the right
upper quadrant R+×R+ is denoted by (+,+). The positive x-axis R+×{0} becomes (+, 0),
the whole x-axis (u, 0) and so on.

The definition immediately entails the fact that al-cones in Rn are characterized by
the sets of half-axes contained in it. So we introduce an operator halfAxes(·) denoting the
half-axes of an al-cone X:

halfAxes(X) = {H | H = {0} × · · · × {0} ×Xi × {0} × · · · × {0} ∈ X
for Xi ∈ {R+,R−} and i = 1, . . . , n}

Let us now see how Boolean operations can be modeled. Aside set-based intersection to
represent conjunction, special attention is required. All al-cones are convex cones. Convex
cones are preserved under intersection, polarity, and other operations (such as projection),
but not under the set-union operator. This applies to al-cones as well, but by interpreting

295
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Figure 4: All al-cones in R2. The positive x-axis R+ × {0}, e.g., is abbreviated by (+, 0).
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Figure 5: The Boolean Algebra O4

⊔ using de Morgan (or, dually, relying on the conic hull operator) we can circumvent that
problem.

In fact, for al-cones operations intersection, polarity, and convex union have very simple
forms. This is due to the fact that the operations are based on the diamond shaped Boolean
algebra O4 = {{0},R+,R−,R} with set-inclusion as order: {0} ⊆ R+,R− ⊆ R (see the
illustration in Figure 5). Join ∨ on O4 amounts to set union, the meet operation ∧ to set
intersection and the complement ⊥ is given as the set complement followed by union with

{0}, i.e., X⊥ := (R \X) ∪ {0}. We have (X⊥)
⊥
= X and X ∩ Y ⊥ = X⊥ ∪ Y ⊥.

Proposition 1 states that intersection of two al-cones becomes componentwise intersec-
tion (in O4), polarity of al-cones becomes componentwise complementation (in O4) and
convex union become componentwise set union (in O4). The proposition thus teaches us
how algebraic computations on al-conces can be performed.

Proposition 1. Let X = (Xi)1≤i≤n, Y = (Yi)1≤i≤n be two al-cones in Rn. Then:
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1. X ∩ Y = (Xi ∩ Yi)1≤i≤n

2. X◦ = (Xi
⊥)1≤i≤n

3. (X◦ ∩ Y ◦)◦ = (Xi ∪ Yi)1≤i≤n

Proof.

1. v = (vi)1≤i≤n ∈ X ∩ Y iff for all i with 1 ≤ i ≤ n: vi ∈ Xi and vi ∈ Yi. This holds in
turn iff for all i with 1 ≤ i ≤ n: vi ∈ Xi ∩ Yi. And this holds iff v ∈ (Xi ∩ Yi)1≤i≤n.

2. “X◦ ⊇ (Xi
⊥)1≤i≤n”: Let v = (vi)1≤i≤n ∈ (Xi

⊥)1≤i≤n. Take any w = (wi)1≤i≤n ∈ X.
Due to the definition of ⊥ we have that for all i: wi · vi ≤ 0, so ⟨w, v⟩ ≤ 0 as well. As
w was chosen arbitrarily from X we can infer that v ∈ X◦.
“X◦ ⊆ (Xi

⊥)1≤i≤n”: Let v = (vi)1≤i≤n ∈ X◦, i.e., for all w ∈ X: ⟨v, w⟩ =
Σ1≤i≤nvi · wi ≤ 0. Consider arbitrary i with 1 ≤ i ≤ n. We argue by cases: If
Xi = R, then wi can be changed to an arbitrarily large (positively or negatively) w′

i,
keeping all wj for j ̸= i constant. Even under this change we still have to ensure
⟨v, (w1, . . . , wi−1, w

′
i, wi+1, . . . , wn)⟩ ≤ 0. And this is only possible if vi = 0. Hence

vi ∈ Xi
⊥ = {0}. If Xi = {0}, then Xi

⊥ = R and then trivially vi ∈ Xi
⊥. If Xi = R+,

then Xi
⊥ = R−. Again, we can make wi arbitrarily large (but this time only posi-

tively). Still the scalar product of the w (changed in its ith component) and of v must
be smaller than 0 and hence v can only be in R− = Xi

⊥. If Xi = R−, then Xi
⊥ = R+.

The argument works dually: We can make wi arbitrarily negatively large, hence vi
cannot be negative but vi ∈ R+ = Xi

⊥ must hold.

3. Due to 1. and 2. we have

(X◦ ∩ Y ◦)◦ =
(
(Xi

⊥)1≤i≤n ∩ (Yi
⊥)1≤i≤n

)◦
=

(
(Xi

⊥ ∩ Yi⊥)1≤i≤n

)◦
=

(
(Xi

⊥ ∩ Yi⊥)
⊥)

1≤i≤n

=
(
(Xi

⊥)
⊥ ∪ (Yi

⊥)
⊥)

1≤i≤n

= (Xi ∪ Yi)1≤i≤n

As a corollary we get:

Corollary 1. Al-cones X,Y in Rn are closed as follows:

1. The intersection X ∩ Y of X and Y is an al-cone.

2. The polar X◦ is an al-cone.

3. (X◦)◦ = X

4. (X◦ ∩ Y ◦)◦, the convex union of X,Y , is an al-cone.
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Figure 6: Illustration of the convex union of two cones

The operation of convex union (X◦ ∩ Y ◦)◦ in the last item of the corollary is used in
our embeddings for representing concept union ⊔. Figure 6 illustrates the construction on
arbitrary (not necessarily axis-aligned) cones. Note that the convex union of X and Y is
not just the union of the cones but covers the area in between them too.

Within the figure one might already observe the fact that the convex union is an instance
of the more general conic hull operator conHull(·), which we are now going to introduce.
The conic hull of a set Y is defined as the smallest closed convex cone containing Y , formally:

conHull(Y ) =
⋂
{Z | Z ⊇ Y and Z is a closed convex cone}

This operator is well-defined because the set {Z | Z ⊇ Y and Z is a closed convex cone} is
not empty (due to the fact that the whole space E = Rn is a closed convex cone). Moreover
conHull(Y ) is indeed a closed convex cone (and thus non-empty), because the definition
of closed convex cones is a universal sentence and universal sentences are preserved under
arbitrary intersections. The following proposition justifies our claim that the convex union
is an instance of the conic hull operator. In the proof of the proposition we rely on the
antitonicity property of polarity which we state here as a lemma:

Lemma 1. For all closed convex cones: if X ⊆ Y , then Y ◦ ⊆ X◦.

Proof. Let X ⊆ Y for closed convex cones X,Y . Then Y ◦ ⊆ X◦, because if v ∈ Y ◦, then
⟨v, y⟩ ≤ 0 for all elements y ∈ Y , but then also ⟨v, y⟩ ≤ 0 for all y ∈ X ⊆ Y .

Proposition 2. For closed convex cones X,Y :

(X◦ ∩ Y ◦)◦ = conHull(X ∪ Y )
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Proof. Clearly (X◦ ∩ Y ◦)◦ is a closed cone. We have X◦ ∩ Y ◦ ⊆ X◦ so by antitonicity
(Lemma 1) and elimination of double polarity X ⊆ (X◦ ∩ Y ◦)◦. Similarly one infers that
Y ⊆ (X◦ ∩ Y ◦)◦ and so X ∪ Y ⊆ (X◦ ∩ Y ◦)◦. But conHull(X ∪ Y ) is the smallest cone
containing X ∪ Y , so conHull(X ∪ Y ) ⊆ (X◦ ∩ Y ◦)◦.

We are left with showing that (X◦ ∩ Y ◦)◦ is also a minimal set containing X ∪ Y . Let
Z be another cone with Z ⊇ X ∪ Y . We have to show (X◦ ∩ Y ◦)◦ ⊆ Z, or equivalently
Z◦ ⊆ (X◦ ∩ Y ◦). We obtain Z◦ ⊆ (X ∪ Y )◦ ⊆ X◦ ∩ Y ◦.

The operator halfAxes(·) works smoothly with the operator conHull(·) in that they
distribute in the sense explicated in the following proposition.

Proposition 3. For all al-cones X,Y :

halfAxes(conHull(X ∪ Y )) = halfAxes(X) ∪ halfAxes(Y )

Proof. This is an immediate consequence of item 3 in Proposition 1.

Before we further embark on technicalities let us motivate the specifics of our approach
by discussing two questions: First, why should one use the polarity operator as the inter-
pretation of concept negation? Second, why should we restrict ourselves to axis-aligned
cones?

4.1 Motivation of Polarity-Based Negation

The use of the polarity operation for concept negation is motivated by the idea of providing
an operator that always maps a concept to a disjoint concept such that the disjoint concept
is maximally w.r.t. the underlying similarity relation. Here, the similarity relation is given
by the usual scalar product in the Euclidean space: The larger ⟨v, w⟩, the more similar are
v and w. Usually one also norms the scalar product so that the cosine acts as a similarity
measure: ⟨v, w⟩/(∥v∥ · ∥w∥). Two reasons substantiate our choice.

As for the first reason, one can observe that the idea of considering polarity as a form of
negation is related to a general approach of defining negation on the basis of some binary
complementary-relation com, as explained, e.g., by Dunn (1996) for propositional logics:
relation com holds between two propositions iff they are complementary in the sense that
there is no situation where both propositions are true (but still both may be false). Then,
negation of a proposition p can be defined as the disjunction of all those propositions q
that are complementary to p. Of course we are interested here in reading subsets C of the
embedding space Rn as concepts and points in Rn as objects falling into the extension of C.
But, drawing a closer connection to the approach of Dunn (1996), one could equally think
of the points of Rn as possible worlds (or states). Then set C becomes a proposition which
is exactly true for points contained in it.

As for the second reason, one can consider the following fact, known as Farkas’ Lemma
(see Figure 7a).

Lemma 2 (Farkas’ Lemma, Farkas, 1902). Let C be the convex cone generated by vectors
v1, . . . , vm ∈ Rn (i.e., C = smallest convex cone containing all vi = conHull({v1, . . . , vm}))
and let w ∈ Rn. Then either w ∈ C or there is z ∈ Rn such that ⟨z, vi⟩ ≤ 0 for all i, and
⟨z, w⟩ > 0.
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Özçep, Leemhuis, & Wolter

v1
v2

w
z

(a)

X

Y

Z Z ∩ conHull(X ∪ Y ) = Z
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conHull((Z ∩X) ∪ (Z ∩ Y ))={(0, 0)}
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Figure 7: (a) Illustration of Farkas’ Lemma; (b) counterexample of distributivity for arbitrary cones

The lemma says that if one considers a vector w that is not in the convex cone, i.e., a
vector that is in the complement Rn\C (the “usual” negation of C, namely set complement),
then there is at least a verifier z that is similar to w (namely ⟨z, w⟩ > 0) and is contained
in the polar cone of C. Note that from ⟨z, vi⟩ ≤ 0 for all i it follows that ⟨z, v⟩ ≤ 0 for
all v ∈ C. In the other direction, if one can find a z of the polar cone being similar to w,
then w is in the complement of C. In conclusion, polarity can be considered to provide
a more intuitive model of negation for scalar-product based similarity structures than set
complement.

4.2 Motivation for Considering Al-Cones

Firstly, the usefulness of al-cone models hinges on whether they are able to represent an
interesting class of ontologies. In the remainder of this paper we show that al-cone models
are indeed complete in the sense that an ontology is satisfiable classically iff it can be
embedded into a geometric model based on al-cones.

Secondly, al-cones are motivated by their ability to link to ML. So far we have motivated
the use of convex cones as proper structures to handle negation, yet we emphasize that
convex cones also are used as computationally feasible data structures in the area of conic
optimization (see, e.g., Boyd and Vandenberghe (2004), Section 4.3 on linear optimization
problems and Section 4.4.2 on second-order cone programming) and are therefore attractive
for ML applications. Here we only regard the case where one aims to learn a statistical
model for data that can be characterized by some ontology that has been specified in
a logic beforehand, not the case of investigating logics induced by the intersection and
polarity operators for arbitrary cones. In fact, if we interpret concept conjunction ⊓ as set
intersection and concept disjunction ⊔ as convex union, then the resulting logic cannot be
guaranteed to lead to Boolean (and so not to full) ALC as it would not fulfil the distribution
property for ⊓ and ⊔. A simple example is given in Figure 7 (b) for non-al-cones X, Y , Z.

So, in order to handle classical TBoxes such as Boolean ALC TBoxes, al-cones seem
to be an appropriate choice. But are they the only subclass of cones with all possible
(closed convex) cones in Euclidean spaces? The example of 7b shows that the class of
arbitrary closed convex cones does not satisfy distributivity. The reader is invited to revisit
Figure 3 (c) and verify that it presents a configuration similar to Figure 7 (b), only involving
a single non-al-cone U . In case of Figure 3 (c), conHull(X ∪ Y ) ∩ U = U is obtained but
X ∩ U = {⃗0} and Y ∩ U = {⃗0} holds. In contrast to this, distributivity is preserved for al-
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cones depicted in Figure 3 (a), (b) where conHull(X∪Y )∩Z = X∩Z = Y ∩Z = {⃗0} holds.
But maybe further distributive subclasses exist? In order to treat this question formally, we
shortly describe in the following the basic lattice theoretic structure of arbitrary classes of
cones, namely that of ortholattices. Based on this notion and a characterization of Boolean
algebras, we then give a characterization result showing that any subclass of cones that
fulfils (also) distributivity has the same expressivity as al-cones, meaning they can express
the same ontology in a given n-dimensional space. This then paves the way for possible
incremental learning algorithms based on al-cones.

4.2.1 Ortholattices

A lattice (L,≤) is a structure with domain L and a partial order ≤ such that for any pair of
elements a, b ∈ L there is a smallest upper bound denoted a ∨ b and a largest lower bound
denoted a ∧ b. As usual, x < y means x ≤ y and not y ≤ x. A bounded lattice (L,≤)
contains a smallest element 0 and a largest element 1, i.e., elements such that for all x ∈ L
one has 0 ≤ x ≤ 1.

