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Abstract. Standard approaches for inference in probabilistic formalisms
with first-order constructs include lifted variable elimination (LVE) for
single queries as well as first-order knowledge compilation (FOKC) based
on weighted model counting. To handle multiple queries efficiently, the
lifted junction tree algorithm (LJT) uses a first-order cluster representa-
tion of a model and LVE as a subroutine in its computations. For certain
inputs, the implementation of LVE and, as a result, LJT ground parts
of a model where FOKC runs without groundings. The purpose of this
paper is to prepare LJT as a backbone for lifted query answering and to
use any exact inference algorithm as subroutine. Fusing LJT and FOKC,
by setting FOKC as a subroutine, allows us to compute answers faster
than FOKC alone and LJT with LVE for certain inputs.

Keywords: Lifting · Probabilistic logical models · Variable elimination
· Weighted model counting.

1 Introduction

AI areas such as natural language understanding and machine learning need effi-
cient inference algorithms. Modeling realistic scenarios yields large probabilistic
models, requiring reasoning about sets of individuals. Lifting uses symmetries in
a model to speed up reasoning with known domain objects. We study probabilis-
tic inference in large models that exhibit symmetries with queries for probability
distributions of random variables (randvars).

In the last two decades, researchers have advanced probabilistic inference
significantly. Propositional formalisms benefit from variable elimination (VE),
which decomposes a model into subproblems and evaluates them in an effi-
cient order [28]. Lifted VE (LVE), introduced in [21] and expanded in [22,19,25],
saves computations by reusing intermediate results for isomorphic subproblems.
Taghipour et al. formalise LVE by defining lifting operators while decoupling the
constraint language from the operators [26]. The lifted junction tree algorithm
(LJT) sets up a first-order junction tree (FO jtree) to handle multiple queries
efficiently [4], using LVE as a subroutine. LJT is based on the propositional junc-
tion tree algorithm [18], which includes a junction tree (jtree) and a reasoning
algorithm for efficient handling of multiple queries. Approximate lifted infer-
ence often uses lifting in conjunction with belief propagation [24,15,1]. To scale
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lifting, Das et al. use graph databases storing compiled models to count faster
[14]. Other areas incorporate lifting to enhance efficiency, e.g., in continuous or
dynamic models [12,27], logic programming [3], and theorem proving [16].

Logical methods for probabilistic inference are often based on weighted model
counting (WMC) [11]. Propositional knowledge compilation (KC) compiles a
weighted model into a deterministic decomposable negation normal form (d-
DNNF) circuit for probabilistic inference [13]. Chavira and Darwiche combine
VE and KC as well as algebraic decision diagrams for local symmetries to further
optimise inference runtimes [10]. Van den Broeck et al. apply lifting to KC and
WMC, introducing weighted first-order model counting (WFOMC) and a first-
order d-DNNF [9,7], with newer work on asymmetrical models [8].

For certain inputs, LVE, LJT, and FOKC start to struggle either due to
model structure or size. The implementations of LVE and, as a consequence,
LJT ground parts of a model if randvars of the form Q(X), Q(Y ), X 6= Y appear,
where parameters X and Y have the same domain, even though in theory, LVE
handles those occurrences of just-different randvars [2]. While FOKC does not
ground in the presence of such constructs in general, it can struggle if the model
size increases. The purpose of this paper is to prepare LJT as a backbone for
lifted query answering (QA) to use any exact inference algorithm as a subroutine.
Using FOKC and LVE as subroutines, we fuse LJT, LVE, and FOKC to compute
answers faster than LJT, LVE, and FOKC alone for the inputs described above.

The remainder of this paper is structured as follows: First, we introduce nota-
tions and FO jtrees and recap LJT. Then, we present conditions for subroutines
of LJT, discuss how LVE works in this context and FOKC as a candidate, before
fusing LJT, LVE, and FOKC. We conclude with future work.

2 Preliminaries

This section introduces notations and recap LJT. We specify a version of the
smokers example (e.g., [9]), where two friends are more likely to both smoke
and smokers are more likely to have cancer or asthma. Parameters allow for
representing people, avoiding explicit randvars for each individual.

