
Restricting the Maximum Number of Actions
for Decision Support under Uncertainty

Marcel Gehrke1[0000−0001−9056−7673], Tanya Braun1[0000−0003−0282−4284], and
Simon Polovina2[0000−0003−2961−6207]

1 Institute of Information Systems, University of Lübeck, Lübeck Germany
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Abstract. Standard approaches for decision support are computing a
maximum expected utility or solving a partially observable Markov deci-
sion process. To the best of our knowledge, in both approaches, external
restrictions are not accounted for. However, restrictions to actions often
exists, for example in the form of limited resources. We demonstrate that
restrictions to actions can lead to a combinatorial explosion if performed
on a ground level, making ground inference intractable. Therefore, we
extend a formalism that solves a lifted maximum expected utility prob-
lem to handle restricted actions. To test its relevance, we apply the new
formalism to enterprise architecture analysis.

1 Introduction

Supporting decision making often involves suggesting from a pool of actions the
action with the highest expected reward based on some reward function. Two
standard approaches are solving a maximum expected utility (MEU) problem in
a probabilistic model to find the action with the highest expected utility [21] or
solving a partially observable Markov decision process (POMDP) [2,4] yielding
a policy that maps belief states to actions. To the best of our knowledge, in both
approaches, external restrictions are not accounted for. However, resources are
not limitless, leading to restrictions on actions. Consider a small company with
five employees and ten tasks to be performed. If each employee can only perform
one task at a time, delegating all ten tasks is not possible. Hence, the number
of possible actions (delegating a task) actually is restricted to five.

That inference is intractable in general [5] becomes noticeable if modelling
all tasks and employees as propositional random variables (randvars) with the
number of tasks and employees reasonably high. Further, with each task an own
randvar, restricting the number of executable tasks is not straightforward. In a
lifted model with lifted computations, however, inference is at most polynomial
in domain sizes [22], leading to tractable inference for models with many tasks
and employees. Additionally, in lifted decision support, actions are executed for
sets of indistinguishable individuals. Therefore, in this paper, we investigate how
to restrict actions in lifted models to given numbers of individuals.
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Specifically, we focus on solving MEU problems in parameterised probabilis-
tic decision models (PDecMs) to support online decision support in contrast to
the offline support provided by (relational) POMDPs. To this end, this paper
contributes (i) a restricted version of PDecMs, which allows for specifying re-
sources, overall as well as required per action, and restrictions on the number of
times an action is executable, and (ii) an algorithm called ReLiA for restricted
lifted assignments, which computes all possible lifted assignments in restricted
PDecMs by building on the Ford-Fulkerson algorithm for computing a maxi-
mum flow in a network [8]. Given the assignments computed, one can solve the
MEU problem in the underlying model. Using ReLiA leads to significantly fewer
assignments to test for MEU in contrast to working with all permutations of
assignments, lifted or ground. The contributions are accompanied by an ongo-
ing case study to highlight an application. We end with an application of our
formalism to enterprise architecture (EA) analysis.

2 Case Study Setup

In this section, we show how to support decision making with PDecMs. Along the
way, we recapitulate parameterised probabilistic models (PMs), first introduced
by Poole [23], and PDecMs, based on [10]. The case study involves a simple case
of business process modelling with a pool of employees and a set of tasks, which
need delegating in a way that as many tasks as possible are delegated while
avoiding tasks being overdue. The following sections set up a fitting PDecM.

2.1 Parameterised Probabilistic Model

In PMs, parameterised randvars (PRVs) represent sets of indistinguishable rand-
vars, with logical variables (logvars) as parameters. For the case study, we model
tasks being done as a PRV using a randvar for done with a logvar for tasks. For
the sake of simplicity, all tasks are equally important, making them indistin-
guishable. After defining PMs, we set up PRVs for the case study.