An algebraic atom1 b in such a lattice is an element that covers 0, i.e., 0 < b holds and
for all a with 0 ≤ a ≤ b either a = 0 or a = b. If the lattice is a Lindenbaum-Tarski algebra,
we call “algebraic atom” also a representative of the equivalence class that is a algebraic
atom in the lattice. The context makes clear whether we mean the equivalence class or a
representative. A lattice is called algebraically atomic iff each element has an algebraic atom
below it. Intuitively, in atomic lattices one excludes the possibility of having an infinitely
descending chain whose infimum is 0.

A lattice is called distributive iff for all a, b, c ∈ L: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (and
dually: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)).

In a lattice an element a∗ is called a complement of a iff a ∧ a∗ = 0 and a ∨ a∗ = 1.
A lattice is said to be complemented (uniquely complemented) iff each a has a complement
(has exactly one complement). A bounded lattice L is called an ortholattice iff it has an
orthocomplement ·⊥, i.e., a function such that for all a, b ∈ L the following three conditions
hold:

• a ≤ b entails b⊥ ≤ a⊥ (antitonicity)

• a⊥⊥ = a (double complement elimination)

• 0 = a ∧ a⊥ (intuitionistic absurdity)

Any ortholattice satisfies de Morgan’s laws, i.e., for any a, b ∈ L it holds that (a ∧ b)⊥ =
a⊥ ∨ b⊥ (and dually: (a ∨ b)⊥ = a⊥ ∧ b⊥).

A Boolean algebra is an ortholattice in which distributivity holds. Hence algebraic
atoms of a Boolean algebra are the algebraic atoms of an ortholattice. As an example of
an ortholattice that is not a Boolean algebra consider the hexagon lattice, termed O6 in
the literature shown in Figure 8. It is easy to check that the hexagon is indeed a lattice.
It is orthocomplemented with ·⊥ defined by 1⊥ = 0, 0⊥ = 1, a⊥ = d, d⊥ = a, c⊥ = b,
b⊥ = c. Indeed, all three properties of an orthocomplement are fulfilled. On the other hand

1. Note that in contrast to the usual wording, we add the specification “algebraic” in order to prevent
clashes with the atomic concepts in description logics.
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Figure 8: The ortholattice O6

the lattice is not distributive (even not orthomodular) because we have c ≤ a such that
a ∧ (b ∨ c) = a ̸= c = 0 ∨ c = (a ∧ b) ∨ c = (a ∧ b) ∨ (c ∧ a).

There is a more fine-grained characterization by MacNeille (1937) which we use for
our characterization result of al-cones. MacNeille’s characterization result states that an
algebraic structure is a Boolean algebra iff it is an ortholattice and fulfills the following
additional axiom:

(*) For all a, b: If for all c: a ∧ b ≤ c, then a ≤ b⊥.

The characterization is such that it dispenses with the special elements 1 and 0 of a lattice.
But if the smallest element 0 is allowed, then this axiom can be expressed in the following
form:

(wLLJ) For all a, b: If a ∧ b ≤ 0, then a ≤ b⊥.

We call this rule weak Johansson’s constructive contraposition as it is a special case of
Johansson’s constructive contraposition named (LLJ) by Hartonas (2016).

(LLJ) For all a, b, c: If a ∧ b ≤ c, then a ∧ c⊥ ≤ b⊥.

When setting c = 0 in (LLJ) one immediately gets (wLLJ).

4.2.2 Ortholattices generated by Cones

First we note that any class of all closed convex cones (over Rn for some n) makes up an
ortholattice.

Proposition 4. For any n ≥ 1 the set of closed convex cones in Rn is an ortholattice.

Proof. We first show that the properties of an orthocomplement are fulfilled. Antitonicity:
Lemma 1. Double complement elimination: “(X◦)◦ ⊆ X”: Assume w /∈ X. Then by
Farkas’ Lemma there is some z such that ⟨z, v⟩ ≤ 0 for all v ∈ X and ⟨z, w⟩ > 0. But the
first conjunct says that z ∈ X◦ and the second says that z is a falsifier for w being in (X◦)◦.
“(X◦)◦ ⊇ X”: Let w ∈ X. consider an arbitrary v ∈ X◦. For all x ∈ X we have ⟨v, x⟩ ≤ 0,
in particular for x = w: ⟨v, w⟩ ≤ 0. As v was chosen arbitrarily we have w ∈ (X◦)◦.
Intuitionistic absurdity: Clearly {⃗0} ⊆ X ∩X◦ because every closed convex cone contains
{⃗0}. On the other hand if v ∈ X ∩X◦ then v must in particular fulfill ⟨v, v⟩ ≤ 0 which can
be the case only for v = {⃗0}.
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Now we are left with showing that the class of closed convex cones is partially ordered
by the subset relation ⊆ and has largest lower bounds (meet) and smallest upper bounds
(join). For this order there is indeed a meet operation, namely the intersection of two closed
convex cones. Since set intersection of two closed convex cones yields a closed convex cone
then the set intersection must indeed be the largest lower bound. The join operation can
be defined by the conic hull conHull(X ∪ Y ) over the union of the join arguments, which,
necessarily, is the smallest closed convex cone containing X and Y .

When considering ortholattices of cones we allow us to denote lattice operators with
special symbols.

Definition 1. ⊑̇ denotes the lattice order (amounts to the subset-relation); ⊓̇ denotes the
meet operation on cones (amounts to intersection); the symbol ⊔̇ denotes the join operation
on cones (corresponds to the convex hull), ◦ denotes orthocomplement (corresponds to po-
larity); ⊥̇ stands for the least element (corresponds to {⃗0}) and ⊤̇ for the largest element
of the lattice (corresponds to the whole space).

As we are interested in distributivity, we show with the following characterization result
how to restrict geometric models based on closed convex cones to the distributive ones.

Proposition 5. A subclass of closed convex cones fulfills distributivity iff for each combi-
nation of two cones X and Y it holds that X⊓̇Y ˙̸⊑⊥̇ or for each x ∈ X, y ∈ Y , ⟨x, y⟩ ≤ 0.

Proof. We use MacNeille’s axiomatization of Boolean algebras (according to Padmanabhan
and Rudeanu (2008), axiom system B67, p. 114):

1. ∀a∀b(a ≤ b & b ≤ a⇒ a = b)

2. ∀a∀b∀c(a ≤ b & b ≤ c⇒ a ≤ c)

3. ∀a∀b[(a ∧ b) ≤ a & (a ∧ b) ≤ b & ∀c((c ≤ a & c ≤ b)⇒ c ≤ (a ∧ b))]

4. ∀a∀b(a ∧ a⊥ ≤ b)

5. ∀a∀b[(∀c(a ∧ b ≤ c))⇒ a ≤ b⊥]

6. ∀a∀b(a ≤ b⇒ b⊥ ≤ a⊥)

All but one axiom, namely the 5th axiom, of this axiom system follow trivially from the
definition of ortholattice given in Section 4.2.1 and the geometric interpretation of cones
and are fulfilled by all cone structures. This reduces the proof to show the validity of the
5th axiom above. This axiom corresponds to the rule (wLLJ), which said that if a ∧ b ≤ 0,
then a ≤ b⊥. (Note for the correspondence that a∧ b is smaller than all c iff a∧ b is smaller
than 0).

“→”: (wLLJ) can be interpreted on a geometric level as that when X and Y are disjoint,
then X must be a subset of Y ◦. By the definition of negation as polar cone this is possible
only if for each x ∈ X and each y ∈ Y it holds that ⟨x, y⟩ ≤ 0. When X and Y intersect,
then the condition is fulfilled trivially.

“←”: Follows from (wLLJ) and the definition of polarity.
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X◦⊔̇Y

Figure 9: Example of a model of cones that are not al-cones but distributive. Distributive models
exclude the configuration shown in Figure 7(b) that some cone is located between other cones and
will be covered when building the convex hull.

To give an example, Fig. 9 shows a set of cones which exhibits distributivity, and is not
composed out of al-cones. Al-cones satisfy the condition of Proposition 5. In context of
introducing al-cones, we presented a counterexample in Fig. 7(b) on page 300.

Revisiting this example, observe that condition of Proposition 5 is not fulfilled as X
and U are disjoint, but there are elements u ∈ U, x ∈ X with ⟨x, u⟩ > 0 (thus, X ̸⊆ U◦).
Therefore, distributivity is not satisfied which is easy to verify: Consider (X⊔̇Y )⊓̇U which
evaluates to U , but (X⊓̇U) = (Y ⊓̇U) = ⊥̇.

Proposition 6. A distributive cone model with dimension n can be represented with an
al-cone model of the same dimension.

Proof. An al-cone model can be created by placing algebraic atoms on half-axes in Rn (as
explained in more detail, e.g. in Proposition 7).

Consider now a general distributive cone model and the set of algebraic atoms X . For
eachX ∈ X : For all y ∈ Y I with Y ∈ X\X and thus Y I ∈ (XI)◦ and all x ∈ XI : ⟨x, y⟩ ≤ 0,
meaning the angle between x and y has to be at least 90◦. Because of distributivity, there
must be a y ∈ Y I such that ⟨x, y⟩ = 0, thus the angle between x and y is either 90◦, as if
that would not be the case, then there is a y′ ∈ (Y I)◦ with y′ ̸∈ X but ⟨x, y′⟩ > 0 for some
x ∈ X, a contradiction to distributivity or the angle between x and all y ∈ Y I is 180◦ with
the same argumentation. As this is the case for all X ∈ X , the greater the cone representing
the algebraic atom would be, the less atoms can be placed in one dimension. Therefore, a
model requiring as few dimensions as possible models algebraic atoms as rays starting at
the point of origin. These algebraic atoms (rays) can be rotated to an axis which then leads
to an al-cone model.

This means that al-cones are the basis for representing ALC as each non-al-cone dis-
tributive model can be converted to an al-cone-model. It is not possible to represent a
distributive lattice in a non-al-cone model having a smaller dimension than the al-cone
model.

5. Embedding for Propositional ALC

Let us start by considering ALC ontologies where the TBox language amounts to proposi-
tional logic. That is, we first restrict definitions from Section 3 to the concept constructors
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⊓, ⊔, ¬ corresponding to the Boolean operations ∧,∨,¬. A Boolean ALC TBox (ABox)
consists of GCIs (ABox axioms) using Boolean concepts only.

Let (T ,A) be a BooleanALC ontology. We are going to define a geometric interpretation
of a special kind that can be a model or an anti-model of a Boolean ontology. It is an
ordinary model in the sense that it is a classical predicate logical structure with a domain
and interpretations for the atomic concept symbols. It is special in the sense that the domain
is of a specific structure, namely a Euclidean space and concept names are interpreted by
al-cones and their projections to subspaces. It is non-classical in the sense that some logical
constructors are not interpreted by the corresponding set operations, but by operations on
al-cones. The interesting aspect is now the following: the fact that Boolean ALC induces a
Lindenbaum-Tarksi Algebra, which is in fact a Boolean Algebra, provides global constraints
on the model. These can be satisfied by choosing appropriate positions of the interpretations
for all atomic concepts. As a consequence, an ontology is satisfiable classically iff it is
satisfied by the geometric interpretation.

Definition 2. A Boolean al-cone interpretation I is a structure (∆, (·)I) where ∆ is Rn for
some n ∈ N, and where (·)I maps each concept symbol A to some al-cone and each constant
a to some element in ∆\{⃗0}. An al-cone interpretation for arbitrary Boolean ALC concepts
is defined recursively as (⊤)I = ∆, (⊥)I = {⃗0}, (C ⊓ D)I = CI ∩ DI , (¬C)I = C◦, and
(C⊔D)I = (¬(¬C⊓¬D))I . The notions of an al-cone being a model and that of entailment
are defined as in the classical case (but using al-cone interpretations). In the following, an
al-cone interpretation is called a geometric model. A geometric model on Rn is a geometric
model restricted to al-cones of at most dimension n.

To clarify this definition, in the following, an example of the construction of a geometric
model for a simple ontology is presented.

Example 1. Let us consider a simple example of a Boolean ontology, consisting of an
empty TBox and an ABox constructed as follows: Consider the Lindenbaum-Tarski algebra
of all Boolean concepts defined on two Boolean names, say A,B. Then the generated Boolean
algebra of classes of equivalent concepts has 22

2
= 16 elements. Choose for each a “smallest”

representative Ci, i ∈ {1, . . . , 16} w.r.t., say, the lexicographical ordering of the formulae
based on an arbitrary ordering of all propositional symbols and logical symbols. In Figure
10 one can see those 16 (representatives of) concepts. So, e.g., A ⊓B is the representative
chosen for all the infinitely many concepts such as A⊓A⊓B, A⊓B⊓ (B⊔¬B) etc. that are
equivalent to A ⊓ B. C1 is the bottom concept and let us assume that C2 is the concept B
and C3 is the concept B ⊓¬A. The ABox has the following form: for each i with n ≥ i ≥ 2
there is a constant ai and an ABox axiom Ci(ai).

Thus we represent each of the 15 non-bottom concepts uniquely by some constant. For
example, in Figure 10 the constant a2 represents the concept C2 = B. This ontology is
satisfiable in the classical sense. There is an al-cone interpretation that fulfills the ontology
in R2 that is constructed as follows: interpret A by the left upper quadrant and B by the right
upper quadrant. This induces uniquely the positions of all other hyperoctants corresponding
to the other concepts Ci. The interesting point is the localization of constants ai. For each
constant ai one localizes the hyperoctant corresponding to Ci in the area and positions on it
such that it does not coincide with one of the points already associated with a constant.
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x-axis = A ̸↔ B

y-axis = A↔ B

BA

¬B ¬A

B ⊓ ¬AA ⊓ ¬B

A
⊓
B

¬A
⊓
¬B

⊥

A ⊔B

¬A ⊔ ¬B

⊤

A ⊔ ¬B B ⊔ ¬A

a2

a3

Figure 10: Al-cone model for a simple ABox with empty TBox

Figure 10 illustrates the positions of the concepts: ⊥ is by definition the singleton {⃗0},
A is the left upper quadrant, ⊤ is the whole area, etc.