Parameterised Models To compactly represent models with first-order con-
structs, parameterised models use logical variables (logvars) to parameterise
randvars, abbreviated PRVs. They are based on work by Poole [20].

Definition 1. Let L, Φ, and R be sets of logvar, factor, and randvar names
respectively. A PRV R(L1, . . . , Ln), n ≥ 0, is a syntactical construct with R ∈ R
and L1, . . . , Ln ∈ L to represent a set of randvars. For PRV A, the term
range(A) denotes possible values. A logvar L has a domain D(L). A constraint
(X, CX) is a tuple with a sequence of logvars X = (X1, . . . , Xn) and a set
CX ⊆ ×ni=1D(Xi) restricting logvars to given values. The symbol > marks that
no restrictions apply and may be omitted. For some P , the term lv(P ) refers to
its logvars, rv(P ) to its PRVs with constraints, and gr(P ) to all instances of P
grounded w.r.t. its constraints.
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For the smoker example, let L = {X,Y } and R = {Smokes, Friends} to
build boolean PRVs Smokes(X), Smokes(Y ), and Friends(X,Y ). We denote
A = true by a and A = false by ¬a. Both logvar domains are {alice, eve, bob}.
An inequality X 6= Y yields a constraint C = ((X,Y ), {(alice,eve), (alice,bob),
(eve,alice), (eve,bob), (bob,alice), (bob,eve)}). gr(Friends(X,Y )|C) refers to all
propositional randvars that result from replacing X,Y with the tuples in C.
Parametric factors (parfactors) combine PRVs as arguments. A parfactor de-
scribes a function, identical for all argument groundings, that maps argument
values to the reals (potentials), of which at least one is non-zero.

Definition 2. Let X ⊆ L be a set of logvars, A = (A1, . . . , An) a sequence of
PRVs, each built from R and possibly X, φ : ×ni=1range(Ai) 7→ R+ a function,
φ ∈ Φ, and C a constraint (X, CX). We denote a parfactor g by ∀X : φ(A)|C.
We omit (∀X :) if X = lv(A). A set of parfactors forms a model G := {gi}ni=1.

We define a model Gex for the smoker example, adding the binary PRVs
Cancer(X) and Asthma(X) to the ones above. The model reads Gex = {gi}5i=0,
g0 = φ0(Friends(X,Y ), Smokes(X), Smokes(Y ))|C, g1 = φ1(Friends(X,Y ))
|C, g2 = φ2(Smokes(X))|>, g3 = φ3(Cancer(X))|>, g4 = φ5(Smokes(X),
Asthma(X))|>, and g5 = φ4(Smokes(X), Cancer(X))|>. g0 has eight, g1 to
g3 have two, and g4 and g5 four input-output pairs (omitted here). Constraint
C refers to the constraint given above. The other constraints are >. Figure 1
depicts Gex as a graph with five variable nodes and six factor nodes for the PRVs
and parfactors with edges to arguments.

The semantics of a model G is given by grounding and building a full joint
distribution. With Z as the normalisation constant, G represents the full joint
probability distribution PG = 1

Z

∏
f∈gr(G) f . The QA problem asks for a likeli-

hood of an event, a marginal distribution of some randvars, or a conditional dis-
tribution given events, all queries boiling down to computing marginals w.r.t. a
model’s joint distribution. Formally, P (Q|E) denotes a (conjunctive) query with
Q a set of grounded PRVs and E = {Ek = ek}k a set of events (grounded PRVs
with range values). If E = ∅, the query is for a conditional distribution. A query
for Gex is P (Cancer(eve)|friends(eve, bob), smokes(bob)). We call Q = {Q} a
singleton query. Lifted QA algorithms seek to avoid grounding and building a
full joint distribution. Before looking at lifted QA, we introduce FO jtrees.