Definition 1 (PRV, parfactor, PM). Let R be a set of randvar names, L
a set of logvar names, Φ a set of factor names, and D a set of constants. All
sets are finite. Each logvar L has a domain D(L) ⊆ D. A constraint is a tuple
(X , CX) of a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi).
The symbol > for C marks that no restrictions apply, i.e., CX = ×n

i=1D(Xi). A
PRV R(L1, . . . , Ln), n ≥ 0 is a construct of a randvar R ∈ R possibly combined
with logvars L1, . . . , Ln ∈ L. If n = 0, the PRV is parameterless and forms a
propositional randvar. The term R(A) denotes the possible values (range) of a
PRV A. An event A = a denotes the occurrence of PRV A with range value
a ∈ R(A). We denote a parametric factor (parfactor) g by φ(A)|C with A =
(A1, . . . , An) a sequence of PRVs, φ : ×n

i=1R(Ai) 7→ R+ a function with name
φ ∈ Φ, and C a constraint on the logvars of A. A PRV A or logvar L under
constraint C is given by A|C or L|C , respectively. We may omit |> in A|>, L|>,
or φ(A)|>. A PM G is a set of parfactors {gi}ni=1.
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The term rv(P ) refers to the set of PRVs with their constraints in a parfactor
or PM, lv(P ) to the logvars. The term gr(P ) denotes the set of all instances
of P w.r.t. given constraints. An instance is an instantiation (grounding) of P ,
substituting the logvars in P with a set of constants from given constraints. If
P is a constraint, gr(P ) refers to the second component CX. Given a parfactor
φ(A)|C , φ is identical for the propositional randvars in gr(A|C).

Given R = {Done,Overdue}, L = {X}, and D(X) = {x1, . . . , x100}, we
build boolean PRVs Done(X) and Overdue(X). With C = ((X), {(x1), (x2)}),
gr(Done(X)|C) = {Done(x1), Done(x2)}. The set of gr(Done(X)|>) also con-
tains the instances Done(x3) . . . Done(x100).

The semantics of a model is given by grounding and building a full joint
distribution. In general, a query asks for a probability distribution of a randvar
given the full joint of a model and fixed events as evidence. Answering a query
then requires eliminating all randvars in G not occurring in the query.

Definition 2 (Semantics, query). With Z as normalising constant, a model
G represents the full joint distribution PG = 1

Z

∏
f∈gr(G) f . The term P (Q|E)

denotes a query in G with Q a grounded PRV and E a set of events.

PMs allow for modelling relational aspects between objects including recur-
ring patterns in these relations. PDecMs build on PMs, also containing actions
and utilities to support decision making.

2.2 Parameterised Probabilistic Decision Model

For the case study, we need to encode in our model that overdue tasks lead to a
punishment, i.e., negative utility, and done tasks lead to a reward, i.e., positive
utility. To this end, we need to form a PDecM, which contains actions and utili-
ties [10]. Actions are modelled using PRVs with the actions in its range. Utilities
are modelled with PRVs as well, which are identical for groups of indistinguish-
able objects, leading to utility parfactors, defined as follows.

Definition 3 (PDecM). Let Φu be a set of utility factor names. A parfactor
with a utility PRV U as output is a utility parfactor µ(A)|C where C is a con-
straint on lv(A) and µ is given by µ : ×A∈A\{U}R(A) 7→ R, with µ ∈ Φu. The
output of µ is the value of U . A PDecM G is a PM with an additional set Gu

of utility parfactors. The term rv(Gu) refers to all probability PRVs in Gu. Gu

represents the combination of all utilities UG =
∑

v∈×r∈rv(gr(Gu))R(r) PGu
(v).

The semantics already shows how lifting can speed up performance: The calcula-
tions for each f ∈ gr(gu), gu ∈ Gu are identical, allowing for rewriting summing
over all groundings f ∈ gr(gu) into a product of |gr(gu)| and gu.

For the case study, we introduce a boolean action PRV Delegate(X) to del-
egate tasks and a parameterless utility PRV Util to amass rewards and pun-
ishments. Figure 1 shows the model with Delegate(X) and Util in grey next
to regular PRVs Done(X) and Overdue(X). Further, a utility parfactor gu

(crosses) and a regular parfactor g0 are depicted, which connect Done(X) and
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Done(X)
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g0
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gu
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Fig. 1. Delegating tasks with action and utility nodes in grey

Overdue(X) with Delegate(X) and Util, respectively. The potentials in gu en-
code that a task done on time gets a high positive utility, an overdue task done
gets a small positive utility, an overdue task not done gets a high negative utility,
and a task that is not done but also not overdue gets a small negative utility.

On such a PDecM, one can solve an MEU problem to determine the best
actions, i.e., how to delegate tasks (without any restrictions). To define the
MEU problem on a PDecM, we need to define expected utilities in a PDecM.
The MEU problem asks for those action assignments that lead to the maximum
expected utility, defined as follows.