One can check that the concepts are associated with appropriate al-cones. For example,
the negation ¬A of A is indeed the polar cone of the quadrant of A. Similarly, consider
B ⊓ ¬A, which is interpreted as the positive x-axis R+ × {0}. Its polar cone is the whole
left area.

Now let us turn to an example with a non-empty TBox.

Example 2. Consider the Boolean algebra induced by the atomic concepts A,B under the
TBox axiom A ⊑ B. Then, for example, A ⊓ ¬B ⊑ ⊥ holds and so forth. This gives an
embedding with axis-aligned cones as illustrated in Figure 11.

Using the construction idea of the examples one can show that ALC-ontologies are
classically satisfiable iff they are by a geometric model based on al-cones.

Proposition 7. Boolean ALC-ontologies are classically satisfiable iff they are by a geometric
model on some finite Rn based on al-cones of the form b1×· · ·×bn with bi ∈ {{0},R+,R−,R}
for i ∈ {1, . . . , n}.

Proof. “→”: For the general construction we use the encoding from the examples. Remem-
ber that the set of encodings {{0},R+,R−,R} used in the example forms a diamond shaped
Boolean algebra O4 with {0} ⊆ R+,R− ⊆ R (see Figure 5). Like the ALC-ontology O, the
induced Boolean algebra is finite, say containing no more than 2k elements, with a finite
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B

¬B

A

¬A
⊓
B

⊥

A ⊔ ¬B

⊤

¬A
Figure 11: Al-cone model for TBox {A ⊑ B}

number of atoms m. We choose a dimension n such that 4n ≥ 2k and n ≥ m/2, the idea
being that we have to represent all of the 2k Boolean concepts by embedding the algebraic
atoms of the Boolean algebra directly onto half-axes of R. Now one can see that On

4 is the
n-wise Cartesian product of O4 where ⊓, ⊔, ¬ are defined componentwise based on the ⊓,
⊔, ¬ defined on O4. But in this way ⊓ over O4 is nothing else than set intersection, ¬ is
polarity, and ⊔ is defined by de Morgan (see Proposition 1). So, if O is satisfiable, then we
can construct a geometric model.

“←”: Assume that a geometric model Ig of the ontology O = T ∪A exists. We have to
construct a classical model I |= T ∪ A. For the specification of I it is sufficient to specify
the denotations of the constants occurring in A, denoted by Nc in the following, and for
the concept symbols occurring in O, denoted by NC = {A1, . . . , An} in the following. We
may further assume that each ABox axiom is of the form Ai(c). Otherwise, if the axiom
is of the form C(c) we would add a new atomic symbol An+j to NC and replace C(x) by
An+j(x), An+j ≡ C.

Let the domain ∆I be just the set of constants Nc. The constants are interpreted
by themselves, i.e. for any constant c ∈ Nc set cI = c. We are left with specifying the
denotations of each Ai ∈ NC . For each constant c ∈ Nc let X ⊆ ∆Ig be the al-cone
representing the most specific concept including cIg , denoted by concept C. Now consider
the following set of algebraic atoms compatible with C, i.e., consider the set

atc(c) = {L = L1 ⊓ · · · ⊓ Ln | Li ∈ {Ai,¬Ai} and LIg ⊆ X}

Intuitively, atc(c) describes the possible “groundings” of the concept C, as either C is
an algebraic atom and thus atc(c) = {C} or C is not. If C is not an algebraic atom,
then the ability of the geometric model of modeling partial knowledge is used. Thus,
e.g., cIg ∈ (C1 ⊔ C2)

Ig , but neither cIg ∈ (C1)
Ig nor cIg ∈ (C2)

Ig . However, this ability
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is not given in a classical interpretation. Thus, an arbitrary element denoted catc(c) ∈
atc(c) is chosen. Let catc(c) = L1 ⊓ · · · ⊓ Ln. Now we can define AI

i = {c ∈ Nc | Ai =
Lj for some conjunct Lj of catc(c)}. Indeed, I is a model of the ontology. It makes all
ABox axioms Ai(c) true, because Ig |= Ai(c), hence catc(c) contains Ai and does not
contain ¬Ai. The constructed model makes also every TBox axiom C ⊑ D true. Because,
assume c ∈ CI . As c is completely specified w.r.t. each symbol Ai we also have cIg ∈ CIg ,
hence cIg ∈ DIg and so c ∈ DI .

5.1 Faithfulness

Geometric models are more specific than classical models in the sense that they impose
an underlying structure on the domain given by, firstly, the dimensions representing some
latent features that usually are not even mentioned in the ontology and, secondly, a scalar
product ⟨·, ·⟩ over the space. Geometric interpretations are more general than classical
interpretations in the sense that they are partial interpretations. Actually, when embedding
an ontology into some space one expects the embedding to represent not a single, but all
interpretations that make the ontology true. And this is (up to some exceptions, see below)
the case in the construction of Proposition 7. This allows partial information to be encoded.
Consider, e.g., the difference between a2 and a3 in the geometric model of Fig. 10. The
individual a3 is completely identified w.r.t. the given concepts A,B: it lies in the extension
of B and in the extension of ¬A. For a2 we “only” know that it must be a B, but we do
not know whether it is also an A. Hence, a geometric model correctly reflects knowledge
provable in the ontology: one can prove that a2 is a B but one cannot prove that it is an A
nor that it is a ¬A.

The geometric model illustrated in Fig. 10 does not reflect all knowledge (not) contained
in an ontology in the correct way. For example, it is not possible to represent an object b
which is known to be in A ⊔ B, but neither known to be an A nor known to be a B. The
reason is that by our construction no place is left to reflect this partial knowledge.

The discussion above motivates the definition of faithful geometric models of a given
ontology. As within ontologies one has to deal with many models there are actually two
different adaptations, a weak one and a strong one. Orthogonally to this distinction one
may also consider the faithfulness w.r.t. the ABox only (to the data only) or the TBox. An
even finer distinction can be given by considering special subclasses of the ABox (which we
will do here by considering concept assertions vs. role assertions) and the TBox.

Definition 3. Let O be a classically consistent (DL) ontology (or any other representation
allowing the distinction between ABox and TBox). For a geometric interpretation I we
have the following notions of being a faithful model of O:

• I is a strongly concept-faithful model of O iff for each concept C and each constant
b the following holds: if bI ∈ CI , then O |= C(b);

• I is a weakly concept-faithful model of O iff for each concept C and each constant b
the following holds: if bI ∈ CI , then O ∪ {C(b)} is satisfiable classically;

• I is a strongly (weakly) ABox-faithful model of O iff it is strongly (weakly) concept-
faithful and for each role R and constants a, b the following holds: if (aI , bI) ∈ RI ,
then O |= R(a, b) (resp. O ∪ {R(a, b)} is satisfiable classically);
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• I is a strongly (weakly) TBox-faithful model iff for all TBox axioms τ = C ⊑ D the
following holds: if I |= τ , then O |= τ (resp. O ∪ {τ} is satisfiable) and if there is
x ∈ ∆I with x ∈ (C ⊓¬D)I , then O∪{(C ⊓¬D)(a)} is satisfiable for a fresh constant
symbol a. (resp. O ̸|= τ)

When we consider classical geometric models such as those defined by Gutiérrez-Basulto
and Schockaert (2018), it will in general not be possible to ensure strong faithfulness. So,
the notion of strong faithfulness makes sense only for models which allow for representing
partial information.

The notion of faithfulness is a generalization of the notion of full expressivity according
to Mehran Kazemi and Poole (2018): Given a knowledge graph and a set of triples known
to be true (positive set) as well as triples that are known to be false (negative set), the
embedding is said to be fully expressive iff it maps the relations and constants into a space
such that (a R b) holds in the embedding iff it is in the positive set and (a R b) does not
hold iff it is in the negative set.

This reading of “fully expressive” is a natural generalization of the separation idea
for support vector machines (Burges, 1998): instances are classified as belonging to some
concept (class) C by finding a separating maximal margin between the true positive training
instances of C and the true negative training instances of C. Hence, the kind of triples
(a R b) considered are such that R is the has-type-Relation, a is the object to be classified
and b is the class C.

Historically, the expression “fully expressive” has been used rather differently in the
knowledge embedding community: The idea was to consider the usual prospects of prop-
erties of (binary) relations, say that of being (non)-functional, (a)symmetric, (in)transitive
etc. and consider those embeddings to be fully expressive that allow representing relations
with those properties. This notion of “fully expressive” depends on the set of of proper-
ties considered to be interesting for relations. The notion of full expressivity according to
Mehran Kazemi and Poole (2018) has the benefit of being independent of a specific set of
properties of a relation. This notion of full expressivity further has the nice property that
it provides a good measure to compare different approaches—as illustrated by Gutiérrez-
Basulto and Schockaert (2018).

The notion of full expressivity, implicitly, contains a notion of negation: for each triple
(a R b) in the negative set , “its negation” can be considered to belong to the positive
set. Unfortunately, such a negative set is usually not given explicitly in the data; rather,
the negative triples are randomly generated as part of a procedure usually called “negative
sampling” (as done, e.g., by Mehran Kazemi and Poole (2018)). But what would be a fair
and justified method to construct those triples (a R b) in the negative set? Here is a natural
suggestion of a method: If one knows for the given relation R that it is disjoint with the
relation S, then any for any triple (a S b) in the positive set there is a justification for
considering (a R b) as part of the negative set. But focusing on just one single relation
S that is disjoint from R would lead to skewed data. Ideally, one would like to consider
the maximum of all relations known to be disjoint from the given relation R. But, now
one may see the analogy to the definition of negation by Dunn (1996) (and our polarity
notion) as discussed in Section 4.1—taking disjointness as the complementary-relation com.
So actually, what one would like to express is that for a relation R one should have a form
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of negation. On the bottom line these considerations on full expressiveness give further
justification to consider negation in ML scenarios.

Now let us come back to our al-cones. We present two ways to gain faithfulness, the
first using al-cones, the second using a subclass of al-cones.

Proposition 8. For classically satisfiable Boolean ALC-ontologies there is a strongly concept-
faithful and TBox-faithful geometric model on some finite R2n based on al-cones of the form
b1 × · · · × b2n with b2i ∈ {0,R+,R−,R} and b2i+1 = b2i. Here n is the number of atomic
elements in the Boolean algebra generated by the TBox of the ontology.

Proof. First a geometric model of the given TBox is generated in size n (using the method
described in Prop. 7). By definition, this model is TBox-faithful, thus only strong concept-
faithfulness needs to be shown. In the resulting model every dimension is doubled, (A ⊔
B)I = R+ × R− × R for instance becomes (A ⊔ B)I = R+ × R+ × R− × R− × R × R.
To ensure strong concept-faithfulness it needs to be the case that for any object a in the
ABox if aI ∈ CI , then O |= C(a). This can be achieved by embedding a into its most
specific concept (msc) MI , for which not at the same time a ∈ AI with A ⊏M holds, i.e.,
not embedding it into a concept properly subsumed by MI . Let M be the msc of some
object x. Consider the concepts Ci for i = 1, . . . , n properly subsumed by M . To ensure
concept-faithfulness, xI ∈ MI must be valid, however xI ̸∈ CI

i for all i = 1, . . . , n. Each
al-cone CI

i must cover at least one dimension d where (CI
i )d ⊊ (MI)d, as otherwise the

subsumption would not be proper. In this dimension d it is either the case that (MI)d = R
and (CI

i )d ∈ {R+,R−, {0}} or (MI)d = R+ (analog for R−) and (CI
i )d = {0}. Consider

first the second case, there xI can be placed in this dimension in R+\{0} and thus is not
contained in (CI

i )d. For all other C
I
j (with j ̸= i), either (CI

j )d = (CI
i )d and thus xI ̸∈ CI

j or

(CI
j )d = R+, then there must exist a dimension k ̸= d ensuring that CI

j ⊊MI . However, in
the first case this is not that easy. When considering the model without doubled dimensions,
it is possible to place (xI)d in R−, when (CI

i )d = R+, however, it is possible that there
is an CI

j with (CI
j )d = R− and (CI

j )k = (MI)k for k = 1, . . . , d − 1, d + 1, . . . , n, thus is
a proper subsumption of M only because of the difference in dimension d. Then placing
(xI)d in R− would result in xI ∈ CI

j , a contradiction. Thus, the doubled dimension is

needed. Therefore, (MI)d,d+1 = R × R, (CI
i )d,d+1 = R+ × R+ and (CI

j )d,d+1 = R− × R−.

Then, (xI)d,d+1 can be placed in R+ × R−, being neither in CI
i nor in CI

j . This follows
analogously for the other cases and the other Ci. Thus, x is only contained in the msc and
not in any concept properly subsuming it and therefore concept-faithfulness is given.

When disregarding R+, R− in al-cones we are left with halfspaces, which are sufficient
to define faithful models.

Proposition 9. For classically satisfiable Boolean ALC-ontologies there is a strongly concept-
faithful and TBox-faithful geometric model on some finite Rn using sets of the form b1 ×
· · · × bn with bi = {0} or bi = R.

Proof sketch. Assume that an ALC TBox with n algebraic atoms is given. Arbitrarily assign
them to one of the following n spaces {0} × {0} × · · · × R︸︷︷︸

position i∈{1,...,n}

× · · · × {0} × {0}.