Smokes(Y )

g0

Friends(X,Y )

g1

Smokes(X)g2

Asthma(X) Cancer(X)

g3g4 g5

Fig. 1. Parfactor graph for Gex

Smokes(X) Asthma(X) {g4}C1

Smokes(X) Friends(X,Y ) {g0, g1, g2}C2

Smokes(X) Cancer(X) {g3, g5}C3

{Smokes(X)}

{Smokes(X)}

Fig. 2. FO jtree for Gex (local models in grey)
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Algorithm 1 Outline of the Lifted Junction Tree Algorithm

procedure LJT(Model G, Queries {Qj}mj=1, Evidence E)
Construct FO jtree J for G
Enter E into J
Pass messages on J
for each query Qj do

Find subtree J ′ for Qj

Extract submodel G′ of local models in J ′ and outside messages into J ′

Answer Qj on G′

First-order Junction Trees LJT builds an FO jtree to cluster a model into
submodels that contain all information for a query after propagating information.
An FO jtree, defined as follows, constitutes a lifted version of a jtree. Its nodes are
parameterised clusters (parclusters), i.e., sets of PRVs connected by parfactors.

Definition 3. Let X be a set of logvars, A a set of PRVs with lv(A) ⊆ X, and
C a constraint on X. Then, ∀X:A|C denotes a parcluster. We omit (∀X:) if
X = lv(A). An FO jtree for a model G is a cycle-free graph J = (V,E), where
V is the set of nodes (parclusters) and E the set of edges. J must satisfy three
properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G: ∃Ci ∈ V s.t. rv(g) ⊆ Ci.
(iii) If ∃A ∈ rv(G) s.t. A ∈ Ci ∧ A ∈ Cj, then ∀Ck on the path between Ci

and Cj: A ∈ Ck. The parameterised set Sij, called separator of edge {i, j} ∈ E,
is defined by Ci ∩Cj. The term nbs(i) refers to the neighbours of node i. Each
Ci ∈ V has a local model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition G.

Figure 2 shows an FO jtree for Gex with the following parclusters, C1 = ∀X :
{Smokes(X), Asthma(X)}|>, C2 = ∀X,Y : {Smokes(X), F riends(X,Y )}|C,
and C3 = ∀X : {Smokes(X), Cancer(X)}|>. Separators are S12 = S23 =
{Smokes(X)}. As Smokes(X) and Smokes(Y ) model the same randvars, C2

names only one. Parfactor g2 appears at C2 but could be in any local model as
rv(g2) = {Smokes(X)} ⊂ Ci ∀ i ∈ {1, 2, 3}. [4] details building FO jtrees.

Lifted Junction Tree Algorithm LJT answers a set of queries efficiently by
answering queries on smaller submodels. Algorithm 1 outlines LJT for a set of
queries (cf. [4] for details). LJT starts with constructing an FO jtree. It enters
evidence for a local model to absorb whenever the evidence randvars appear in a
parcluster. Message passing propagates local information through the FO jtree
in two passes: LJT sends messages from the periphery towards the center and
then back. A message is a set of parfactors over separator PRVs. For a message
mij from node i to neighbour j, LJT eliminates all PRVs not in separator Sij
from Gi and the messages from other neighbours using LVE. Afterwards, each
parcluster holds all information of the model in its local model and received
messages. LJT answers a query by finding a subtree whose parclusters cover the
query randvars, extracting a submodel of local models and outside messages,
and answering the query on the submodel. In the original LJT, LJT eliminates
randvars for messages and queries using LVE.
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3 LJT as a Backbone for Lifted Inference

LJT provides general steps for efficient QA given a set of queries. It constructs an
FO jtree and uses a subroutine to propagate information and answer queries. To
ensure a lifted algorithm run without groundings, evidence entering and message
passing impose some requirements on the algorithm used as a subroutine. After
presenting those requirements, we analyse how LVE matches the requirements
and to what extend FOKC can provide the same service.

Requirements LJT has a domain-lifted complexity, meaning that if a model
allows for computing a solution without grounding part of a model, LJT is
able to compute the solution without groundings, i.e., has a complexity linear
in the domain size of the logvars. Given a model that allows for computing
solutions without grounding part of a model, the subroutine must be able to
handle message passing and query answering without grounding to maintain the
domain-lifted complexity of LJT.

