Answering Hindsight Queries with Lifted Dynamic Junction Trees

Marcel Gehrke, Tanya Braun, and Ralf Moller

Institute of Information Systems, University of Liibeck, Liibeck
{gehrke, braun, moeller} @ifis.uni-luebeck.de

Abstract

The lifted dynamic junction tree algorithm (LDJT) efficiently
answers filtering and prediction queries for probabilistic rela-
tional temporal models by building and then reusing a first-
order cluster representation of a knowledge base for multi-
ple queries and time steps. We extend LDJT to (i) solve the
smoothing inference problem to answer hindsight queries by
introducing an efficient backward pass and (ii) discuss differ-
ent options to instantiate a first-order cluster representation
during a backward pass. Further, our relational forward back-
ward algorithm makes hindsight queries to the very beginning
feasible. LDJT answers multiple temporal queries faster than
the static lifted junction tree algorithm on an unrolled model,
which performs smoothing during message passing.

1 Introduction

Areas like healthcare or logistics and cross-sectional aspects
such as IT security involve probabilistic data with relational
and temporal aspects and need efficient exact inference al-
gorithms, as indicated by Vlasselaer et al. (2014). These
areas involve many objects in relation to each other with
changes over time and uncertainties about object existence,
attribute value assignments, or relations between objects.
More specifically, IT security involves network dependen-
cies (relational) for many components (objects), streams of
attacks over time (temporal), and uncertainties due to, for ex-
ample, missing or incomplete information, caused by faulty
sensor data. By performing model counting, probabilistic
databases (PDBs) can answer queries for relational tempo-
ral models with uncertainties (Dignds, Bohlen, and Gamper
2012; Dylla, Miliaraki, and Theobald 2013). However, each
query embeds a process behaviour, resulting in huge queries
with possibly redundant information. In contrast to PDBs,
we build more expressive and compact models including be-
haviour (offline) enabling efficient answering of more com-
pact queries (online). For query answering, our approach
performs deductive reasoning by computing marginal dis-
tributions at discrete time steps. In this paper, we study the
problem of exact inference, in form of smoothing, in large
temporal probabilistic models.

We introduce parameterised probabilistic dynamic mod-
els (PDMs) to represent probabilistic relational temporal be-

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

haviour and propose the lifted dynamic junction tree algo-
rithm (LDJT) to exactly answer multiple filtering and pre-
diction queries for multiple time steps efficiently (Gehrke,
Braun, and Moller 2018). LDJT combines the advantages of
the interface algorithm (Murphy 2002) and the lifted junc-
tion tree algorithm (LJT) (Braun and Moller 2016). Specif-
ically, this paper extends LDJT and contributes (i) an inter
first-order junction tree (FO jtree) backward pass to perform
smoothing for hindsight queries, (ii) different FO jtree in-
stantiation options during a backward pass, and (iii) a rela-
tional forward backward algorithm. Our relational forward
backward algorithm reinstantiates FO jtrees by leveraging
LDIJT’s forward pass. Without reinstantiating FO jtrees, the
memory consumption of keeping all FO jtrees instantiated
renders hindsight queries to the very beginning infeasible.

Even though smoothing is a main inference problem,
to the best of our knowledge there is no approach solv-
ing smoothing efficiently for relational temporal models.
Smoothing can improve the accuracy of hindsight queries
by back-propagating newly gained evidence. Additionally, a
backward pass is required for problems such as learning.

Lifting exploits symmetries in models to reduce the num-
ber of instances to perform inference on. LJT reuses the
FO jtree structure to answer multiple queries. LDJT also
reuses the FO jtree structure to answer queries for all time
steps ¢ > 0. Additionally, LDJT ensures a minimal exact
inter FO jtree information propagation. Thus, LDJT propa-
gates minimal information to connect FO jtrees by message
passing also during backward passes and reuses FO jtree
structures to perform smoothing.

In the following, we begin by introducing PDMs as a rep-
resentation for relational temporal probabilistic models and
present LDJT, an efficient reasoning algorithm for PDMs.
Afterwards, we extend LDJT with an inter FO jtrees back-
ward pass and discuss different options to instantiate an
FO jtree during a backward pass. Lastly, we evaluate LDJT
against LJT and conclude by looking at extensions.

2 Related Work

We take a look at inference for propositional temporal mod-
els, relational static models, and give an overview about re-
search regarding relational temporal models.

For exact inference on propositional temporal models, a
naive approach is to unroll the temporal model for a given

number of time steps and use any exact inference algorithm
for static, i.e., non-temporal, models. In the worst case, once
the number of time steps changes, one has to unroll the
model and infer again. Murphy (2002) proposes the inter-
face algorithm consisting of a forward and backward pass
that uses a temporal d-separation with a minimal set of nodes
to apply static inference algorithms to the dynamic model.

First-order probabilistic inference leverages the relational
aspect of a static model. For models with known domain
size, it exploits symmetries in a model by combining in-
stances to reason with representatives, known as lifting
(Poole 2003). Poole (2003) introduces parametric factor
graphs as relational models and proposes lifted variable
elimination (LVE) as an exact inference algorithm on rela-
tional models. Further, de Salvo Braz (2007), Milch et al.
(2008), and Taghipour et al. (2013) extend LVE to its current
form. Lauritzen and Spiegelhalter (1988) introduce the junc-
tion tree algorithm. To benefit from the ideas of the junction
tree algorithm and LVE, Braun and Moller (2016) present
LJT that efficiently performs exact first-order probabilistic
inference on relational models given a set of queries.