Each of the full axis axi, 1 ≤ i ≤ n can be represented by some concept ataxi . Now, the
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denotation for each concept symbol A can be found by considering the set I of those i
such that T |= ataxi ⊑ A. Then one can set A = conHull({axi | i ∈ I}). As we saw
earlier (Proposition 2), the closure amounts to applying conic disjunction (defined by de
Morgan with intersection and polarity). In turn, conic disjunction for al-cones can be done
componentwise according to Proposition 1.

To ensure strong concept-faithfulness it needs to be possible for any object a in the
ABox to get embedded into a concept representing its msc, but not at the same time into
a concept properly subsuming it. Assume two concepts C and D properly subsuming the
msc. As C and D are not subsuming each other, there must be a dimension i in Rn with
CI
i = R and Di = {0} and a dimension j ̸= i where DI

j = R and Cj = {0}. Thus, an
instance a can be placed in a region where ai ̸= 0 and aj ̸= 0, then it is in the msc but
neither in CI nor in DI .

Part of the result (the existence of some geometric model) also follows from the the fact
that al-cones in Rn make up a Boolean algebra and that the regions built from full axes
make up a Boolean subalgebra.

6. Embedding for Full ALC

Our main task is to define semantics for roles and quantifiers. In contrast to established
embedding approaches such as TransE (Bordes et al., 2013) the aim here is not to model
the relation R(a, b) between two specific instances a and b directly, but to model it on
the conceptual level by proving statements such as a ∈ ∃R.C. This is done by defining
an interpretation (R)I of relation R as matrix R, such that R(a, b) is represented by the
statement that aI is in the al-cone generated by RbI . Likewise, al-cones can be trans-
formed by matrix multiplication. We will later see that R can be chosen such that the
transformation always yields an al-cone. Then, for an instance aI the interpretations of
the type (∃R.C)I with aI ∈ (∃R.C)I can be determined by applying the matrix R to the
interpretation (C)I (where C itself can also contain an existential) and checking whether
aI is contained. Therefore, ABox-faithfulness in its orginal form cannot be ensured. How-
ever, we show that the notion of concept faithfulness can be extended to roles. Having this
extension will enable extending the approach to directly stating concrete relations between
instances. In technical terms, modelling (also roles) on the conceptual level amounts to
showing that the Lindenbaum-Tarski algebra of an ALC TBox makes up a Boolean algebra
with operators (BAOs) (Jonsson & Tarski, 1951; Jonnson & Tarski, 1952). This in turn
amounts to showing that on top of having a Boolean algebra the semantics of ∃R.(·) in a
geometric model I gives an operator with the following properties: (∃R.⊥)I = (⊥)I and
(∃R.(C ⊔D))I = (∃R.C)I⊔̇(∃R.D)I .

This enables negation to be generalized for concepts that contain roles. So we may
express also negated concepts with roles such as (¬∃R.C)(a). (Of course we do not model
explicitly negation for roles as there is no negation operator for roles in ALC).

The aim is now to adapt the notion of faithfulness to roles and to find a faithful geometric
embedding based on cones including roles. Concept-faithfulness can be directly adapted to
full ALC, on the one hand restricted up to a specific quantifier rank, on the other hand for
an unrestricted ontology.
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The next definition adapts geometric faithful models from Definition 3 to full ALC.

Definition 4. Let O be a classically consistent (DL) ontology (or any other representation
allowing the distinction between ABox and TBox). For a geometric interpretation I we
have the following notions of being a faithful model for O:

1. I is an m-(quantifier)-rank concept-faithful model of O iff for each concept C with
rank at most m and each constant b the following holds: if bI ∈ CI , then O |= C(b)

2. I is a concept-faithful model of O iff for each concept C and each constant b the
following holds: if bI ∈ CI , then O |= C(b).

First, we consider the problem only on a conceptual level, by which we mean that we
do not specify a geometric interpretation of roles but only geometric models of concepts
including role information. An idea for the construction would be to consider algebraic
atoms including roles and to place them on half axes as for the Boolean case. This is not
possible due to the fact that the algebra of ALC concepts is not an atomic lattice as in the
Boolean case.

Example 3. Consider the example On = {loves(narcis,narcis),Vain(narcis)} described by
Baader and Küsters (2006). The instance narcis fulfills all concepts of the form ∃lovesn.Vain,
n = 1, 2, . . . which, connected conjunctively, give a chain of concepts Ci that become infinitely
narrower and narrower. The Cis are defined by:

C0 := ∃R.Vain and Ci := Ci−1 ⊓ ∃lovesi+1.Vain

Thus, narcis would be in a concept of each quantifier rank.

Even without a cyclic dependency in the ABox, it is possible to have concepts of arbitrary
quantifier rank in form of a chain of relations of arbitrary depth, e.g. R(a1, a2),R(a2, a3),
. . . , R(ai−1, ai) for an arbitrary (unknown) i. Depth i cannot be determined because due
to the open world assumption it is possible that relations exist for which the extension is
not stated in the ABox. Thus we see that the Lindenbaum-Tarski algebra of ALC TBoxes
(in this case) may not be atomic and an ABox may contain an object for which there is no
most specific concept as exemplified in example 3.

Sketch of the solution. Let us sketch our solution to tackle this problem of non-
atomicity before we embark on technicalities. We are going to show that we can embed the
Lindenbaum-Tarski algebra of an ALC-TBox into an extended algebra with elements that
play the role of atomic elements. These elements are constructed as infinite conjunctions of
algebraic elements of the Lindenbaum-Tarski Algebra of a special kind (elements of Xi in
Lemma 4 below). So actually we are doing more than embedding just ALC-concepts but
we embed carefully chosen infinite versions of ALC concepts.

To be more concrete, the infinitary logic ALCinf we refer to is defined as follows: The
logical symbols formulae of ALCinf consist of strings that make up trees that can infinitely
branch and can have infinitely long branches. As for finite trees, for these trees we have a
notion of a level, level 0 being the level of the root. The branches of the trees are infinite
words ω : N→ Σ where

Σ = NR ∪NC ∪ {∃,⊓,⊔,¬,
l
,
⊔
, (, ), .}

312



Embedding Ontologies in the description logic ALC by Axis-Aligned Cones

is the alphabet consisting of a vocabulary, the logical symbols of ALC and two additional
logical symbols

d
,
⊔
. Example words are of the form ∃R.∃R. . . . or ∃R.∃S ⊓ C.∃R . . . .

Hence, if one wants to define specific subsets of those formulae (as done, e.g., in Lemma
5), one has to rely on coinduction (Rutten, 2005): Operations on infinite branches ω (of a
tree) can be defined by defining the operation on the head ω(0) and on the derivative ω′

of ω defined as ω′(n) = ω(n+ 1). The two additional logical symbols of ALCinf mentioned
above, namely

d
,
⊔
, are intended to model infinitary conjunction and disjunction (these

lead to the infinite branchings). The definition of an ALCinf concept extends the definition
of an ALC concept by two rules: If X is a (possibly infinite) set of ALCinf concepts then
so are

d
X and

⊔
X. The semantics is as expected: (

d
X)I =

⋂
{C | C ∈ X} and

(
⊔
X)I = ¬

⋂
{¬C | C ∈ X}.

Intuitively, the extended algebra is a natural limit of arbitrary Lindenbaum-Tarski al-
gebras for ALC TBoxes. The notion of limit can be made precise by a (new) rank notion.
This notion is also necessary to account for the fact that with our construction there might
be infinitely many algebraic atoms in our extended algebra—due to the fact that they are
based on a possibly infinite number of conjuncts.

We are going to consider first the simple case of an empty TBox in the non-cyclic and
in the cyclic case and then treat arbitrary TBoxes.

6.1 Handling the Non-Cyclic Case

Now let us fill the sketch with details. How do the algebraic atoms in the extended algebra
look like? They are defined in the Lindenbaum-Tarski algebra of a TBox in ALC considering
the equivalence of ALCinf concepts.

The idea is to construct them by an adequate choice of its conjuncts by using, e.g., only
one positive existential and infinitely many negative ones in it. One first approach (Özçep,
Leemhuis, & Wolter, 2020) is to restrict ALC-ontologies to contain concepts up to a specific
quantifier rank to get a m-(quantifier)-rank concept-faithful model. But this restricts the
expressivity of the model, as faithfulness for higher ranks is lost.

Independent of the used construction, a drawback of a faithful interpretation is that it
results in an infinite-dimensional cone model because of its infinitely many algebraic atoms
(except for highly restricted ontologies). Because of the infinite-dimensional model, it is not
possible to create the model as a whole in a suitable way, therefore, it is necessary to be able
to extend the model iteratively whenever necessary without influencing the existing one.
This also enables us to stick to the half-axis based construction principle of the Boolean
case.

Thus, it is necessary to have a creation principle for algebraic atoms of the extended
algebra which is able to handle their (possibly) infinite number. One idea is to use some
notion of rank to model concepts of at most a specific rank, and create out of those rank-
restricted concepts algebraic atoms based on the extended algebra. Then the modeling
known from the Boolean case can be used. Therefore, a notion of rank is searched for, for
which rank-restricted algebraic atoms are also algebraic atoms (in the extended algebra) in
the non-restricted case and thus enables for iterative extension without having to change
the original model.

Therefore, first a definition of rank-restricted interpretations is needed.
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Definition 5. An interpretation I is an m-rank model of an ontology (T ,A) with an empty
TBox T iff for all constants a and concepts C such that A |= C(a) and the rank of C is at
most m: I |= C(a).

This definition is independent of the type of rank considered. To demonstrate the
necessary properties, we consider first the standard (syntactical) notion of quantifier rank
as introduced in Section 3 and show its inappropriateness.

Example 4. Consider a simple ontology with an empty TBox, a concept symbol A and
a role symbol R. For the creation of a 0-quantifier-rank model, only the algebraic atom
A and ¬A need to be considered, as the rank qr(∃R.⊤) > 0, qr(¬∃R.⊤) > 0. Thus, a
one-dimensional space is needed. Let R+ represent AI , then R− represents (¬A)I (or vice
versa). A higher-ranked concept, e.g., A ⊓ ∃R.A can be approximated with concept A, as
A ⊓ ∃R.A ⊑ A. Therefore, all instances of (A ⊓ ∃R.A)I can be placed in R+. The same
holds for instances in (A⊓∃R.¬A)I . Therefore, each k-quantifier-rank model (for arbitrary
k ≥ 0) can represent all instances of the ABox correctly, however, not necessary as specific
as it would be possible using a higher rank.

Therefore, algebraic atoms of quantifier-rank restricted models are not algebraic atoms
of unrestricted models. If the model is extended to an 1-quantifier-rank model, A is not an
algebraic atom anymore, as it contains, e.g., A ⊓ ∃R.A and A ⊓ ∃R.¬A. Therefore, the
instances placed in R+ in the smaller model cannot be placed in R+ × {0} × · · · × {0} in
the bigger model as this would contradict ∃R.A ⊓ ∃R.¬A = ⊥. Therefore, increasing the
represented quantifier rank leads to the necessity of constructing a completely new model and
thus, the quantifier rank is not suitable for the creation of an iteratively extendable model
based on the rank.

To circumvent the restriction mentioned in the example, it is necessary to define a new
notion of rank, which we call the semantic quantifier rank. This leads to the possibility
of creating a semantic-rank-restricted model which depicts a subspace of the model of the
whole ontology, meaning, that if an algebraic atom is modeled on a specific half-axis in
the model with rank-restricted concepts, this algebraic atom is also placed on exactly this
half-axis in the model of the whole ontology. Thus, algebraic atoms of a smaller rank remain
algebraic atoms in models of higher rank and the model is iteratively extendable without
influencing the underlying smaller sized model. To reach this, concepts of smaller ranks
cannot be interpreted as approximations of concepts of higher rank as done in Example 4.
If a concept is either of the represented rank or smaller, then it can be represented correctly
and accurate, if it has a higher rank, then it can not be represented or approximated at all
(meaning higher ranked concepts are modeled as ⊥ in a model representing lower ranked
concepts). By circumventing the approximation in this way, it is not necessary to change the
existing model when adding concepts with a higher rank and thus adding new dimensions
to the model.

Intuitively, the semantic quantifier rank describes on which depth it is possible to model
a concept having an actual extension (not being ⊥). It therefore represents the necessary
size of the model to be able to model a specific concept. The definition tests in the beginning
whether the concept or a part of the concept is equivalent to ⊤ or ⊥ and then proceeds
by induction on the structure of the concept. The semantic rank gives either a natural
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number or ∞. Hence we assume in the following definition that ∞ is greater than all
natural numbers and that min,max,+ handle ∞ accordingly.

Both, srank and reduce are defined for existentials only, thus universal quantifiers are
interpreted as existentials by setting ∀R.C = ¬∃R.¬C. reduce(D) is defined inductively as
reduce(D) = D for D being an atomic symbol or reduce(D) = ⊤ when D is equivalent to ⊤
or reduce(D) = ⊥ when D is equivalent to ⊥. reduce(C ⊓D) = reduce(C) if reduce(D) is
equivalent to ⊤, reduce(C⊓D) = reduce(D) if reduce(C) is equivalent to ⊤ and reduce(C⊓
D) = reduce(C) ⊓ reduce(D) otherwise; similarly for ⊔ and ¬. reduce(∃R.C) = ⊥ if
reduce(C) = ⊥, else ∃R.reduce(C).

Definition 6. The semantic quantifier rank srank is defined for each ALC concept D =
reduce(D′) as follows:

• srank(D) =∞ if D is equivalent to ⊥

• srank(D) = 0 if D is equivalent to ⊤

• srank(D) = 0 if D is a concept symbol different from ⊥ and ⊤

• srank(¬D) = 0 if D is a concept symbol different from ⊥ and ⊤

• srank(C ⊓D) = max({srank(C), srank(D)})

• srank(C ⊔D) = min({srank(C), srank(D)})

• srank(∃R.D) = srank(D) + 1

• srank(¬∃R.D) = 0

• srank(¬(C ⊓D)) = min({srank(¬C), srank(¬D)})

• srank(¬(C ⊔D)) = max({srank(¬C), srank(¬D)})

Note that the case of the universal quantifier is captured by its equivalent description
using the existential quantifier: ∀R.C = ¬∃R.¬C and thus srank(∀R.C) = 0.