Definition 4 (Expected utility, MEU). Given a PDecM G, events E, ac-
tion assignments a, the expected utility of G is defined by

eu(E,a) =
∑

v∈×r∈rv(G)R(r)

P (v|E,a) · U(v,E,a) (1)

with U(V) the utility of PRVs V. Then, the MEU problem is given by

meu[G|E] = (arg max
a

eu(E,a),max
a

eu(E,a)). (2)

The inner product in Eq. (1) calculates a belief state P (v|E,a) and combines
it with corresponding utilities U(v,E,a). By summing over the range of all PRVs
of G, one obtains a scalar representing an expected utility. Equation (2) suggests
a naive algorithm for solving an MEU problem, namely by iterating over all
possible action assignments, solving Eq. (1) for each assignment. However, with
lifting, the complexity of computing Eq. (2) is no longer exponential in the
number of ground actions, enabling tractable inference in terms of domain sizes
[22]. Instead of the domain sizes, the complexity is exponential in the number
of groups forming due to evidence, which is usually very much lower than the
number of constants in domains.

Assume that we observe whether a task is overdue. Observations are of the
range of Overdue(X) (boolean). Thus, X can be split into three groups, with
observed values of true, of false, or no observation. For each group individually,
Delegate(X) can be set to either true or false. Thus, there are 21 to 23 action
assignments depending on evidence.

In Fig. 1, simply delegating all tasks leads to the highest expected utility.
However, with limited resources or other more general restrictions, it might not
be possible to perform all actions. E.g., employees can only perform one task at
a time and there is not an unbounded number of employees. Such restrictions
currently are not captured in PDecMs.
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3 ReLiA: Restricting Lifted Action Assignments

In our case study, we have a pool of employees that can perform tasks, which so
far have no effect on the model. Therefore, we introduce two types of restrictions.
The first type restricts how often an action can be performed, i.e., an action
can be performed at most five times. The second type restricts resources, e.g.,
an action can only be performed if sufficient resources are available. Within the
boundaries of restrictions, ReLiA constructs possible action assignments. Solving
the corresponding MEU problem only requires iterating over the assignments
computed by ReLiA, saving unnecessary computations. Algorithm 1 shows an
overview of the steps of ReLiA, which we present in the next sections.

3.1 Restricting Actions

To restrict actions, we need a way to specify resources required for an action and
how often an action is executable. We first introduce resources to the model.

Definition 5 (Resources). Let B be a set of resource names. Each resource
B has assigned a number of available resources v ∈ N, denoted by B = v.

To restrict actions, we introduce action parfactors. An action parfactor spec-
ifies resources required and restrictions on executions for one action PRV.

Definition 6 (Action parfactors). Let Θ be a set of action factor names.
We denote an action parfactor g by θ(A)|C with A an action PRV, θ : R(A) 7→
((B,N),N) a function with name θ ∈ Θ and B ∈ B, and C a constraint on the
logvars of A. The first element of the tuple, (B,N), denotes how many resources
of B are required to set A to the corresponding range value for one grounding. The
second element of the tuple determines how often the corresponding range value
can be selected. The symbol ⊥ indicates that no restrictions apply. A restricted
PDecM G is a PDecM, which also contains a set of action parfactors Ga.

Action parfactors are ignored during calculations for query answering since
they do not form a part of a full joint. Given B = {Employee}, we specify that
there are 15 employees by setting Employee = 15. Further, we specify an action
parfactor for our action PRV Delegate(X). We specify that setting the action
to true requires one employee with (Employee, 1) and that the action can be set
to true at most 20 times, i.e., true 7→ ((Employee, 1), 20) Setting the action to
false does not require any resources and can be set to false as often as desired,
leading to ⊥ in both cases, i.e., false 7→ (⊥,⊥).

Algorithm 1 ReLiA: Construct Lifted Action Assignments under Restrictions

function ReLiA(Restricted model G)
Resource graph R← ConstructResourceGraph(G)
Assignments A← ObtainAssignments(R, |Ga|)
return A . Input to an algorithm solving an MEU problem
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With the pool of employees incorporated, our restricted PDecM fully rep-
resents our initial setting. But, we still need a way to efficiently identify valid
assignments to the action PRV, which we present next. Afterwards, we are able
to iterate over these assignments to solve the corresponding MEU problem.