Inference on relational temporal models mostly consists
of approximative approaches. Additionally, to being approx-
imative, these approaches involve unnecessary groundings
or are only designed to handle single queries efficiently. Ah-
madi et al. (2013) propose lifted (loopy) belief propagation.
From a factor graph, they build a compressed factor graph
and apply lifted belief propagation with the idea of the fac-
tored frontier algorithm (Murphy and Weiss 2001), which
is an approximate counterpart to the interface algorithm and
also provides means for a backward pass. Thon, Landwehr,
and De Raedt (2011) introduce CPT-L, a probabilistic model
for sequences of relational state descriptions with a partially
lifted inference algorithm. Geier and Biundo (2011) present
an online interface algorithm for dynamic Markov logic net-
works (DMLNSs), similar to the work of Papai, Kautz, and
Stefankovic (2012). Both approaches slice DMLNs to run
well-studied static MLN (Richardson and Domingos 2006)
inference algorithms on each slice. Two ways of perform-
ing online inference using particle filtering are described in
(Manfredotti 2009; Nitti, De Laet, and De Raedt 2013).

Vlasselaer et al. (2016) introduce an exact approach for
relational temporal models involving computing probabili-
ties of each possible interface assignment.

To the best of our knowledge, none of the relational tem-
poral approaches perform smoothing efficiently. Besides of
LDJT’s benefits of being an exact algorithm answering mul-
tiple filter and prediction queries for relation temporal mod-
els efficiently, we decided to extend LDJT as it offers the
ability to reinstatiate previous time steps and thereby make
hindsight queries to the very beginning feasible.

3 Parameterised Probabilistic Models

Based on (Braun and Moller 2018), we shortly present pa-
rameterised probabilistic models (PMs) for relational static
models. Afterwards, we extend PMs to the temporal case,
resulting in PDMs for relational temporal models, which, in
turn, are based on (Gehrke, Braun, and Moéller 2018).

3.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models,
representing first-order constructs using logical variables
(logvars) as parameters. As an example, we set up a PM
for risk analysis with an attack graph (AG). An AG mod-
els attacks on targeted components in a network. A binary
random variable (randvar) holds if a component is compro-
mised, which provides an attacker with privileges to further
compromise a network to reach a final target. We use logvars
to represent users with certain privileges. The model is in-
spired by Mufioz-Gonzilez et al. (2017), who examine exact
probabilistic inference for IT security with AGs.

Definition 1. Let L be a set of logvar names, ¢ a set of
factor names, and R a set of randvar names. A parame-
terised randvar (PRV) A = P(X*!, ..., X™) represents a set
of randvars behaving identically by combining a randvar
P € R with X!, .., X" € L. If n = 0, the PRV is
parameterless. The domain of a logvar L is denoted by
D(L). The term range(A) provides possible values of a
PRV A. Constraint (X, Cx) allows to restrict logvars to cer-
tain domain values and is a tuple with a sequence of logvars
X = (X1, ..., X") and aset Cx C x;D(X?). The sym-
bol T denotes that no restrictions apply and may be omitted.
The term [v(Y") refers to the logvars in some element Y. The
term gr(Y") denotes the set of instances of Y with all logvars
in Y grounded w.r.t. constraints.

From R = {Server,User} and L = {X,Y}
with D(X) = {Il,l’g,I’g} and D(Y) = {yl,yg},
we build the boolean PRVs Server and User(X). With
C = (X, {x1,22}), gr(User(X)|C) = {User(zx1),
User(za)}. gr(User(X)|T) also contains User(zs).

Definition 2. We denote a parametric factor (parfactor) g
with VX : ¢(A) |C, X C L being a set of logvars
over which the factor generalises, C' a constraint on X, and
A = (Al,..., A") a sequence of PRVs. We omit (VX :) if
X = lv(A). A function ¢ : x"_;range(A?) — RT with
name ¢ € & is identical for all grounded instances of A.
The complete specification for ¢ is a list of all input-output
values. A PM G := {g'}=} is a set of parfactors and se-
mantically represents the full joint probability distribution
Pe = % [g (f) with Z as normalisation constant.

Adding boolean PRVs Attackl, Attack?2,
Admin(Y), Infects(X,Y), Ger = {9'}io, ¢° =
#°(Attackl,User(X)), g* = ¢'(Attack2, Admin(Y)),
g> = ¢*(User(X), Admin(Y),Infects(X,Y)), g° =
¢*(Server,User(X)), and g* = ¢*(Server, Admin(Y))
forms a model. g2 has eight, the others four input-output
pairs (omitted). Constraints are T, i.e., the ¢’s hold for

Figure 1: Parfactor graph for G**

Figure 2: G%7 the two-slice temporal parfactor graph for model G**

all domain values. E.g., gr(g°) contains three factors with
identical ¢. Figure 1 depicts G as a graph with six variable
nodes for the PRVs and five factor nodes for ¢° to ¢* with
edges to the PRVs involved. Additionally, we can observe
the state of the server. The remaining PRVs are latent.