The following example illustrates the calculation of sranks.

Example 5. Consider concepts ∃R.C and ∃R2.C for atomic C:

srank(∃R.C) = 1, srank(¬∃R.C) = 0,

and

srank(∃R2.C) = 2, srank(¬∃R2.C) = 0.

The definition can be interpreted as follows. Concept symbols can be represented in each
model, for these it is not necessary to model roles. Having a conjunction, it is necessary
to model both conjuncts, therefore, the conjunct with maximal srank must be considered.
Having a union, it is sufficient to model the part with the smaller srank to have a union
which is not bottom. The srank is increased when an existential is used, as it increases the
depth of the path defined by the relations. A negated existential has a srank of zero, as
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there is no relation necessary to model it (only the non-existence of a relation needs to be
modeled).

It is necessary to consider concepts and parts of concept D equivalent to ⊥ and ⊤
separately. For a concept equivalent to ⊤ there exists an extension independent of the
srank considered and an arbitrary srank can be used to model the extension. The srank
of a concept equivalent to ⊥ is ∞, as there can’t be any concept extension (different from
the point of origin) representing the ⊥-concept. Therefore, concepts being equivalent to
⊥ or ⊤ are ignored for creating the srank . Thus, having a concept for which the srank
should be determined, it has to be transformed, e.g., by using de Morgan or distributivity
to determine all parts representing the ⊥-concept. After that, for the remaining terms the
srank can be determined. One can show that the defined rank notion is indeed semantical
in the sense that equivalent concepts (based on an empty TBox) have the same quantifier
rank. Later on, this approach will be extended to ontologies restricted by a non-empty
TBox.

Proposition 10. If C ⊑ D, then srank(C) ≥ srank(D).

Proof. First, it is shown that the srank of a concept is independent of its syntactical form
(except of subconcepts being equivalent to bottom and top as mentioned in Definition 6).
The rules of de Morgan preserve the srank , as srank(¬(C ⊓ D)) = srank(¬C ⊔ ¬D) =
min({srank(¬C), srank(¬D)}) = srank(¬C⊔¬D). Distributivity is also preserved by srank
as for example

srank((A ⊓B) ⊔ C)
= min

(
{max({srank(A), srank(B)}), srank(C)}

)
= max

(
{min({srank(A), srank(C)}),min({srank(B), srank(C)})}

)
= srank

(
(A ⊔B) ⊓ (B ⊔ C)

)
.

This follows in the same way for the other cases of de Morgan and distributivity.
Let C ⊑ D and srank(C) = i. As C ⊑ D, D = C ⊔D′ for some D′. Thus srank(D) =

min({srank(C), srank(D′)}) ≤ srank(C) = i. This can be done, as the srank of a concept
is independent of its syntactical form as shown above. Thus, srank(D) ≤ srank(C).

The following lemma shows the necessary properties mentioned in the motivation. Let
a geometric model Mi be defined as an i-srank -model.

Lemma 3. Model Mi and model Mi+1 of an ontology O with an empty TBox have the
following properties:

1. An algebraic atom C of Mi with srank(C) = i is an algebraic atom of the unrestricted
geometric model of O.

2. Mi and Mi+1 can be chosen such that Mi is a subspace of Mi+1.

Proof.

1. Let C be an algebraic atom with srank(C) = i. and assume C would not be an
algebraic atom of the unrestricted geometric model. Therefore, there exists a concept
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D with D ⊑ C and srank(D) = j > i and thus C = C ′ ⊔ D for some C ′. As
srank(D) = j, it must contain at least one conjunct D′ with srank(D′) = j and thus
srank(¬D′) = 0. C⊓¬D′ = (C ′⊓¬D′)⊔(D⊓¬D′) ̸= ⊥ and thus C is not an algebraic
atom. A contradiction.

2. Let Mi be represented in some Rn where the algebraic atoms are interpreted as half-
axis. Let Yi be the set of algebraic atoms of Mi and Yi+1 the set of algebraic atoms
of Mi+1. With 1. it follows that Yi ⊆ Yi+1. Algebraic atoms of Yi+1\Yi can thus
be represented in some Rm independently of the Rn of Mi. Both spaces can be
concatenated to a space Rm+n representing Mi+1.

Example 6 (Example 4 continued). Consider again the simple ontology with an empty
TBox, a concept symbol A and a role symbol R. In the following, it is shown that the
srank is suitable for the iterative creation of a geometric model. Consider a 0-srank-model.
It is as for the 0-quantifier-rank model a one-dimensional space, but with the difference
that not A and ¬A are represented but the algebraic atoms of srank 0, thus, A ⊓ ¬∃R.⊤
and ¬A ⊓ ¬∃R.⊤ on R+ resp. R−. Thus only instances having no relation at all can be
represented and instances of (A⊓ ∃R.A)I cannot be placed in this model. This circumvents
the problem which appeared in Example 4 when extending the dimension. Here, the 1-srank-
model consists of the algebraic atoms A ⊓ ¬∃R.⊤ and ¬A ⊓ ¬∃R.⊤ on the one hand and
X ⊓ ∃R.(Y ⊓¬∃R.⊤)⊓¬∃R.(∃R.⊤) for X,Y ∈ {A,¬A} on the other hand. As there is no
algebraic atom in the 1-srank-model which is a proper subsumer of an algebraic atom in the
0-srank-model, it is possible to keep the representation of (A⊓¬∃R.⊤)I by extending it from
R+ to R+ × {0} × {0} (analogously for (¬A ⊓ ¬∃R.⊤)I). The algebraic atoms of the form
X ⊓∃R.(Y ⊓¬∃R.⊤)⊓¬∃R.(∃R.⊤) for X,Y ∈ {A,¬A} can then be placed on the half-axes
of the second and third dimension and thus not interfere with the lower dimensional model.

Having this notion of a semantic rank, it is possible to create a srank -restricted model
and extend it iteratively. However, this construction treats relations completely on a con-
ceptual level in the sense that there is no geometric operation for the representation of the
relation. To mitigate this problem, we observe that it should be possible to describe the
changes in the semantic rank caused by a relation in a geometrical way. For example, if
x ∈ (∃R2.⊤⊓¬∃R3.⊤)I and R(x, y) is valid, applying an interpretation of R one time should
result in a y ∈ (∃R.⊤ ⊓ ¬∃R2.⊤)I . Thus, a representation RI of relation R is needed.

R is represented as an incidence matrix R that maps each half-axis to arbitrary many
half-axes of the model. Interpreting R as incidence matrix allows for extending it iteratively
while increasing dimensions.

Definition 7. An al-cone interpretation I is a Boolean al-cone interpretation (∆, (·)I)
including additionally matrices R representing relations R. An al-cone interpretation of
ALC concepts is defined recursively as for Boolean concepts and defining the concepts of
the form ∃R.C as al-cone, as (∃R.C)I = conHull({RT y | y ∈ CI}) with R interpreted
as incidence matrix R. The definition of the all quantifier is given by de Morgan, i.e.,
(∀R.C)I = (¬∃R.¬C)I .

As R is an incidence matrix of size R2n×2n, where n is the size of the geometric model,
the above mentioned definition contains a slight simplification. More concretely, it is based
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on the incidence vectors y′ ∈ R2n of y ∈ CI where in even dimensions of y′ the pos-
itive half-axes and in odd dimensions the negative half-axes are represented. Multipli-
cation gives the incidence vector x′ = RT y′ which needs to be transformed to al-cones
by splitting it into half-axes. Therefore, ∃R.C = conHull({x | halfAxes(x′) with x′ =
RT y′ with y′ =incidenceVector(y) with y ∈ CI}). For simplicity this is abbreviated with
(∃R.C)I = conHull({RT y | y ∈ CI}) in the following.

Example 7. Consider the example of Narcissus mentioned in Example 3. Assume an empty
TBox, one concept Vain and one role loves, for short V,R.

Let the al-cone interpretation be in R2, V I = R+ × R− and

RT =


1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
The incidence vector of instance yI = [1,−1]T ∈ V I would be y′ = [1, 0, 0, 1]T . x′ =
RT y′ = [1, 0, 1, 0]T and thus xI = [1, 1]T . This can be split into the half-axes R+ × {0}
and {0} × R+. Thus, when considering all instances of V I , then it results in (∃R.V )I =
conHull({[1, 0]T , [0, 1]T }) = R+ × R+.

R can be used to determine possible relations for a specific instance x, e.g., it can be
checked, whether (RxI)⊓̇CI ̸= ⊥I , to state that xI ∈ (∃R.C)I . As the concept ∃R.C is
created based on the instances of C, to answer such questions, the incidence matrix needs
to be used in non-transposed form R here.

As for the Boolean case, it is also possible in the non-Boolean case to model partial
knowledge, e.g., x ∈ (∃R.⊤ ⊓ (∃S.⊤ ⊔ ¬∃S.⊤))I (where the second part does not add
any information and is only added for demonstration purposes), meaning it is known that
a relation with R exists, however, nothing is known about a relation with S. This can
be modeled in the same way as in the Boolean case, by placing instance xI in (∃R.⊤)I ,
yet between (∃S.⊤)I and (¬∃S.⊤)I . Reasoning about partial knowledge works as follows:
Consider the question whether xI ∈ (∃S.⊤)I , SxI would not result in ⊥I , but this does
not mean that xI ∈ (∃S.⊤)I is necessarily valid. Therefore, as a second step, it is necessary
to check the other way around, namely, to check whether xI ∈ conHull({ST c | c ∈ ⊤I})).
The combination of the two steps results in a determining whether x is a positive instance
of a concept, or a negative instance or whether only partial knowledge is given. Thus, x
has possibly but not necessarily a relation S.

In fact, representation R of role R behaves as desired with existential quantifiers (and
hence also with universal) quantifiers: it makes ∃R indeed to a normal, additive operator f
in a Boolean algebra with operators, i.e. f fulfills f(0) = 0 (where 0 is the smallest element
in the algebra; see Section 4.2.1) and f(a ∨ b) = f(a) ∨ f(b).

Proposition 11.

1. Given an al-cone interpretation I and an arbitrary R, then (∃R.C)I yields for arbi-
trary al-cones CI an al-cone.
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2. ∃R.X interpreted as RTXI maps the cone representing the bottom concept onto itself:
(∃R.⊥)I = ⊥I and distributes over cone disjunction: RT (XI⊔̇Y I) = RTXI⊔̇RTY I ,
i.e., ∃R.(C ⊔D) = ∃R.C ⊔ ∃R.D.

Proof.

1. The incidence matrixR only consists of ones and zeros, i.e., (R)i,j ∈ {0, 1}. Therefore,
multiplication with arbitrary half-axes according to the aforementioned calculation
procedure results in a convex hull over half-axes, i.e., an al-cone.

2. (∃R.⊥)I = ⊥I , as (∃R.⊥)I = conHull({RT y | y ∈ {⃗0}} = {⃗0} = ⊥I .

Due to Proposition 3 for (C ⊔D)I there does not exist a half-axis (thus an al-cone)
which is not contained in either CI or DI , yet contained in (C ⊔ D)I . Having this
insight and the above mentioned calculation rules for (∃R.C)I , it follows that

(∃R.(C ⊔D))I = conHull({RT y | y ∈ (C ⊔D)I}
= conHull({RT y | y ∈ halfAxes(C ⊔D)I)}
= conHull({RT y,RT z | y ∈ halfAxes(CI), z ∈ halfAxes(DI)}
= conHull({conHull({RT y | y ∈ CI}), conHull({RT z | z ∈ DI})})
= (∃R.C ⊔ ∃R.D)I

Now, our first aim is to find a satisfiable geometric model of a given ontology based
on the interpretation of relations as incidences matrices on a conceptual level, meaning,
if O |= C(b), then bI ∈ CI for each concept C and each constant b and, if O |= R(a, b)
and O |= C(b), then aI ∈ (∃R.C)I . In the first step, the focus does not lie on the correct
representation of roles, i.e., guaranteeing that if O |= R(a, b), then (aI , bI) ∈ RI . Thus,
“role-satisfiability” is considered, i.e. the mapping into correct regions in the sense that if
O |= R(a, b), then bI ∈ RaI .

Proposition 12. ALC-ontologies are classically satisfiable iff they are satisfiable by a con-
cept faithful geometric model on some (possibly infinite) Rn using sets of the form b1×· · ·×bn
with bi ∈ {{0},R+,R−,R} and incidence matrices in R2n×2n.

In order to prove this theorem, we reduce it to the following subproblems. First, concept-
faithfulness is proven for an empty TBox with an acyclic ABox. After that, it is extended
to an arbitrary TBox with an acyclic ABox. At the bottom line this leads to the case of an
arbitrary TBox and a cyclic ABox mentioned in Proposition 12 and thus to the conclusion
that it is possible to represent arbitrary ALC-ontologies using al-cones.

Thus, the algebraic atom that a half-axis represents should be determined by the ap-
plicability of relation R, thus by exploring the possible paths starting on this half axis by
applying the incidence matrix R. The relation matrix is as the geometric model dependent
of the srank and iteratively extendable.
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Figure 12: Visualization of the assessment of concepts to the al-cone XI . Starting with X, the
arrows depict the application of the relation R (thus incidence matrix R). The numbers indicate
the srank of the resulting concepts, thus, relation R can be applied until an srank of 0 is reached.