Evidence displays symmetries if observing the same value for n instances
of a PRV [26]. Thus, for evidence handling, the algorithm needs to be able to
handle a set of observations for some instances of a single PRV in a lifted way.
Calculating messages entails that the algorithm is able to calculate a form of
parameterised, conjunctive query over the PRVs in the separator. In summary,
LJT requires the following:

1. Given evidence in the form of a set of observations for some instances of a
single PRV, the subroutine must be able to absorb the evidence independent
of the size of the set.

2. Given a parcluster with its local model, messages, and a separator, the sub-
routine must be able to eliminate all PRVs in the parcluster that do not
appear in the separator in a domain-lifted way.

The subroutine also establishes which kind of queries LJT can answer. The
expressiveness of the query language for LJT follows from the expressiveness of
the inference algorithm used. If an algorithm answers queries of single randvar,
LJT answers this type of query. If an algorithm answers maximum a posteriori
(MAP) queries, the most likely assignment to a set of randvars, LJT answers
MAP queries. Next, we look at how LVE fits into LJT.

Lifted Variable Elimination First, we take a closer look at LVE before
analysing it w.r.t. the requirements of LJT. To answer a query, LVE eliminates
all non-query randvars. In the process, it computes VE for one case and exponen-
tiates its result for isomorphic instances (lifted summing out). Taghipour imple-
ments LVE through an operator suite (see [26] for details). Algorithm 2 shows an
outline. All operators have pre- and postconditions to ensure computing a result
equivalent to one for gr(G). Its main operator sum-out realises lifted summing
out. An operator absorb handles evidence in a lifted way. The remaining opera-
tors (count-convert, split, expand, count-normalise, multiply, ground-logvar) aim
at enabling lifted summing out, transforming part of a model.
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Algorithm 2 Outlines of Lifted QA Algorithms

function LVE(Model G, Query Q, Evidence E)
Absorb E in G
while G has non-query PRVs do

if PRV A fulfils sum-out preconditions then
Eliminate A using sum-out

else
Apply transformator

return Multiply parfactors in G . α-normalise

procedure FOKC(Model G, Queries {Qj}mj=1, Evidence E)
Reduce G to WFOMC problem with ∆,wT , wF

Compile a circuit Ce for ∆, E
for each query Qj do

Compile a circuit Cqe for ∆, Qj , E
Compute P (Qj |E) through WFOMCs in Cqe, Ce

LVE as a subroutine provides lifted absorption for evidence handling. Lifted
absorption splits a parfactor into one part, for which evidence exists, and one
part without evidence. The part with evidence then absorbs the evidence by
absorbing it once and exponentiating the result for all isomorphic instances.
For messages, a relaxed QA routine computes answers to parameterised queries
without making all instances of query logvars explicit. LVE answers queries for
a likelihood of an event, a marginal distribution of a set of randvars, and a
conditional distribution of a set of randvars given events. LJT with LVE as a
subroutine answers the same queries. Extensions to LJT or LVE enable even
more query types, such as queries for a most probable explanation or MAP [5].

First-order Knowledge Compilation FOKC aims at solving a WFOMC
problem by building FO d-DNNF circuits given a query and evidence and com-
puting WFOMCs on the circuits. Of course, different compilation flavours exist,
e.g., compiling into a low-level language [17]. But, we focus on the basic version
of FOKC. We briefly take a look at WFOMC problems, FO d-DNNF circuits,
and QA with FOKC, before analysing FOKC w.r.t. the LJT requirements. See
[9] for details.

Let ∆ be a theory of constrained clauses and wT a positive and wF a negative
weight function. Clauses follow standard notations of (function-free) first-order
logic. A constraint expresses, e.g., an (in)equality of two logvars. wT and wF
assign weights to predicates in ∆. A WFOMC problem consists of computing∑

I|=∆

∏
a∈I

wT (pred(a))
∏

a∈HB(T )\I

wF (pred(a))

where I is an interpretation of ∆ that satisfies ∆, HB(T ) is the Herbrand base
and pred maps atoms to their predicate. See [6] for a description of how to
transform parfactor models into WFOMC problems.
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FOKC converts ∆ to be in FO d-DNNF, where all conjunctions are decom-
posable (all pairs of conjuncts independent) and all disjunctions are deterministic
(only one disjunct true at a time). The normal form allows for efficient reason-
ing as computing the probability of a conjunction decomposes into a product of
the probabilities of its conjuncts and computing the probability of a disjunction
follows from the sum of probabilities of its disjuncts. An FO d-DNNF circuit
represents such a theory as a directed acyclic graph. Inner nodes are labelled
with ∨ and ∧. Additionally, set-disjunction and set-conjunction represent iso-
morphic parts in ∆. Leaf nodes contain atoms from ∆. The process of forming
a circuit is called compilation.