The semantics of a model is given by grounding and
building a full joint distribution. In general, queries ask for
a probability distribution of a randvar using a model’s full
joint distribution and given fixed events as evidence.

Definition 3. Given a PM G, a ground PRV () and grounded
PRVs with fixed range values E, the expression P(Q|E) de-
notes a query w.r.t. Pg.

3.2 Parameterised Probabilistic Dynamic Models

To define PDMs, we use PMs and the idea of how Bayesian
networks (BNs) give rise to dynamic Bayesian networks
(DBNs). We define PDMs based on the first-order Markov
assumption, i.e., a time slice ¢ only depends on the previous
time slice £ — 1. Further, the underlining process is stationary,
i.e., the model behaviour does not change over time.

Definition 4. A PDM is a pair of PMs (G, G_,) where Gg
is a PM representing the first time step and G_, is a two-
slice temporal parameterised model representing A;_; and
A, where A ; a set of PRVs from time slice .

Figure 2 shows G? consisting of G for time step t — 1
and ¢ with inter-slice parfactors for the behaviour over time.
In this example, the parfactors g* and g are the inter-slice
parfactors, modelling the temporal behavior.

Definition 5. Given a PDM G, a ground PRV @, and
grounded PRVs with fixed range values Ey.; the expression
P(Q¢|Eq.;) denotes a query w.r.t. Pg.

The problem of answering a marginal distribution query
P(A%|Eq.;) w.r.t. the model is called prediction for = > t,
filtering for m = t, and smoothing for m < t.

4 Lifted Dynamic Junction Tree Algorithm
We start by introducing LJT, mainly based on (Braun and
Moller 2017), to provide means to answer queries for PMs.
Afterwards, we present LDJT, based on (Gehrke, Braun,
and Moller 2018), consisting of FO jtree constructions for
a PDM and an efficient filtering and prediction algorithm.

4.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P(Q|E),
with a set of query terms, given a PM G and evidence E,

by performing the following steps: (i) Construct an FO jtree
J for G. (ii) Enter E in J. (iii) Pass messages. (iv) Compute
answer for each query Q° € Q.

We first define an FO jtree and then go through each step.
To define an FO jtree, we first need to define parameterised
clusters (parclusters), the nodes of an FO jtree.

Definition 6. A parcluster C is defined by VL : A|C. L
is a set of logvars, A is a set of PRVs with [v(A) C L,
and C a constraint on L. We omit (VL :) if L = [v(A). A
parcluster C? can have parfactors ¢(A?)|C? assigned given
that (i) A? C A, (ii) lv(A?) C L, and (iii) C® C C holds.
We call the set of assigned parfactors a local model G".

An FO jtree fora PM G is J = (V,E) where J is a cycle-
free graph, the nodes V denote a set of parcluster, and the
set E edges between parclusters. An FO jtree must satisfy
the properties: (i) A parcluster C is a set of PRVs from G.
(ii) For each parfactor ¢(.A)|C in G, A must appear in some
parcluster C'. (iii) If a PRV from G appears in two parclus-
ters C* and C/, it must also appear in every parcluster C*
on the path connecting nodes i and j in .J. The separator S*/
containing shared PRVs of edge i — j is given by C* N C7.

LJT constructs an FO jtree using a first-order decompo-
sition tree, enters evidence in the FO jtree, and passes mes-
sages through an inbound and an outbound pass, to distribute
local information of the nodes through the FO jtree. To com-
pute a message, LIT eliminates all non-seperator PRVs from
the parcluster’s local model and received messages. After
message passing, LIT answers queries. For each query, LJT
finds a parcluster containing the query term and sums out all
non-query terms in its local model and received messages.

Figure 3 shows an FO jtree of G** with the local mod-
els of the parclusters and the separators as labels of edges.
During the inbound phase of message passing, LJT sends
messages from C! and C3 to C? and during the outhound
phase from C? to C! and C3. If we want to know whether
Attack1 holds, we query for P(Attack1) for which LIT can
use parcluster CL. LIT sums out User(X) from C'’s lo-
cal model G, {g°}, combined with the received messages,
here, one message from C2.

c! (User(X)} c? {Admin(y)} __C°

Attackl, | Server,User(X), | Attack2,
User(X) Admin(Y), Infects(X,Y) Admin(Y)

T2 o8 a
{97, 9797}

Figure 3: FO jtree for G** (local models in grey)

in-cluster G2

U(96T2(X), Users(X), ‘
Adminy(Y)

{Users(X), Admina(Y)} Cg out-cluster U

Servers, Users(X),
Adminy(Y'), Adminz(Y")

{9,945, 93,93}
| (Users (X))
{Ad”m1W3(Y)}

US€!3 Admm;
Attack13 Attack23

(63)

{Users(X), Adminz(Y)} —
Cs

Users(X), Admins(Y),
Infects3(X,Y)
T

S in-cluster 2

{Users(X), Admins(Y)}

Cc3 out-cluster

Servery, Users(X),
Admins(Y), Adming(Y")
T
{g", 91,91, g1}
— {Users(X)}
{Admnu(Y)}

Usery(X Admm4
Attack14 Attaclf24

{f/f} J’/\ 1‘/

Users(X), Usery(X),
Admins(Y)