Example 8. An example can be seen in Figure 12. Assume only one relation symbol R
and no concept symbols to be given. There are three different connections starting at the
half axis XI with R, the dashed, dotted and solid one. Following the possible paths leads
to the fact that X ⊑ ∃R3.¬∃R.⊤ ⊓ ∃R2.¬∃R.⊤ ⊓ ∃R.¬∃R.⊤ and additionally to the fact
that all other relations are not possible, thus X ⊑ ¬∃R4.⊤, therefore, X = ∃R3.¬∃R.⊤ ⊓
∃R2.¬∃R.⊤ ⊓ ∃R.¬∃R.⊤ ⊓ ¬∃R4.⊤.

Additionally, it is necessary to define an underlying propositional model to determine
the intersection of a concept with the propositional concepts.

This intuition can be represented as incidence matrix.

Definition 8. Given relations R,S, T, ..., the incidence matrices R∗,S∗, ... of R,S, T, . . .
are defined as follows:

R∗ =


R′

0→0 R′
1→0 R′

2→0 R′
3→0 . . .

0 0 R′
2→1 R′

3→1 . . .
0 0 0 R′

3→2 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 . (1)

with submatrices R′
i→j, where for all i, j, k ∈ N with j < i and k < j there exists m,n, o ∈ N

such that R′
i→j ∈ Rm×n and R′

j→k ∈ Ro×m, R′
0→0 is a zero matrix and the submatrices

have a fixed size dependent of the number of relations and concepts given.

Intuitively, the submatrix R′
i→j depicts the application of relation R to find relations

between instances of concepts with srank i and srank j and thus, submatrix R′
i→j influences

the region of the geometric model containing algebraic atoms of srank i.

Example 9. Consider an empty TBox, with no concept symbol and one relation symbol R.
First, it is necessary to determine the number of algebraic atoms added to a i-srank-model
when considering an i+ 1-srank-model. Whereas this is straightforward for i ∈ {0, 1} with
(¬∃R.⊤)I for the 0-srank-model and ∃R.¬∃R.⊤⊓¬∃R2.⊤ for the 1-srank-model, there are
more algebraic atoms for the 2-srank-model: ∃R2.(¬∃R.⊤) ⊓ ∃R.(¬∃R.⊤) ⊓ ¬∃R3.⊤ and
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∃R2.(¬∃R.⊤) ⊓¬∃R.(¬∃R.⊤) ⊓¬∃R3.⊤. Based on this, the following incidence matrix R∗

can be created:

R∗ =


[
0
]

0

[
1
]

0

[
1 0

][
1 1

] . . .
. . .

0 0 0 0 . . .
...

...
...

. . .


where the submatrices (in brackets) in the first row are from left to right R′

0→0,R′
1→0 and

R′
2→0 and in the second row R′

2→1. So, how was this matrix created and how can it be
used for determining the concept of some incidence vector x? In the incidence matrix
presented here, the relations up to a srank of 2 are depicted. Thus, all algebraic atoms
mentioned above need to be representable by the incidence matrix. In the following, it is
shown for the half-axes of the geometric model which algebraic atom they depict (where
xI , . . . , zI represent incidence vectors of half-axes). Considering wI = [1 0 . . . ]T : as
R∗wI = {⃗0}, there is no relation starting in w and thus w ∈ ¬∃R.⊤. For xI = [0 1 0 . . . ]T ,
R∗xI = [1 0 . . . ]T = wI . Thus, for x there exists a relation R ending in w, such ending
in a region where no relation is possible anymore. Thus, xI ∈ ∃R.(¬∃R.⊤) ⊓ ¬∃R2.⊤. For
yI = [0 0 1 0 . . . ]T , R∗yI = {[0 1 0 . . . ]T = xI , [1 0 0 . . . ]T = wI}. Hence it is on the
one hand possible to apply the relation two times without reaching ⊥ (from yI over xI to
wI and on the other hand to directly reach wI , i.e. applying the relation only one time.
Thus yI ∈ ∃R.∃R.(¬∃R.⊤) ⊓ ∃R.(¬∃R.⊤) ⊓ ¬∃R3.⊤. For zI = [0 0 0 1 0 . . . ]T , this is not
possible, as it is mapped to xI , however not to wI directly. Thus, zI ∈ ∃R.∃R.(¬∃R.⊤) ⊓
¬∃R.(¬∃R.⊤) ⊓ ¬∃R3.⊤.

In each dimension k, the two half-axes of the geometric model represent one algebraic
atom each. Interpreting it as incidence vector leads to the case that the positive half-axis
in dimension k is represented by a 1 in the incidence vector at position 2k. The algebraic
atom can be determined by considering the matrices R∗,S∗, . . . at column 2k. Thus, to
represent all concepts of a specific srank , in each submatrix containing the submatrices
R′

i→j , where j = {0, . . . , i − 1}, each possible concept of srank i has to be created. Thus,
before stating the main proposition of reaching concept faithfulness, first, the form and
creation of srank -algebraic atoms is considered.

Lemma 4. Let NR ∪NC ∪Nc be the signature of the ontology under consideration. For a
srank of 0, the set

X0 =

{
A ⊓

(
l

R∈NR

¬∃R.⊤

)∣∣∣∣∣A ∈M0

}
,

depicts all algebraic atoms of srank 0. Here M0 depicts the set of algebraic atoms given
based only on the concept symbols.
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For a given srank i > 0, the set of algebraic atoms of srank i can be created based on
the algebraic atoms of srank 0, . . . , i− 1

Xi =

{
A ⊓

(
l

R∈NR

l

B∈X0,...,i−1

φR,B

)
⊓

(
l

Rj∈NR for j=1,...,i+1

¬∃R1.(∃R2.(. . . ∃Ri+1.⊤))

)∣∣∣∣∣
A ∈M0, φR,B ∈ {∃R.B,¬∃R.B}

}
for each X ∈ Xi, X ⊑ ∃R.B for an R ∈ NR and a B ∈ Xi−1.

Proof. Each concept X ∈ Xi has srank i, as X ⊑ ∃R.B for a R ∈ NR and B ∈ Xi−1. It has
to be shown that it is an algebraic atom. If this would not be the case then there has to be
an algebraic atom X ′ for which ⊥ ≠ X ′ ⊓X and X ′ ⊏ X. Assume srank(X ′) = j > i, thus,
X ′ ⊑ Y where Y = ∃R1.(∃R2.(. . . ∃Rj .⊤) for R1, ..., Rj ∈ NR, thus a chain of j positive
existentials must exists. Because of the second part of the definition of X , X ⊓ Y = ⊥ and
thus X⊓X ′ = ⊥, a contradiction. Thus assume srank(X ′) ≤ i: By definition, each conjunct
containing positive existentials up to srank i is either positively or negatively contained in
X (because of the first part of the definition of Xi). Thus, it remains to show that there is no
conjunct of the type Z = ¬∃R.C of X ′ for arbitrary R ∈ NR and arbitrary concept C such
that X ⊓ Z ̸= ⊥ and Z ̸= X. Because of the second part of the definition, all Z including
one negative and then i or more positive existentials are already included. Thus, assume
Z has one negative and k < i positive existentials (with k ≥ 0), followed by a negative one
and arbitrary existentials afterwards. Then, Z = ¬∃R.B, where B ∈ Xk−1 and thus already
positively or negatively contained in X, a contradiction. Thus, X is an algebraic atom of
srank i. As all combinations of algebraic atoms of a lower srank are considered, Xi contains
all algebraic atoms of srank i.

To clarify the construction of the algebraic atoms a small example is given.

Example 10. Consider an ontology with one concept symbol D and one role symbol R and
an empty TBox. The algebraic atoms of the Boolean part of the ontology comprise M0 =
{D,¬D}. The construction of X0 results in X0 = {D ⊓ ¬∃R.⊤} Then X1 is constructed as
follows:

X1 =

{
A ⊓

(
l

B∈X0

φR,B

)
⊓

(
¬∃R2.⊤

)∣∣∣∣∣A ∈ {D,¬D}, φR,B ∈ {∃R.B,¬∃R.B}

}
= {A ⊓ ∃R.(D ⊓ ¬∃R.⊤) ⊓ ∃R.(¬D ⊓ ¬∃R.⊤) ⊓ ¬∃R2.⊤,
A ⊓ ∃R.(D ⊓ ¬∃R.⊤) ⊓ ¬∃R.(¬D ⊓ ¬∃R.⊤) ⊓ ¬∃R2.⊤,
A ⊓ ¬∃R.(D ⊓ ¬∃R.⊤) ⊓ ∃R.(¬D ⊓ ¬∃R.⊤) ⊓ ¬∃R2.⊤ | A ∈ {D,¬D}}

The second part, denoting the negative existentials, can be interpreted as all concepts that
are not accessible through the relation and, thus, not accessible to the incidence matrix.

Algebraic atoms are restricted so that there must be at least one B of srank(B) = i− 1
with a positive existential due to the fact that algebraic atoms of srank i are considered.
Without this restriction, Xi could contain algebraic atoms of a lower srank .
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Based on Lemma 4 it is possible to prove the next proposition that states that in-
terpreting the ontology based on the incidence matrices R∗ is a suitable concept-faithful
interpretation. The idea is to have an underlying geometric model which only contains
information about propositional concepts and having the incidence matrices R∗,S∗, . . . to
define the algebraic atoms based on roles.

Proposition 13. Let O be an ontology with an empty TBox. Let I be a geometric interpre-
tation of O constructed based on an interpretationM which isM =M0 ×M0 × . . . , thus
an infinite direct product of one 0-(quantifier)-rank-concept-faithful geometric interpretation
M0. Furthermore, let each role R be interpreted as R∗ as in Definition 8 with R′

0→0 in
Rm×m and m = 2|M0|. Then: It is possible to construct R∗ for each R in a way that I
is concept-faithful (w.r.t. O), and for each constants a, b and relation R, if O |= R(a, b),
then there is a representation bI and aI so that bI ∈ R∗aI , if R(a, b) is not part of a cyclic
dependency.

Proof. First, it is shown that the construction is consistent, meaning no contradictions are
induced. The construction of the 0-rank-faithful model is consistent as it consists of Boolean
ALC. As R∗ only influences positive existential quantification, negation of an existential
is defined via polarity. It is by definition not possible that a concept and its negation
intersect. As shown in Proposition 11, the relation operator results in an al-cone and fulfills
(∃R.⊥)I = ⊥I and RT (XI⊔̇Y I) = RTXI⊔̇RTY I .

To show concept-faithfulness, it is sufficient to show satisfiability, as the construction
principle of Proposition 8 can be used similarly as in the Boolean case to construct a
concept-faithful model. Thus, it is shown that all algebraic atoms induced by the TBox can
be represented. Therefore, in the following, only half-axes (as representatives of algebraic
atoms) are considered.

The proof is done based on induction over the srank . Therefore, it is shown that
each algebraic atom of a specific srank can be represented and therefore, for the geometric
interpretation of an arbitrary srank , faithfulness is reached. This is done by showing that
the construction ofR∗, S∗, . . . exactly leads to the atomic concepts represented in Lemma 4.
First, it is shown that the subspace Rm of the first m dimensions of the geometric model
is a 0-srank -model and incorporates all algebraic atoms of srank 0. The subspace contains
M0, which is a 0-(quantifier)-rank-faithful geometric model. As R′

0→0 equals zero for all
relations R, each application of the relation operator (in form of R∗d for a half-axis d in
Rm) results in {⃗0}, thus is not possible. Thus, it exactly matches the definition of Lemma 4.

Next, assume that the underlying geometric model combined with the submatrix in-
cluding all submatrices R′ up to R′

i−1→i−2 represents all atomic concepts up to srank i− 1.
It is shown that the submatrices R′

i→j for j ∈ {0, ..., i − 1} for each relation R represent
in combination with the geometric model all algebraic atoms of srank i and do not lead to
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any inconsistencies. The submatrix

R∗
i =



R′
i→0

R′
i→1
...

R′
i→i−1

0
...


(2)

for relation R combined with the respective submatrices for the other relations represents
in each column one algebraic atom in form of a mapping to lower sranks. Consider, e.g.,
the incidence vector x′ of an algebraic atom X which contains only one non-zero element.
R∗x′ can thus be reduced to a r · 1 = R∗x′ where r is one column of R∗.

The exact content of each column r is not considered here, it is adequate to show
that each possible algebraic atom could be represented in such a column as each column
represents independent of the other one possible half-axis (algebraic atom). Xi as defined
in Lemma 4 is considered. The first conjunct of each algebraic atom, the Boolean concept
A is contained, as the geometric model consists of an infinite concatenation of the 0-rank
geometric models. Therefore, also in the area influenced by the submatrix considered,
there is an intersection with each of the Boolean concepts A possible. Next, it has to be
shown that the submatrix R′

i→j maps an algebraic atom of srank i really to one (ore more)
algebraic atoms of srank j and only to them. This is satisfied by the construction principle
of the matrices mentioned in Definition 8. It is not possible that the algebraic atom has a
higher srank , as the space under the diagonal of R∗ is not populated and therefore, only
a reduction of the rank is possible and thus (

d
R∈NR

d
C∈Xi+1,i+2,...

¬∃R.C) is fulfilled. As
R∗

i can contain arbitrary many ones in a column, it is possible to model an existential for
arbitrary B ∈ X0,...,i−1 and each combination of relations, as S∗, T ∗, . . . also can influence
the column considered. A column where all relation-matrices R′

i→i−1 have only zero entries
is not allowed as it would interfere with the restriction of Lemma 4 for having at least one
relation to an algebraic atom with srank i− 1.

When each column-tuple ofR∗,S∗, . . . is unique, then each algebraic atom is on a unique
half-axis. Therefore, for non-cyclic ABoxes, instances aI and bI have a unique al-cone each.
Thus, when R(a, b) is valid, then bI ∈ R∗(aI).

6.2 Handling the Cyclic Case

Now we proceed with the problem of handling cyclicity. We observe that cyclicity cannot
be represented correctly in the construction above. Assume R(a, b) and R(b, a) is given
in the ABox. Then, applying R on a concept A with a ∈ A would not reduce its srank ,
as afterwards it is still possible to apply R infinitely many times. Thus, it needs to be
necessary to represent concepts with an infinite srank .