Now, we look at how FOKC answers queries. Algorithm 2 shows an outline
with input model G, a set of query randvars {Qi}mi=1, and evidence E. FOKC
starts with transforming G into a WFOMC problem ∆ with weight functions wT
and wF . It compiles a circuit Ce for ∆ including E. For each query Qi, FOKC
compiles a circuit Cqe for ∆ including E and Qi. It then computes

P (Qi|E) =
WFOMC(Cqe, wT , wF )

WFOMC(Ce, wT , wF )
(1)

by propagating WFOMCs in Cqe and Ce based on wT and wF . FOKC can reuse
the denominator WFOMC for all Qi.

Regarding the potential of FOKC as a subroutine for LJT, FOKC does not
fulfil all requirements. FOKC can handle evidence through conditioning [7]. But,
a lifted message passing is not possible in a domain-lifted and exact way without
restrictions. FOKC answers queries for a likelihood of an event, a marginal dis-
tribution of a single randvar, and a conditional distribution for a single randvar
given events. Inherently, conjunctive queries are only possible if the conjuncts
are probabilistically independent [13], which is rarely the case for separators.
Otherwise, FOKC has to invest more effort to take into account that the prob-
abilities overlap. Thus, the restricted query language means that LJT cannot
use FOKC for message calculations in general. Given an FO jtree with singleton
separators, message passing with FOKC as a subroutine may be possible. FOKC
as such takes ground queries as input or computes answers for random ground-
ings, so FOKC for message passing needs an extension to handle parameterised
queries. FOKC may not fulfil all requirements, but we may combine LJT, LVE,
and FOKC into one algorithm to answer queries for models where LJT with
LVE as a subroutine struggles.

4 Fusing LJT, LVE, and FOKC

We now use LJT as a backbone and LVE and FOKC as subroutines, fusing all
three algorithms. Algorithm 3 shows an outline of the fused algorithm named
LJTKC. Inputs are a model G, a set of queries {Qj}mj=1, and evidence E. Each
query Qj has a single query term in contrast to a set of randvars Qj in LVE and
LJT. The change stems from FOKC to ensure a correct result. As a consequence,
LJTKC has the same expressiveness regarding the query language as FOKC.
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Algorithm 3 Outline of LJTKC

procedure LJTKC(Model G, Queries {Qj}mj=1, Evidence E)
Construct FO jtree J for G
Enter E into J
Pass messages on J . LVE as subroutine
for each parcluster Ci of J with local model Gi do

Form submodel G′ ← Gi ∪
⋃

j∈nbs(i)mij

Reduce G′ to WFOMC problem with ∆i, w
i
T , w

i
F

Compile a circuit Ci for ∆i

Compute ci = WFOMC(Ci, wi
T , w

i
F )

for each query Qj do
Find parcluster Ci where Qj ∈ Ci

Compile a circuit Cq for ∆i, Qj

Compute cq = WFOMC(Cq, wi
T , w

i
F )

Compute P (Qj |E) = cq/ci

The first three steps of LJTKC coincide with LJT as specified in Alg. 2:
LJTKC builds an FO jtree J for G, enters E into J , and passes messages in J
using LVE for message calculations. During evidence entering, each local model
covering evidence randvars absorbs evidence. LJTKC calculates messages based
on local models with absorbed evidence, spreading the evidence information
along with other local information. After message passing, each parcluster Ci

contains in its local model and received messages all information from G and E.
This information is sufficient to answer queries for randvars contained in Ci and
remains valid as long as G and E do not change. At this point, FOKC starts to
interleave with the original LJT procedure.