{g", 93}

{Users(X), Admina(Y)} —
Ci

Usery(X), Adming(Y),
Infectsy(X,Y)
T

Figure 4: Forward and backward pass of LDJT (local models and in- and out-cluster labeling in grey)

4.2 LDJT: Overview

LDIT efficiently answers queries P(Q;|Eq.;), with a set
of query terms {Q;} ,, given a PDM G and evidence
{E;}L_,, by performing the following steps:

(i) Offline construction of two FO jtrees Jy and J; with
in- and out-clusters from G (ii) For ¢t = 0, using Jj to enter
Eo, pass messages, answer each query term Q% € Qg, and
preserve the state in message « (iii) For ¢ > 0, instantiate
Jy for the current time step ¢, recover the previous state from
message a;_1, enter E; in J;, pass messages, answer each
query term Qﬁr € Qq, and preserve the state in message o

We begin with LDJT’s FO jtrees construction, which con-
tain a minimal set of PRVs to m-separate the FO jtrees.
M-separation means that information about these PRVs
make FO jtrees independent from each other. Afterwards,
we present how LDJT connects FO jtrees for reasoning to
solve the filtering and prediction problems efficiently.

4.3 LDJT: FO Jtree Construction for PDMs

LDIJT constructs FO jtrees for G and G _,, both with an in-
coming and outgoing interface. To be able to construct the
interfaces in the FO jtrees, LDJT uses the PDM G to identify
the interface PRVs I; for a time slice ¢.

Definition 7. The forward interface is defined as I; = { Al |

H(A)|C € G : Al € AANTA],, € A}, ie., the PRVs
which have successors in the next slice.

PRVs Usery—1(X) and Admin,_1(Y") from G¢%, shown
in Fig. 2, have successors in the next time slice, making up
I;_;. To ensure interface PRVs I ending up in a single par-
cluster, LDJT adds a parfactor g’ over the interface to the
model. Thus, LDJT adds a parfactor g§ over Iy to G, builds
an FO jtree Jy, and labels the parcluster with g/ from .J, as
in- and out-cluster. For G_,, LDJT removes all non-interface
PRVs from time slice ¢+ — 1, adds parfactors g/_; and g},
constructs J;, and labels the parcluster containing g/_; as
in-cluster and the parcluster containing g{ as out-cluster.

The interface PRVs are a minimal required set to m-
separate the FO jtrees. LDJT uses these PRVs as separator
to connect the out-cluster of J;_1 with the in-cluster of J;,
allowing to reuse the structure of J; for all ¢ > 0.

4.4 LDJT: Reasoning with PDMs

Since Jy and J; are static, LDJT uses LJT as a subroutine
by passing on a constructed FO jtree, queries, and evidence
for step ¢ to handle evidence entering, message passing, and
query answering using the FO jtree. Further, for proceed-
ing to the next time step, LDJT calculates an a; message
over the interface PRV using the out-cluster to preserve the
information about the current state. Afterwards, LDJT in-
creases t by one, instantiates J;, and adds a;_; to the in-
cluster of J,. During message passing, o1 is distributed
through J;. Thereby, LDJT performs an inter FO jtree for-
ward pass to proceed in time. Additionally, due to the in-
bound and outbound message passing, LDJT also performs
an intra backward pass for the current FO jtree.

Figure 4 depicts the passing on of the current state from
time step three to four. To capture the state at t = 3, LDJT
sums out the non-interface PRVs Servers and Adming(Y')
from C3’s local model and the received messages and saves
the result in message «3. After increasing ¢ by one, LDJT
adds az to the in-cluster of Jy, C3. a3 is then distributed by
message passing and accounted for during calculating c.

5 Smoothing Extension for LDJT

We introduce an inter FO jtree backward pass and extend
LDJT with it to also answer smoothing queries efficiently.

5.1 Inter FO Jtree Backward Pass

Using the forward pass, each instantiated FO jtree contains
evidence from the initial time step up to the current time
step. The inter FO jtrees backward pass propagates infor-
mation to previous time steps, allowing LDJT to answer
marginal distribution queries P(A%|Eo.;) with 7w < ¢.

The backward pass, similar to the forward pass, uses the
interface connection of the FO jtrees, calculating a message
over the interface PRVs for an inter FO jtree message pass.
To perform a backward pass, LDJT uses the in-cluster of the
current FO jtree J; to calculate a 5; message over the inter-
face PRVs. LDIJT first has to remove the oy message from
the in-cluster of J;, since J; received the a1 message from
the destination of the 3; message. After LDJT calculates 3;
by summing out all non-interface PRVs, it decreases ¢ by
one. Finally, LDJT instantiates the FO jtree for the new time
step and adds the /3,11 message to the out-cluster of J;.

Figure 4 also depicts how LDIJT performs a backward
pass. LDJT uses the in-cluster of Jy to calculate 54 by sum-
ming out all non-interface PRVs of C2’s local model with-
out ag. After decreasing ¢ by one, LDJT adds 34 to the out-
cluster of J3. B4 is then distributed and accounted for in (3.