The set of possible algebraic atoms has been determined in Lemma 4. The incidence
matrix R∗ is created based on the idea of iteratively increasing the srank and modeling all
possible atomic concepts of this srank . Now, it is necessary to consider concepts X ∈ X∞,
thus, cyclic dependencies. These concepts are not considered in such an iterative approach.
To use the same construction principle of iterative extension it is necessary to define a new
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notion of rank which is a combination of srank and the cycle depth of the concepts. This
rank then enables for iterative extension.

This is done based on the idea that each application of a relation is either part of a cycle
or not. For each non-cyclic relation, the srank can be determined. Out of this, the maximum
is chosen. For non-cyclic dependencies, the srank does not change. The motivation behind
this is that having a cyclic dependency, it is also possible to have non-cyclic behavior in
parts, e.g., Narcissus could love himself (a cycle) but could also love a person not loving
anyone (a non-cyclic behavior). This has to be determined for each part of the cycle, as in
the incidence matrix extended for cyclic dependencies R∗∗, which will be considered in more
detail in the proof of Proposition 14 below, it is necessary to place the concept representing
a cycle at a srank where a mapping of the non-cyclic parts of the concept is possible. On the
other hand, the maximum depth of a cycle can be considered. A conjunct with a srank of
infinity needs to contain a cycle. This means that at some point, applying relation R leads
to an algebraic atom which has been visited before. We introduce cycle depth to represent
the depth of this cycle. Regarding the Narcissus example, cycle depth would be one.

Definition 9. The cyclic semantic rank srank c (srank ′,cycle depth) of a concept C given
by its defining formula is a pair determined as follows:

• If C = ⊥, then srank ′(C) = srank(C) =∞ and cycle depth undefined.

• Let Ct be the (possibly infinite) computation tree that would unfold when computing
srank(C), i.e., srank(C) = srank(root(Ct)).

• If srank(C) = r <∞, then srank c = (r, 0);

• else transform Ct to C
′
t by copying Ct and replacing any node N ∈ Ct if a node repre-

senting the same concept term as N occurs in the subtree rooted at N . N is replaced
by a new concept symbol N ′, which yields srank(N ′) = 0 according to Definition 6; the
subtree rooted at N is removed. This makes srank ′ = srank(C ′

t) evaluate to r <∞. Let
cycle depth then be the minimum number of occurrences of ∃ between re-appearances
of N in the subtree in Ct, maximized over all nodes N that were replaced.

Intuitively, the definition extends srank to infinite trees by cutting off re-appearing nodes
N and recording the maximum length of cycles cut off.

Example 11. Consider again an empty TBox and an ontology with a role symbol R and a
concept symbol A as arising in Example 3 (narcis-vain). Consider srank c of concept C given
by the infinite term C = A⊓∃R.¬A⊓∃R.(A⊓∃R.¬A⊓∃R.(. . . )). First, the computation tree
Ct as shown in Fig. 13 is created. The calculation of the srank leads to srank(C) =∞, as a
cycle is included. As marked in the figure with N , the node ∃R.(A⊓∃R.¬A⊓∃R.(. . . )) occurs
several times and its first occurrence is thus replaced with a new symbol N ′ and is given a
srank(N ′) = 0. Since srank(∃R.¬A) = 1, w have srank ′(C) = 1 and cycle depth(C) = 1,
as both occurrences of N are connected via one existential role quantification, thus every
step the origin of the cycle is reached again. Thus, srank c(C) = (1, 1).
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C

V ∃R.¬A

¬A

∃R.(A ⊓ ∃R.¬A ⊓ ∃R.(· · · )))︸ ︷︷ ︸
=N;N ′

A ⊓ ∃R.¬A ⊓ ∃R.(· · · )

A ∃R.¬A ∃R.(A ⊓ ∃R.¬A ⊓ ∃R.(· · · )))︸ ︷︷ ︸
=N

(· · · )

⊓ ⊓

∃R

⊓

∃R

⊓ ⊓ ⊓

∃R

one ∃; cycle depth = 1

srank ′ = 1

Figure 13: Computation tree Ct of the concept C = A ⊓ ∃R.¬A ⊓ ∃R.(A ⊓ ∃R.¬A ⊓ ∃R.(. . . )).

Lemma 5. Let NR ∪NC ∪Nc be the signature of the ontology under consideration. Then
Xi,0 as defined below depicts all algebraic atoms of srank c (i,0), and X0,1, which is defined
by coinduction (Rutten, 2005) below, depicts all algebraic atoms of srank c (0,1).

Xi,0 =Xi

X0,1 =

{
Xk

0,1

∣∣∣∣∣ There is A ∈M0, ψR,Xk
0,1
∈ {∃R.(Xk

0,1)
′,¬∃R.(Xk

0,1)
′} such that

Xk
0,1 = A ⊓

(
l

R∈NR

l

B∈X0,X1,...

¬∃R.B

)

⊓

(
l

R∈NR

ψR,(Xk
0,1)

′

)
⊓

(
l

R∈NR

¬∃R.¬(Xk
0,1)

′

) }

where M0 depicts the set of algebraic atoms given based only on the concept symbols and
for each Xk

0,1 at least one ψk
R,X0,1

must appear positive. (Xk
0,1)

′ is the derivative of Xk
0,1

required for the coinductive definition.

Proof. Having a cycle-depth of zero, the construction reduces to the construction of Xi,
depicted in Lemma 4, thus Xi,0 = Xi, as no cycles are contained. Now, consider Xk

0,1 ∈ X0,1.

srank ′(Xk
0,1) = 0, as all concepts B ∈ X0,X1, . . . are only reachable by negated relations.

The cycle-depth of Xk
0,1 is 1, as at least one ψk

R,X0,1
must appear positive, thus a cycle is

included. It remains to show that Xk
0,1 actually is an algebraic atom. Assume this is not

the case, thus an algebraic atom Y ⊏ Xk
0,1 must exists such that Xk

0,1 ⊓ Y ̸= ⊥. First,
assume srank ′(Y ) > 0. A contradiction, as all concepts of a higher srank ′ appear negated.
Second, assume srank c(Y ) = (0, 0). This cannot be the case, as all existentials not part of
a cyclic dependency are negated and at least one cycle appears positive in Xk

0,1 and would
interfere with the assumption of a cycle depth of 0. Third, assume srank c(Y ) = (0, 1).
However, as in Xk

0,1 all concepts with a cycle-depth greater 1 are negated and each possible
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cycle of length 1 either appears positive or negative, this is not possible. Fourth, assume
srank c(Y ) = (i, j) with i ≥ 0, j > 1, thus there must exists a cycle of length at least two.
However, as Xk

0,1 contains a conjunction with
d

R∈NR
¬∃R.¬Xk

0,1, it is not possible to have

a cycle not ending in Xk
0,1 thus it is not possible to have a cycle depth greater one. Thus,

Xk
0,1 is an algebraic atom with srank c(X

k
0,1) = (0, 1).

The set of algebraic atoms Xi,j can be derived based on the above two but are omitted
here for reason of readability.

Now, based on srank c, an iterative creation of the geometric model is possible. For
each of these tuples, a submatrix, thus, a specific region in the geometric model can be
created to depict the concepts having this configuration. The matrix where all submatrices
representing a cycle depth greater than zero (thus containing a cycle) are set to zero contains
exactly the submatrices contained in R∗ and has its behavior (except including more zero
matrices). The basic idea for the submatrix R′

i,j→j depicting a specific srank c i and a cycle-
depth j is to place it at position R∗∗

k...l,k...l for some k and l in the new incidence matrix
R∗∗, thus, to enable to model connections trough relations between arbitrary columns of
the matrix, thus, creating arbitrary circles. In the same column, it is also possible to place
some R′

i,j→h for h < j and j is the srank ’ of srank c i.

Thus, Proposition 13 can be extended to a proposition covering cyclic ABoxes.

Proposition 14. Let O be an ontology with an empty TBox. Let I be a geometric inter-
pretation of O constructed based on an interpretation M which is M =M0 ×M0 × . . . ,
thus an infinite direct product of one 0-(quantifier)-rank-concept-faithful geometric inter-
pretation M0. Let further I interpret each role R as some incidence matrix. Then: I is
concept faithful (w.r.t. O), and for each constants a, b and relation R, if O |= R(a, b), then
bI ∈ R∗∗aI .

In the proposition above we rely on the usual “direct product” operation on structures
that is known in model theory and that can be applied to a possibly infinite number of
input structures (Chang & Keisler, 1990, p. 224): the domain is the Cartesian product of
the domains of the input structures and the interpretations of the non-logical symbols are
given component-wise.

Proof. In the following, it is shown how concepts having a cycle depth greater zero and a
srank ’ of zero and concepts having a srank ’ greater zero and a cycle-depth of one can be
modeled in an incidence matrix R∗∗. The proof of the other concepts follows analogously.

Assume a cycle depth of i and an srank ’ of zero. It is shown that a submatrix R′
i,j→j of

R∗∗
k...l,k...l can be chosen which models these dependencies. As the srank ′ is zero, all other

elements in columns k, . . . , l are zero. Thus, all possible combinations of conjunctions of
zero srank ′ concepts with relations have to be considered. These are only finitely many and
could be represented in this submatrix.
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The incidence matrix when considering only elements having a cycle depth of zero or
one has the following form:

R∗∗ =


R′

0,0→0 0 R′
2,1→0 R′

3,1→0 . . .

0 R′
1,1→1 R′

2,1,1→0 0 . . .

0 0 R′
2,1→1 0 . . .

0 0 0 0 . . .
...

...
...

...
. . .

 , (3)

where the first column with submatrices depicts srank c of (0, 0), the second column with
submatrices the srank c (0, 1), the third (1, 1) and the fourth (0, 1). R∗∗ contains the subma-
trices of R∗ as submatrices, as there are concepts without any cyclic dependency possible,
which are represented by interaction with the submatrices of R∗. The cyclic dependency
is represented by the additional submatrices R′

j,i→i which are on the diagonal and enable
to cover arbitrary connections between algebraic atoms. To model cycles of length one,
we have to ensure that when the submatrix is one at position {k, l} it needs to be one at
position {l, k}. As for each srank c there are only finitely many combinations, it is possible
to model the incidence matrix iteratively in this way. Extension to more than one relation
and a higher srank c is achieved analogously.

6.3 Non-Empty TBoxes

As in general it cannot be assumed and is not suitable to have an empty TBox, in the
following it is shown how the geometric model and the incidence matrix can be restricted
to fulfill the TBox axioms.

The same iterative modeling approach from above is going to be used here. But now,
the information of each TBox-axiom has to be incorporated, even if the model is restricted
to an srank smaller than the srank of a part of the axiom. Therefore, it is necessary to
know the relevance of specific TBox-axioms to the srank-models. It is not possible to use
the definition of a srank for the empty TBox without change, as, e.g., having the axiom
A ⊑ ∃R.C, then the srank would be srank(A) = 0, srank(∃R.C) = 1. However, A is known
to be a subconcept of ∃R.C, this means, each for each a ∈ A, there must exists a b ∈ C
with R(a, b). Therefore, it is not possible to place A in a 0-srank -model, as then, it would
be possible that an element in A does not have any relation, what conflicts with the axiom.
Having a concept, e.g., ∃R.C with srank(∃R.C) = 3, this influences also concepts based on
the srank of this concept, e.g., ∃R2.C, thus, this concept would have srank(∃R2.C) = 4, as
applying a relation increases the rank by one.

To model this, an extension of the semantic rank accounting for TBoxes is defined.
Therefore, the notion of circular relationship is introduced, stating that a concept is part
of a cyclic dependency. This can be defined as a slight adaption of (Baader & Nutt, 2003,
p. 56): For two atomic concepts A and B, A directly uses B if it appears on the right hand
side of the definition of A. A concept is part of a cyclic dependency if it uses itself (where
uses is the transitive closure of directly uses).

Definition 10. The TBox-specific semantic rank srankT (TBox-srank for short) is defined
as follows: srankT (C) = srank(C) = ∞ if C is part of a circular relationship and else is
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defined based on the same defining rules as for the srank (see Definition 6), with one added
rule:

srankT (C) = max({srank(C)} ∪ {srank(D) | T ⊨ C ⊑ D})

where the other rules are changed to

srank(C ⊓D) = max({srankT (C), srankT (D)})
srank(C ⊔D) = min({srankT (C), srankT (D)})

srank(¬(C ⊓D)) = min({srankT (¬C), srankT (¬D)})
srank(¬(C ⊔D)) = max({srankT (¬C), srankT (¬D)})

We extend the arithmetics for ∞ in the usual way, setting ∞+ 1 =∞.
Thus, the calculation of srankT is influenced on the one hand by the srank of the concept

but on the other hand on its subsumption-relation to other concepts.

Lemma 6. If a TBox contains a concept ¬∃R.C for arbitrary role R and concept C and
srankT (¬∃R.C) > 0 or contains a concept D with srankT (D) =∞, then the TBox contains
a cyclic dependency.

Proof. The lemma follows trivially for infinite srank . Assume a concept ¬∃R.C for arbitrary
R and a propositional concept C and a TBox-axiom ¬∃R.C ⊑ ∃Si.D for arbitrary S, i and
propositional concept D. Then, we get the equation srankT (¬∃R.C) = i. ∃R.C has a
srankT (∃R.C) = 1, as C is a propositional concept. Thus, ∃R.C can be rewritten to
∃R.(C ⊓ ¬∃R.⊤ ⊓ ¬∃S.⊤). This is a contradiction, as ¬∃R.⊤ ⊓ ¬∃S.⊤ = ⊥. Therefore,
an extension is necessary and thus ∃R.C = ∃R.(C ⊓ ¬∃R.⊤ ⊓ ∃Si.D). This can be done
in the same way for D and thus leads to an infinite extension of the concept and thus to
an infinite srankT . Therefore, a cyclic dependency exists. This can trivially be adapted to
general axioms.