LJTKC continues its preprocessing. For each parcluster Ci, LJTKC extracts
a submodel G′ of local model Gi and all messages received and reduces G′ to
a WFOMC problem with theory ∆i and weight functions wiF , w

i
T . It does not

need to incorporate E as the information from E is contained in G′ through
evidence entering and message passing. LJTKC compiles an FO d-DNNF circuit
Ci for ∆i and computes a WFOMC ci on Ci. In precomputing a WFOMC ci for
each parcluster, LJTKC utilises that the denominator of Eq. (1) is identical for
varying queries on the same model and evidence. For each query handled at Ci,
the submodel consists of G′, resulting in the same circuit Ci and WFOMC ci.

To answer a query Qj , LJTKC finds a parcluster Ci that covers Qj and
compiles an FO d-DNNF circuit Cq for ∆i and Qj . It computes a WFOMC
cq in Cq and determines an answer to P (Qj |E) by dividing the just computed
WFOMC cq by the precomputed WFOMC ci of this parcluster. LJTKC reuses
∆i, w

i
T , and wiF from preprocessing.

Example Run For Gex, LJTKC builds an FO jtree as depicted in Fig. 2.
Without evidence, message passing commences. LJTKC sends messages from
parclusters C1 and C3 to parcluster C2 and back. For message m12 from C1 to
C2, LJTKC eliminates Asthma(X) from G1 using LVE. For message m32 from
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C3 to C2, LJTKC eliminates Cancer(X) from G3 using LVE. For the messages
back, LJTKC eliminates Friends(X,Y ) each time, for message m21 to C1 from
G2 ∪ m32 and for message m23 to C3 from G2 ∪ m12. Each parcluster holds
all model information encoded in its local model and received messages, which
form the submodels for the compilation steps. At C1, the submodel contains
G1 = {g4} and m21. At C2, the submodel contains G2 = {g0, g1, g2}, m12, and
m32. At C3, the submodel contains G3 = {g3, g5} and m23.

For each parcluster, LJTKC reduces the submodel to a WFOMC problem,
compiles a circuit for the problem specification, and computes a parcluster
WFOMC. Given, e.g., query randvar Cancer(eve), LJTKC takes a parcluster
that contains the query randvar, here C3. It compiles a circuit for the query
and ∆3, computes a query WFOMC cq, and divides cq by c3 to determine
P (cancer(eve)). Next, we argue why QA with LJTKC is sound.

Theorem 1. LJTKC is sound, i.e., computes a correct result for a query Q
given a model G and evidence E.

Proof sketch. We assume that LJT is correct, yielding an FO jtree J for model
G, which means, J fulfils the three junction tree properties, which allows for local
computations based on [23]. Further, we assume that LVE is correct, ensuring
correct computations for evidence entering and message passing, and that FOKC
is correct, computing correct answers for single term queries.

LJTKC starts with the first three steps of LJT. It constructs an FO jtree
for G, allowing for local computations. Then, LJTKC enters E and calculates
messages using LVE, which produces correct results given LVE is correct. After
message passing, each parcluster holds all information from G and E in its local
model and received messages, which allows for answering queries for randvars
that the parcluster contains. At this point, the FOKC part takes over, taking
all information present at a parcluster and compiling a circuit and computing
a WFOMC, which produces correct results given FOKC is correct. The same
holds for the compilation and computations done for query Q. Thus, LJTKC
computes a correct result for Q given G and E. ut

Theoretical Discussion We discuss space and runtime performance of LJT,
LVE, FOKC, and LJTKC in comparison with each other.