The forward and backward pass instantiate FO jtrees from
the corresponding structure given a time step. However,
since LDJT already instantiates FO jtrees during a forward
pass, it has different options to instantiate FO jtrees during
a backward pass. The first option is to keep all instantiated
FO jtrees from the forward pass and the second option is to
reinstantiate FO jtrees using evidence and o messages. The
second option, to reinstantiate previous time steps is only
possible by leveraging how LDJT’s forward pass is defined.

Preserving FO Jtree Instantiations To keep all instanti-
ated FO jtrees, including computed messages, is quite time-
efficient since the option reuses already performed computa-
tion. Thereby, during an intra FO jtree message pass, LDJT
only needs to account for the 5 message. By selecting the
out-cluster as the root node for message passing, this leads
to n — 1 instead of 2 x (n — 1) messages, where n is the
number of parclusters. The required FO jtree is already in-
stantiated and does not need to be instantiated. The main
drawback is the memory consumption. Each FO jtree con-
tains all computed messages, evidence, and structure.

FO Jtree Reinstantiation Leveraging LDJT’s forward
pass, another approach is to reinstantiate FO jtrees on de-
mand during a backward pass using evidence and o mes-
sages. LDJT repeats the steps to instantiate the FO jtree for
which it only needs to save the o message and the evidence.
Thus, LDJT can reinstantiate FO jtrees on-demand.

The main drawback are the repeated computations. Af-
ter LDJT instantiates the FO jtree, it enters evidence, o, and
8 messages to perform a complete message pass. Thereby,
LDIJT repeats computations compared to keeping the instan-
tiations and calculating messages can be costly, as in the
worst case the problem is exponential to the number of PRVs
to be eliminated (Taghipour, Davis, and Blockeel 2013).

In case LDJT only reinstantiates an FO jtree to calculate
a [; message, meaning there are no smoothing queries for
that time step, LDJT can calculate the 8; message with only
n — 1 messages. By selecting the in-cluster as root, LDJT
has already after n — 1 messages (inbound pass) all required
information in the in-cluster to calculate a /3; message.

5.2 Extended LDJT

Algorithm 1 shows the general steps of LDJT including
the backward pass, as an extension to the original LDJT
(Gehrke, Braun, and Moller 2018). LDJT uses the function
DFO-JTREE to construct the structures of the FO jtrees Jy
and J; and the set of interface PRVs as described in Sec-
tion 4.3. Afterwards, LDJT enters a while loop, which it
leaves after reaching the last time step, and performs the
routine of entering evidence, message passing and query an-
swering for the current time step. Lastly, LDJT performs one
forward pass, as described in Section 4.4, to proceed in time.

The main extension of Algorithm 1 is in the query an-
swering function. First, LDJT identifies the type of query,

Algorithm 1 LDJT Alg. for PDM (Gyp,G_,), Queries
{Q}L,, Evidence {E}]_,

procedure LDIT(Go, G_,, {Q}L o, {E}L)

t:=0
(Jo, J:,I;) := DFO-JTREE(Gy, G_,)
while t # T + 1 do

J¢ := LIT.EnterEvidence(J;, E;)

Ji = LIT.PassMessages(J;)

for ¢, € Q; do

AnswerQuery(Jo, Jta qr, It7 Q, t)

(Je, t, aft — 1]) := ForwardPass(Jo, Jy, t, 1)

procedure ANSWERQUERY (Jy, J;, ¢, It, , 1)
while ¢t # 7w do
if ¢ > 7 then
(Ji, t) := BackwardPass(Jy, Ji, I, a[t —1],t)
else
(J¢, t,-) := ForwardPass(Jy, J¢, I, t)
LIT.PassMessages(.J;)
print LIT.AnswerQuery(J, ¢-)

function FORWARDPASS(Jy, J¢, I, 1)
3= 30 7 (outclustenn1, J¢(out-cluster)
t:=t+1
J¢(in-cluster) := az—1 U Ji(in-cluster)
return (J;,t, ;1)

function BACKWARDPASS(Jy, J¢, I, a1, 1)
Bt = ZJt(in-clusler)\I,, (Jt (ln_CIHSter) \Oét—l)
1

Ji(out-cluster) := ;41 U J¢(out-cluster)
return (J;, 1)

namely filtering, prediction, and smoothing. To perform fil-
tering, LDJT passes the query and the current FO jtree to
LJT to answer the query. LDJT applies the forward pass un-
til the time step of the query is reached to answer the query
for prediction queries. To answer smoothing queries, LDJT
applies the backward pass until the time step of the query is
reached and answers the query. Further, LDJT uses LIT for
message passing to account for « respectively 5 messages.

Let us now illustrate how LDJT answers smoothing
queries. We assume that the server is compromised at time
step 1983 and we want to know whether Admin(y;) in-
fected User(z1) at time step 1973 and whether User(z)
is compromised at timestep 1978. Hence, LDJT answers the
marginal distribution queries P(Q19s3|Eo.1983), where the
new evidence Ejgg3 consists of {Serverigss = true} and
the set of query terms Qj9g3 consists of at least the query
terms {US€T1978($1), Infect51973 (371, yl)}

LDJT enters the evidence {Serverigss = true} in Jiggs
and passes messages. To answer the queries, LDJT per-
forms a backward pass and first calculates $19g3 by sum-
ming out Userjgss(X) from C3ggs’s local model and re-

ceived messages without a9g2. LDJT adds the 31953 mes-
sage to C3gg,’s local model and passes messages in Jyggo
using LJT. In such a manner LDJT proceeds until it reaches
time step 1978 and thus propagated the information to Jyg7s.