Example 12 (Example 5 continued). Consider a TBox with ∃R.C ≡ ∃R2.C (and therefore
¬∃R.∃R.C ≡ ¬∃R.C). Based on the sranks calculated above

srank(∃R.C) = 1, srank(¬∃R.C) = 0, srank(∃R2.C) = 2, srank(¬∃R.∃R.C) = 0,

it is possible to calculate the TBox-sranks:

srankT (¬∃R.∃R.C) = max({srank(¬∃R.∃R.C), srank(¬∃R.C)}) = 0

For the first axiom, the calculation is more complex:

srankT (∃R.C) = max({srank(∃R.C)} ∪ {srank(∃R2.C)}) = max({1}, {srankT (∃R.C) + 1})

Therefore, srankT (∃R.C) = srankT (∃R2.C) =∞.

We first focus on acyclic TBoxes and ABoxes, this means that each concept has a finite
TBox-srank and each concept of the form ¬∃R.C for arbitrary R, C has an TBox-srank of
0. Then, the creation of a geometric model can be done as described in Definition 8 and
Proposition 11, except that the axioms have to be considered. Thus, the first appearance of
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a concept is at its srankT , before that, it appears only negative. Therefore, the 0-quantifier-
rank concept-faithful model for the representation of the 0-srank -model is only created with
the propositional concepts which have a TBox-srank of 0 and is extended for each TBox-
srank with the propositional concepts having this rank. Submatrices R′

i→j are not allowed
to perform any mappings that contradict the axioms.

Definition 11. A geometric interpretation for an arbitrary non-cyclic TBox and non-cyclic
ABox is given as

• an incidence matrix R∗ as defined in Definition 8 for each relation R;

• each R′
i→0,...,i−1 is based on the part of the geometric model representing a product of

arbitrary many 0-quantifier-rank geometric models of the propositional concepts having
a TBox-srank of at least i.

Proposition 15. Let O be an ontology with an arbitrary non-cyclic TBox and non-cyclic
ABox. Let I be a geometric interpretation of O as defined in Definition 11. Then: I is
concept-faithful (w.r.t O), and for each constants a, b and relation R, if O |= R(a, b), then
there is a representation bI and aI so that bI ∈ R∗aI , if R(a, b) is not part of a cyclic
dependency.

Proof. As the TBox is acyclic, for each concept C, either srankT (C) = 0 or srankT (¬C) = 0.
Thus, it is possible to model a k-srank -model for arbitrary k ≥ 0 without having both C
and ¬C to be contradictory. As a concept C is only different from ⊥I in a k-srankT -model,
if srankT (C) ≤ k, it has to be ensured that a concept does not appear at a lower srank and
that only non-contradictory algebraic atoms are modeled. Non-contradiction is ensured for
propositional concepts because of Definition 11.

As proven in Proposition 13, each algebraic atom can be represented. Based on this,
only columns are considered which represent the desired algebraic atoms and thus, the
restrictions are satisfied.

This leads to the proof of Proposition 12 stating that it is possible to model a faithful
geometric model for ontologies over full ALC.

Proof of Proposition 12. Considering TBoxes with finite ranks, the proof follows directly
from Proposition 15.

Now consider TBoxes with infinite ranks, e.g., a TBox containing the axiom A = ∃R.A.
Then srankT (A) = ∞ and srankT (¬A) = ∞ or a TBox containing a concept ¬∃R.C with
TBox-srank greater than 0, as described in Lemma 6. Therefore, it is necessary to consider
the construction introduced in Proposition 14. There, it is allowed to model cycles in the
ABox, and therefore, infinite sranks. Based on this, the construction principle depicted in
Propositions 14 and 15 can be used.

The approach presented above enables us to create a faithful geometric model of a
given ontology. It opens up the possibility to restrict the model to a given srank without
affecting the expressivity of the given concepts. However, even for a restricted rank, the
faithful geometric model could grow exponentially (depending on the TBox) and is therefore
possibly not practical because of its size. Therefore, on the one hand, it is possible to extend
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the TBox with axioms which model a known bias in the data to circumvent that this bias
is learned. This incorporates helpful information and reduces the size of the model. On
the other hand, it is possible to focus on specific subparts of the model and model them
faithfully. Thus, being able to model an ontology faithfully is not only helpful when full
faithfulness is needed but also helpful as it is then known that each desired subproblem can
be modeled correctly.

Example 13. Consider again the example of Narcissus first mentioned in Example 3.
Assume an empty TBox, one concept Vain and one role loves, for short V,R.

It is possible to create a faithful representation, yet quite complex and of infinite dimen-
sion. Therefore, it is necessary to make suitable restrictions on the faithfulness. Here, the
focus lies on reflexivity of Narcissus. Therefore, reflexivity is to be modeled faithfully. This
still results in an infinite model, however, of a simpler structure.

One example for modeling is

V I = R+ × R+ × . . .
(¬V )I = R− × R− × . . . .

Then the relation R can be modeled as

R =



0 0 1 0 1 1 1 1 0 0 . . .
0 0 0 1 1 1 0 0 1 1 . . .

1 0
0 1
0 0
...

...


,

where the empty regions contain zeros.

The geometric model is based on only one concept. Thus, each odd column of R repre-
sents a conjunction with V I , each even column a conjunction with (¬V )I . The first two
columns represent the area of the geometric model where no relation is possible. Therefore,
a person Charlie represented by the incidence vector cI = [1, 0, 0, . . . ]T would be vain (as
cI ∈ V I) but would not love any person (as RcI = {⃗0} = ⊥I).

The fifth to the tenth column represent the different algebraic atoms of srank 1. A person
Bob represented by bI = [0, 0, 0, 0, 1, 0, . . . ]T is vain, as bI ∈ V I . RbI leads to the incidence
vectors [1, 0, . . . ]T and [0, 1, 0, . . . ]T , thus, b ∈ ∃R.(V ⊓ ¬∃R.⊤) and b ∈ ∃R.(¬V ⊓ ¬∃R.⊤).
Thus, Bob is vain and loves one person being vain and one person not being vain, whereas
both the beloved persons do not love anyone.

The third and fourth column represent the reflexivity and thus the property relevant for
expressing the narcissism of Narcissus. As Narcissus is vain, it has to be modeled in an
odd dimension of the model. Thus, nI = [0, 0, 1, 0, . . . ]T . RnI leads to [0, 0, 1, 0, . . . ]T , thus
it is mapped onto itself. Therefore, n ∈ ∃R.(V ⊓ ∃R.(V ⊓ . . . )) and reflexivity is modeled.
Additionally, it leads to [1, 0, . . . ]T and n ∈ ∃R.(V ⊓¬∃R.⊤). Thus, Narcissus loves himself
and he loves a vain person which does not love anyone.
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7. Using Cone-based Embeddings for Learning

In this short section we sketch a general method of using cone-based embedding approaches
for accomplishing classical learning tasks. First, a possible learning approach is outlined.
After that, the advantages of a cone-based embedding over an embedding with TransE (and
related approaches) are pointed out by considering a simple example. Development of a
practical learning algorithm and its experimental evaluation are outside the scope of this
paper.

Shortly after Özçep et al. (2020) presented the idea of cone-based geometric models for
the first time, learning methods using cones appeared in NeurIPS papers (Zhang, Wang,
Jiajun, Shuiwang, & Feng, 2021; Bai, Ying, Ren, & Leskovec, 2021). However, these are not
aligned with logic methods. For an example of a multi-label learning scenario, but restricted
to the case of Boolean ALC ontologies, i.e., neglecting roles, we point the interested reader
to approaches by Leemhuis, Özçep, and Wolter (2020, 2022).

As a general learning scenario for cone models without roles, it is possible to consider
multi-label learning: Given a set X of instances, with (x, y) ∈ X where x ∈ Rn represents
the features of instance (x, y) and y gives one or several labels assigned to the instance.
The task is then to predict y for an (unseen) instance based on features x. It is possible
to interpret label information as ABox (features get asserted to an instance). Additionally,
it is possible that some background information in form of a TBox is given. Having this
information, a mapping function can be learned which maps the instances from the feature
space into the space of the geometric model. This could be done using a loss function
which on the one hand forces the instances to lie in the cone corresponding to their ABox-
assignments, and on the other hand creates a geometric model by forcing the cones to fulfill
the TBox-axioms. A sufficient dimension to accommodate the geometric model would need
to be chosen beforehand. When a restriction of the model to ALC is desired, then it is
necessary to extend the loss function by incorporating either the restrictions mentioned in
Proposition 5 or stronger restrictions enforcing the cones to be axis-aligned. In case of
roles, a generalized multi-label learning scenario can be considered, where labels are not
necessarily Boolean concepts but also role-based concepts or the ABox contains even role-
assignments. Learning can then be accomplished by extending the loss function by terms
such that for each role assignment R(a, b), applying R to a would end up in b.

To point out advantages of a cone-based embedding vs an embedding with TransE, let
us consider the following example:

Example 14. An ontology O is given, with concept symbols M (male), F (female) and
role R (has parent). Let T be the TBox T = {∃R.M ≡ ⊤, ∃R.F ≡ ⊤,M ≡ ¬F}, thus
each person has a mother and a father. ABox A states that Alice (a) has two parents, Bob
(b) and Charlotte (c) and it is known that Bob has a parent called Robin (r) whose sex is
unknown. A = {R(a, b), R(a, c), R(b, r),M(b), F (c), F (a)}.

Using TransE, the TBox-information cannot be handled (directly) and has to be ignored.
A possible embedding can be seen in Figure 14 on the left. We manually constructed this
embedding, yet it is a plausible outcome of learning, as the ABox-information is correctly
expressed. It is not possible to model the concept information, even a relation is of type
cannot be modeled as Alice and Charlotte would have the same type. It is not possible to
locate Alice, Charlotte, and their type (e.g., Human) such that Alice and Human as well as
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AliceI BobI
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1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1



Figure 14: On the left, a possible embedding of the TBox mentioned in the text can be seen using
TransE. The has parent-relation is modeled as translation, the instances as points and the circle
depicts the area of uncertainty, thus each instance in the circle is the endpoint of the relation. On
the right, the respective al-cone embedding can be seen, where R depicts the incidence matrix for
the relation has parent.

Charlotte and Human are connected by the same translation. Neither is it possible to model
that Alice has two (disjoint) parents (Bob, Charlotte) since translations are functional. In
our example Bob and Charlotte are embedded to locations close to one another in order to
apply some thresholding when interpreting relations (as is typically done): Bob and Char-
lotte are both close to the endpoint of the has parent translation. However, this leads to the
unintended situation that Bob and Charlotte have (one ore more) parents in common, in
this case Robin. Another drawback is that it is only possible to derive information for known
instances. In the scenario, Robin would not have any parents at all, which contradicts the
TBox.

These drawbacks can be circumvented when using a cone-based embedding. A possible
embedding can be seen in Figure 14 on the right. There, it is possible to place all instances
in regions depending on their concepts. Robin can be modeled in between concepts male (M)
and female (F) as the sex is unknown. The relation matrix R states that each instance of
the model needs to have a father and a mother, even when they are not given in the ABox.
Thus, for Robin it can also be represented that Robin has parents, albeit unknown ones. All
TBox-axioms are modeled correctly and are thus respected. In a higher-dimensional model
it would even be possible to exclude symmetric parent-relationships, taking full advantage of
the expressivity of the TBox. Our cone model does not state concrete relations between the
instances, in contrast to TransE. However, it can represent non-functional relationships,
TBox-information, partial information and allows us to infer facts beyond what is covered
by the ABox.

8. Conclusion and Outlook

Starting from an interpretation of negation as a polarity operator we presented embeddings
of ALC ontologies that interpret all concepts as axis-aligned cones. This result adds an in-
teresting alternative to embeddings considered so far as it advances the logical structure that
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can be captured by an embedding. In particular, the proposed approach is able to handle
concept negation and disjunction. The model of axis-aligned cones (al-cones) investigated
in this paper is shown to be universal in the sense that all embeddings of a disjunctive logic
based on cones must employ, modulo simple geometric operations, axis-aligned cones.

As a side product of defining negation by polarity we obtain partial models, i.e. models
with individuals for which one does not know whether they belong to a concept or not.
This is different from approaches considered in classical embedding scenarios and can lead
to interesting applications where one does not want a learnt model to perform certain
generalizations. This is also different from partial models that have been investigated in
the context of general logic programs, notably in the context of well-founded semantics
(Van Gelder, Ross, & Schlipf, 1991). These differ from our partial models since those partial
models are meant to treat p← ¬q and its contraposition q ← ¬p differently, whereas in our
case the contraposition rule (and double elimination) holds. In fact, as Van Gelder et al.
(1991) note, there is a 3-valued logic interpretation for partial models in the well-founded
semantics whereas for our partial models this kind of extensional semantics based on truth
values is not possible: Consider the truth value of p ∨ q. Assume that the ontology does
not entail p (so p gets assigned the third truth value different from true and false) and q is
not entailed (so q gets assigned the third truth value different from true and false). These
two assignments do not determine the truth value of p∨ q: because the truth value of p∨ q
depends on whether the ontology entails the disjunction or not.

So a fine-grained treatment of the kind of uncertainty in our partial models must rely on
intensional semantics and could proceed by considering partial models as done by Hartonas
(2016) or by providing an epistemic operator □ (Donini, Lenzerini, Nardi, Nutt, & Schaerf,
1998, for example), i.e. a special modal logic operator where the accessibility relation ex-
presses a kind of accessibility between epistemic states. Such an operator would allow us
to distinguish between instances known to be in a specific concept C, i.e., those in □C and
instances which could be in the concept or its negation. How a translation could work for
arbitrary orthologics (i.e. logics tailored towards ortholattices) is given in a small result of
Goldblatt (1974).
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