LJT requires space for its FO jtree as well as storing the messages at each
parcluster, while FOKC takes up space for storing its circuits. As a combination
of LJT and FOKC, LJTKC stores the preprocessing information produced by
both LJT and FOKC. Next to the FO jtree structure and messages, LJTKC
stores a WFOMC problem specification and a circuit for each parcluster. Since
the implementation of LVE for the X 6= Y cases causes LVE (and LJT) to
ground, the space requirements during QA are increasing with rising domain
sizes. Since LJTKC avoids the groundings using FOKC, the space requirements
during QA are smaller than for LJT alone. W.r.t. circuits, LJTKC stores more
circuits than FOKC but the individual circuits are smaller and do not require
conditioning, which leads to a significant blow-up for the circuits.
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LJTKC accomplishes speeding up QA for certain challenging inputs by fusing
LJT, LVE, and FOKC. The new algorithm has a faster runtime than LJT,
LVE, and FOKC as it is able to precompute reusable parts and provide smaller
models for answering a specific query through the underlying FO jtree with its
messages and parcluster compilation. In comparison with FOKC, LJTKC speeds
up runtimes as answering queries works with smaller models. In comparison with
LJT and LVE, LJTKC is faster when avoiding groundings in LVE. Instead of
precompiling each parcluster, which adds to its overhead before starting with
answering queries, LJTKC could compile on demand. On-demand compilation
means less runtime and space required in advance but more time per initial
query at a parcluster. One could further optimise LJTKC by speeding up internal
computations in LVE or FOKC (e.g., caching for message calculations or pruning
circuits using context-specific information)

In terms of complexity, LVE and FOKC have a time complexity linear in
terms of the domain sizes of the model logvars for models that allow for a lifted
solution. LJT with LVE as a subroutine also has a time complexity linear in
terms of the domain sizes for query answering. For message passing, a factor
of n, which is the number of parclusters, multiplies into the complexity, which
basically is the same time complexity as answering a single query with LVE.
LJTKC has the same time complexity as LJT for message passing since the
algorithms coincide. For query answering, the complexity is determined by the
FOKC complexity, which is linear in terms of domain sizes. Therefore, LJTKC
has a time complexity linear in terms of the domain sizes. Even though, the
original LVE and LJT implementations show a practical problem in translating
the theory into an efficient program, the worst case complexity for liftable models
is linear in terms of domain sizes.

The next section presents an empirical evaluation, showing how LJTKC
speeds up QA compared to FOKC and LJT for challenging inputs.

5 Empirical Evaluation

This evaluation demonstrates the speed up we can achieve for certain inputs
when using LJT and FOKC in conjunction. We have implemented a prototype of
LJT, named ljt here. Taghipour provides an implementation of LVE (available
at https://dtai.cs.kuleuven.be/software/gcfove), named lve. Van den Broeck
provides an implementation of FOKC (available at https://dtai.cs.kuleuven.be/
software/wfomc), named fokc. For this paper, we integrated fokc into ljt to
compute marginals at parclusters, named ljtkc. Unfortunately, the FOKC im-
plementation does not handle evidence in a lifted manner as described in [7].
Therefore, we do not consider evidence as fokc runtimes explode. We have also
implemented the propositional junction tree algorithm (jt).

This evaluation has two parts: First, we test an input model with inequalities
to highlight how runtimes of LVE and LJT explode, and how LJTKC provides a
speedup. Second, we test a version of the model without inequalities to highlight
how runtimes of LVE and LJT compare to FOKC without inequalities.

https://dtai.cs.kuleuven.be/software/gcfove
https://dtai.cs.kuleuven.be/software/wfomc
https://dtai.cs.kuleuven.be/software/wfomc
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Fig. 3. Runtimes [ms] for Gl; on x-axis:
|gr(Gl)| from 52 to 8,010,000
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Fig. 4. Runtimes [ms] for G′
l; on x-axis:

|gr(G′
l)| from 56 to 8,012,000

We compare overall runtimes without input parsing averaged over five runs
with a working memory of 16GB. lve eliminates all non-query randvars from
its input model for each query, grounding in the process. ljt builds an FO jtree
for its input model, passes messages, and then answers queries on submodels.
fokc forms a WFOMC problem for its input model, compiles a model circuit,
compiles for each query a query circuit, and computes the marginals of all PRVs
in the input model with random groundings. ljtkc starts like ljt for its input
model until answering queries. It then calls fokc at each parcluster to compute
marginals of parcluster PRVs with random groundings. jt receives the grounded
input models and otherwise proceeds like ljt.