Having Jy97s, LDJT can answer the marginal distribu-
tion query P(Userig7s(x1)|Eo.1083). To answer the query,
LJT can sum out Attackligrs and Userigrs(X) where
X # @1 from Cig7g’s local model and the received mes-
sage from C3y,5. To answer the other marginal distri-
bution query P(Infectsigrs(x1,y1)|Eo.1083), LDIT per-
forms additional backward passes until it reaches time step
1973 and then uses again LJT to answer the query term
Infectsig73(z1,y1) given Jyig7s. Even though, Algorithm 1
states that LDJT has to start the smoothing query for time
step 1973 from 1983, LDJT can reuse the computations it
performed for the first smoothing query.

Theorem 1. LDJT is correct regarding smoothing.

Proof. Each FO jtree contains evidence up to the time step
the FO jtree is instantiated for. To perform smoothing, LDJT
distributes information, including evidence, from the current
FO jtree J; backwards. Therefore, LDJT performs an inter
FO jtrees backward message pass over the interface sepa-
rator. The B; message is correct, since calculating the 3;
message, the in-cluster received all messages from its neigh-
bours and removes the «;—; message, which originated from
the designated receiver. The 3; message, which LDJT adds
to the out-cluster of J;_1, is then accounted for during the
message pass inside J;—; and thus, during the calculation
of B;_1. Following this approach, every FO jtree included
in the backward pass contains all evidence. Thus, it suffices
to apply the backward pass until LDJT reaches the desired
time step and does not need to apply the backward pass un-
til ¢ = 0. Hence, LDJT propagates back information until it
reaches the desired time step and performs filtering on the
corresponding FO jtree to answer the query. 0

5.3 Discussion

As LDIT has two options to instantiate previous time steps,
we discuss how to combine the options efficiently. Further,
LDIJT can also leverage calculations from the current time
step for multiple smoothing and prediction queries.

Combining Instantiation Options To provide the queries
to LDJT, a likely scenario is a predefined set of queries
for each time step with an option for additional queries on-
demand. In such a scenario, reoccurring smoothing queries
are in the predefined set, also called fixed-lag smoothing, and
therefore, the number of time steps for which LDJT has to
perform a backward pass is known. With a known fixed-lag
a combination of our two options is advantageous. Assum-
ing the largest smoothing lag is 10, LDJT can always keep
the last 10 FO jtrees in memory and reinstantiate FO jtrees
on-demand. Further, in case an on-demand smoothing query
has a lag of 20, LDJT can reinstantiate the FO jtrees starting
with J;_17. Thereby, LDJT can keep a certain number of
FO jtrees instantiated, for fast query answering, and in case
a smoothing query is even further in the past, reconstruct
the FO jtrees on demand using evidence and a messages.

Hence, combining the approaches is a good compromise be-
tween time and space efficiency.

To process a data stream, one possibility is to reason over
a sliding window that proceeds with time (Ozgep, Moller,
and Neuenstadt 2015). Thereby, each window stores a pro-
cessable amount of data. To keep FO jtrees instantiated to
faster answer hindsight queries is comparable to sliding win-
dows in stream data processing. LDJT keeps only a reason-
able amount of FO jtrees and the window slides to the next
time step, when LDJT proceeds in time.

Reusing Computations for One Time Step During query
answering for one time step, LDJT can also reuse compu-
tations. For example, let us assume, we have two smooth-
ing queries, one with a lag of 2 and the other with a lag of
4. LDJT can reuse the calculations it performed during the
smoothing query with a lag of 2, namely it can start the back-
ward pass for the query with lag 4 at .J;_» and does not need
to recompute the already performed two backward passes.
To reuse the computations, there are two options.

The first option is that the smoothing queries are sorted
based on the time difference to the current time step. Here,
LDIJT can keep the FO jtree from the last smoothing query
and perform additional backward passes, but does not repeat
computations that lead to the FO jtree of the last smooth-
ing query. The second option is similar to the FO jtree rein-
stantition, namely to keep the calculated 5 messages for the
current time step and reinstantiate the FO jtree closest to the
currently queried time step. Analogously, LDJT can reuse
computations for answering prediction queries.

Under the presence of prediction queries, LDJT does not
have to recompute «; after it answered all queries, since
LDIJT already computed «; during a prediction query with
the very same evidence in the FO jtree present. Unfortu-
nately, given new evidence for a new time step all other «
and 3 messages that LDJT calculated during prediction and
smoothing queries from the previous time step are invalid.

6 Evaluation

We compare LDJT against LJT provided with the unrolled
model for multiple maximum time steps. To be more pre-
cise, we compare, for each maximum time step, the runtime
of LDJT with instant complete FO jtree reinstantiation, the
worst case, against the runtime of LJT directly provided all
information for all time steps, resulting in one message pass,
which is the best case for LJT. For the evaluation, we use the
example model G°* with the set of evidence being empty.

We start by defining a set of queries that is executed for
each time step and then evaluate the runtimes of LDJT and
LJT. Our predefined set of queries for each time step is:
{Servery, Usery(z1), Admin(y;)} with lag 0, 2, 5, and
10. For each time step these 12 queries are executed.

Now, we evaluate how long LDJT and LJT take to answer
the queries for up to 10000 time steps. Figure 5 shows the
runtime in seconds for each maximum time step. We can see
that the runtime of LDJT (diamond) to answer the questions
is linear to the maximum number of time steps. Thus, LDJT
more or less needs a constant time to answer queries once
it instantiated the corresponding FO jtree and also the time

1500
|

o

o _|

o

—

o LT

B 7 LDJT

o
[T T T T 1
0 2000 4000 6000 8000 10000

Figure 5: Runtimes [seconds], x-axis: maximum time steps

to perform a forward or backward pass is more or less con-
stant w.r.t. time, no matter how far LDJT already proceeded
in time. For LDJT the runtimes for each operation are in-
dependent from the current time step, since the structure of
the model stays the same over time. To be more precise, for
our example LDJT takes about ~5ms to initially construct
the two FO jtrees. For a forward or backward pass, LDJT
roughly needs ~6.5ms. Both passes include a complete mes-
sage pass, which roughly takes ~6ms. Thus, most of the
time for a forward or backward pass is spent on message
passing. To answer a query, LDJT needs on average ~5ms.
To obtain the runtimes, we used a virtual machine having a
4 core Intel Xeon E5 with 2.4 GHz , 16 GB of RAM, and
running Ubuntu 14.04.5 LTS (64 Bit).

Providing the unrolled model to LJT, it produces results
for the first 8 time steps with a reduced set of queries. Here,
we can see that the runtime of LJT appears to be exponential
to the maximum number of time steps, which is expected.
The FO jtree construction of LIT is not optimised for the
temporal case, such as creating an FO jtree similar to an un-
rolled version of LDJT’s FO jtree. Therefore, the number of
PRVs in a parcluster increases with additional time steps in
LJT. With additional time steps, the unrolled model becomes
larger and while constructing an FO jtree, PRVs that depend
on each other are more likely to be clustered in a parcluster.
Thus, with more PRVs, the number of PRVs in a parcluster
is expected to grow. In our example, maximum number of
PRVs in a parcluster for 4 time steps is 14 and for 8 time
steps is 27. For a ground jtree, the complexity of variable
elimination is exponential to the largest cluster in the jtree
(Darwiche 2009). Thus, we can explain why LJT is more or
less exponential to the maximum number of time steps.

Overall, Fig. 5 shows (i) how crucial proper handling of
temporal aspects is and (ii) that LDJT performs really well.
Further, we can see that LDJT can handle combinations
of different query types, such as smoothing and filtering.
With evidence as input for all time steps the runtime is only
marginally slower. Executing the example with evidence for
all time steps produces an overhead of roughly ~8ms on
average for each time step. Therefore, for each time step,
reinstantiating 10 FO jtrees with evidence and performing
message passing only produces an overhead of ~8ms com-
pared to having an empty set of evidence. The linear be-
haviour with increasing maximum time steps is the expected

o
S
N
o
S LJT
o | LDJT
Yo)
o
I T T T 1
0 2 4 6 8

Figure 6: Runtimes [seconds], x-axis: maximum time steps

and desired behaviour for an algorithm handling temporal
aspects. Furthermore, from a runtime complexity of LDJT
there should be no difference in either performing a smooth-
ing query with lag 10 or a prediction query with 10 time
steps into the future. Thus, the previous results that LDJT
outperforms the ground case still hold.

For the evaluation, the more time efficient version would
be to always keep the last 10 FO jtrees. Each message pass
takes ~6ms on average and during each backward pass
LDIJT performs a message pass. By keeping the instantiated
FO jtrees, LDJT can halve the number of messages during a
message passing. Assuming that the runtime of the message
pass is linear to the number of calculated messages, resulting
in reducing the runtime of each message pass to ~3ms by
keeping the FO jtrees. Further, for each time step, LDJT per-
forms 10 backward passes each with a message pass. Thus,
LDIJT can reduce the runtime by ~30ms per time step and
an overall reduce the runtime by ~300s, which is about 20%
of the overall runtime for 10000 timesteps.

7 Conclusion

We present a complete inter FO jtree backward pass for
LDJT, allowing to perform smoothing efficiently for rela-
tional temporal models. LDJT answers multiple queries effi-
ciently by reusing a compact FO jtree structure for multiple
queries. Due to temporal m-separation, which is ensured by
the in- and out-clusters, LDJT uses the same compact struc-
ture for all time steps ¢ > 0. Thus, LDJT also reuses the
structure during a backward pass. Further, it reuses compu-
tations from a forward pass during a backward pass. LDJT’s
relational forward backward pass also makes smoothing
queries to the very beginning feasible. First results show that
LDJT significantly outperforms LJT.

We currently work on extending LDJT to also calculate
the most probable explanation as well as a solution to the
maximum expected utility problem. The presented back-
ward pass could also be helpful to deal with incrementally
changing models. Additionally, it would be possible to rein-
stantiate an FO jtree for a backward pass solely given the «
messages. Other interesting future work includes a tailored
automatic learning for PDMs, parallelisation of LIT.