Inputs with Inequalities For the first part of this evaluation, we test a slightly
larger model Gl that is an extension of Gex. Gl has two more logvars, each with
its own domain, and eight additional PRVs with one or two parameters. The
PRVs are arguments to twenty parfactors, each parfactor with one to three
inputs. The FO jtree for Gl has six parclusters, the largest one containing five
PRVs. We vary the domain sizes from 2 to 1000, resulting in |gr(Gl)| from 52 to
8,010,000. We query each PRV with random groundings, leading to 12 queries,
respectively, among them Smokes(p1), where p1 stands for a domain value of X.
Figure 3 shows for Gl runtimes in milliseconds [ms] with increasing |gr(Gl)| on
log-scaled axes, marked as follows (points are connected for readability): fokc:
circle, orange, jt: star, turquoise, ljt: filled square, turquoise, ljtkc: hollow
square, light turquoise, and lve: triangle, dark orange.

The jt runtimes are much longer with the first setting than the other run-
times. Up to the third setting, lve and ljt perform better than fokc with ljt

being faster than lve. From the seventh setting on, memory errors occur for
both lve and ljt. ljtkc performs best from the third setting onwards. ljtkc
and fokc show the same steady increase in runtimes. ljtkc runtimes have a
speedup of a factor from 0.13 to 0.76 for Gl compared to fokc. Up to a domain
size of 100 (|gr(Gl)| = 81,000), ljtkc saves around one order of magnitude.

For small domain sizes, ljtkc and fokc perform worst. With increasing do-
main sizes, they outperform the other programs. Though not part of the numbers
in this evaluation, with an increasing number of parfactors, ljtkc promises to
outperform fokc even more, especially with smaller domain sizes.
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Inputs without Inequalities For the second part of this evaluation, we test
an input model G′

l, that is the model from the first part but with Y receiving
an own domain as large as X, making the inequality superfluous. Domain sizes
vary from 2 to 1000, resulting in |gr(G′

l)| from 56 to 8,012,000. Each PRV is a
query with random groundings again (without a Y grounding). Figure 4 shows
for G′

l runtimes in milliseconds [ms] with increasing |gr(G)|, marked as before.
Both axes are log-scaled. Points are connected for readability.

jt is the fastest for the first setting. With the following settings, jt runs
into memory problems while runtimes explode. lve and ljt do not exhibit the
runtime explosion without inequalities. lve has a steadily increasing runtime for
most parts, though a few settings lead to shorter runtimes with higher domain
sizes. We could not find an explanation for the decrease in runtime for those
handful of settings. Overall, lve runtimes rise more than the other runtimes
apart from jt. ljtkc exhibits an unsteady runtime performance on the smaller
model, though again, we could not find an explanation for the jumps between
various sizes. With the larger model, ljtkc shows a more steady performance
that is better than the one of fokc. ljtkc is a factor of 0.2 to 0.8 faster. fokc
and ljt runtimes steadily increase with rising |gr(G)|. ljt gains over an order
of magnitude compared to fokc. In the larger model, ljt is a factor of 0.02
to 0.06 than fokc over all domain sizes. ljtkc does not perform best as the
overhead introduced by FOKC does not pay off as much for this model without
inequalities. In fact, ljt performs best in almost all cases.

In summary, without inequalities ljt performs best on our input models,
being faster by over an order of magnitude compared to fokc. Though, ljtkc
does not perform worst, ljt performs better and steadier. With inequalities,
ljtkc shows promise in speeding up performance.

6 Conclusion

We present a combination of FOKC and LJT to speed up inference. For certain
inputs, LJT (with LVE as a subroutine) and FOKC start to struggle either
due to model structure or size. LJT provides a means to cluster a model into
submodels, on which any exact lifted inference algorithm can answer queries
given the algorithm can handle evidence and messages in a lifted way. FOKC
fused with LJT and LVE can handle larger models more easily. In turn, FOKC
boosts LJT by avoiding groundings in certain cases. The fused algorithm enables
us to compute answers faster than LJT with LVE for certain inputs and LVE
and FOKC alone.

We currently work on incorporating FOKC into message passing for cases
where an problematic elimination occurs during message calculation, which in-
cludes adapting an FO jtree accordingly. We also work on learning lifted models
to use as inputs for LJT. Moreover, we look into constraint handling, possibly
realising it with answer-set programming. Other interesting algorithm features
include parallelisation and caching as a means to speed up runtime.
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