Acknowledgement This research originated from the Big
Data project being part of Joint Lab 1, funded by Cisco Sys-
tems, at the centre COPICOH, University of Liibeck

References

Ahmadi, B.; Kersting, K.; Mladenov, M.; and Natarajan,
S. 2013. Exploiting Symmetries for Scaling Loopy Be-
lief Propagation and Relational Training. Machine learning
92(1):91-132.

Braun, T., and Méller, R. 2016. Lifted Junction Tree Algo-
rithm. In Proceedings of the Joint German/Austrian Confer-
ence on Artificial Intelligence (Kiinstliche Intelligenz), 30—
42. Springer.

Braun, T., and Modller, R. 2017. Preventing Groundings
and Handling Evidence in the Lifted Junction Tree Algo-
rithm. In Proceedings of the Joint German/Austrian Confer-
ence on Artificial Intelligence (Kiinstliche Intelligenz), 85—
98. Springer.

Braun, T., and Moller, R. 2018. Counting and Conjunctive
Queries in the Lifted Junction Tree Algorithm. In Postpro-
ceedings of the 5th International Workshop on Graph Struc-
tures for Knowledge Representation and Reasoning, GKR
2017, Melbourne, Australia, August 21, 2017. Springer.

Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.

de Salvo Braz, R. 2007. Lifted First-Order Probabilistic In-
ference. Ph.D. Dissertation, Ph. D. Dissertation, University
of Illinois at Urbana Champaign.

Dignos, A.; Bohlen, M. H.; and Gamper, J. 2012. Temporal
Alignment. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, 433-444.
ACM.

Dylla, M.; Miliaraki, I.; and Theobald, M. 2013. A
Temporal-Probabilistic Database Model for Information Ex-
traction. Proceedings of the VLDB Endowment 6(14):1810—
1821.

Gehrke, M.; Braun, T.; and Moller, R. 2018. Lifted Dynamic
Junction Tree Algorithm. In Proceedings of the 23rd Inter-
national Conference on Conceptual Structures. Springer. [to
appear].

Geier, T., and Biundo, S. 2011. Approximate Online Infer-
ence for Dynamic Markov Logic Networks. In Proceedings
of the 23rd IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI), 764-768. 1EEE.

Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local Com-
putations with Probabilities on Graphical Structures and
their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B (Methodological) 157-224.

Manfredotti, C. E. 2009. Modeling and Inference with Rela-
tional Dynamic Bayesian Networks. Ph.D. Dissertation, Ph.
D. Dissertation, University of Milano-Bicocca.

Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; and
Kaelbling, L. P. 2008. Lifted Probabilistic Inference with
Counting Formulas. In Proceedings of AAAI, volume 8,
1062-1068.

Muiioz-Gonzélez, L.; Sgandurra, D.; Barrere, M.; and Lupu,
E. 2017. Exact Inference Techniques for the Analysis of
Bayesian Attack Graphs. IEEE Transactions on Dependable
and Secure Computing.

Murphy, K., and Weiss, Y. 2001. The Factored Frontier Al-
gorithm for Approximate Inference in DBNs. In Proceed-
ings of the Seventeenth conference on Uncertainty in arti-
ficial intelligence, 378-385. Morgan Kaufmann Publishers
Inc.

Murphy, K. P. 2002. Dynamic Bayesian Networks: Repre-
sentation, Inference and Learning. Ph.D. Dissertation, Uni-
versity of California, Berkeley.

Nitti, D.; De Laet, T.; and De Raedt, L. 2013. A particle Fil-
ter for Hybrid Relational Domains. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2764-2771. IEEE.

Ozgep, Ozgiir. L.; Moller, R.; and Neuenstadt, C. 2015.
Stream-Query Compilation with Ontologies. In Proceed-
ings of the 28th Australasian Joint Conference on Artificial
Intelligence 2015 (Al 2015). Springer International Publish-
ing.

Papai, T.; Kautz, H.; and Stefankovic, D. 2012. Slice Nor-
malized Dynamic Markov Logic Networks. In Proceedings

of the Advances in Neural Information Processing Systems,
1907-1915.

Poole, D. 2003. First-order probabilistic inference. In Pro-
ceedings of IJCAI, volume 3, 985-991.

Richardson, M., and Domingos, P. 2006. Markov Logic
Networks. Machine learning 62(1):107—-136.

Taghipour, N.; Fierens, D.; Davis, J.; and Blockeel, H. 2013.
Lifted Variable Elimination: Decoupling the Operators from
the Constraint Language. Journal of Artificial Intelligence
Research 47(1):393-4309.

Taghipour, N.; Davis, J.; and Blockeel, H. 2013. First-order
Decomposition Trees. In Proceedings of the Advances in
Neural Information Processing Systems, 1052—1060.

Thon, I.; Landwehr, N.; and De Raedt, L. 2011. Stochas-
tic relational processes: Efficient inference and applications.
Machine Learning 82(2):239-272.

Vlasselaer, J.; Meert, W.; Van den Broeck, G.; and De Raedt,
L. 2014. Efficient Probabilistic Inference for Dynamic Re-
lational Models. In Proceedings of the 13th AAAI Con-
ference on Statistical Relational AI, AAATWS’14-13, 131-
132. AAAI Press.

Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.;
and De Raedt, L. 2016. TP-Compilation for Inference in
Probabilistic Logic Programs. International Journal of Ap-
proximate Reasoning 78:15-32.