3.2 Computing All Action Assignments given Restrictions

Our case study has 15 employees and 100 tasks. Assume that 10 tasks are overdue
(evidence), which leads to splitting X into two groups, X ′ for the 90 tasks with-
out evidence and X ′′ for the overdue tasks. A valid action assignment would be
Delegate(X ′′) = true, requiring 10 employees, Delegate(X ′) = true for 5 X ′ in-
stances (5 employees), and Delegate(X ′) = false for the remaining 85 instances.
Another assignment is Delegate(X ′′) = false, Delegate(X ′) = true for 15 X ′

instances, and Delegate(X ′) = false for the remaining 75 instances. The assign-
ments Delegate(X ′′) = true, Delegate(X ′) = false as well as Delegate(X ′′) =
false, Delegate(X ′) = false do not use all resources available.

To construct such action assignments, we reformulate our problem as a max-
flow problem [12] to benefit from the well-understood problem of computing a
maximum flow in a network with capacities. To formulate our problem as a max-
flow problem, we build a resource graph from our resource restrictions. Ford and
Fulkerson [9] propose a well-known algorithm to solve the max-flow problem.
However, we are not only interested in one set of paths that maximises the flow,
but all assignments that maximise the flow. Thus, we present how ReLiA builds
a resource graph and then identifies all flows.

Constructing a Resource Graph The resource graph needs to account for
the number of groundings, restrictions of how often an action is applicable,
and resource restrictions. Algorithm 2 outlines how ReLiA constructs such a
resource graph R with a model G as input. G is a restricted PDecM, which has
its parfactors already split based on evidence. First, ReLiA adds a source node
S and a target node T to R. Second, ReLiA goes through all action parfactors ga
to span R. For an action parfactor ga, ReLiA adds a node tempi as a successor
to S to R. Then, ReLiA assigns the number of groundings of ga as capacity. By
definition, the set of PRVs of each action parfactor contains exactly one action
PRV. Next, ReLiA iterates over all range values of the action PRV A in ga to
account for the given restrictions specified in the action parfactor.

For each range value r, ReLiA checks if a node A = r for the assignment
of action r to action PRV A is already included in R. This check is included
as evidence may split parfactors including action parfactors, leading to multiple
parfactors regarding different instances of the same action PRV and therefore,
A = r may already be in R. However, the restrictions defined in the action
parfactors still apply over all split action parfactors combined. If r is not included
in R, ReLiA ensures that the restrictions of r are represented in R. To this end,
ReLiA adds a node A = r to R. Further, ReLiA adds a node tempr to R to be
able to represent that a range value as well as a resource can be restricted while
accounting for the fact that a resource can be used in multiple actions.
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Algorithm 2 Constructing Resource Graph

function ConstructResourceGraph(Restricted model G)
Resource graph R with starting node S and target node T
for ga ∈ Ga of G do

Add node tempi and edge S −→ tempi to R
Assign |gr(ga)| as capacity to S −→ tempi

Action PRV A← rv(ga)
for r ∈ R(A) do

if A = r not a node in R then
Add node A = r to R
Add node tempr and edge A = r −→ tempr to R
Get ((B,n),m) from θ(A = r)
Assign m as capacity to A = r −→ tempr

if B not a node in R then
Add node B and edge B −→ T to R
Assign v from resource restriction B = v as capacity to R

Add edge tempr −→ B to R
Assign capacity ∞ to tempr −→ B and n

Add edge tempi −→ A = r to R
Assign capacity ∞ to tempi −→ A = r

return R

S

temp0

temp1

Delegate(X) = true

Delegate(X) = false

tempD=true

tempD=false

Employee

⊥

T

10

90

∞

∞

∞
∞

∞

20 ∞, 1

∞

15

∞

Fig. 2. Resource graph for our example

For the resource restriction, ReLiA obtains the name of the resource, B, the
number of the resource used for executing that range value for one grounding,
n, and the restriction of how often r can be selected, m. Then, ReLiA adds an
edge from A = r to tempr to R and assigns m as capacity to the edge. Next,
ReLiA checks if there already exists a node B corresponding to this resource
in R. In case there is no node B, ReLiA adds a node B to R as well as an
edge from B to T with the corresponding resource restriction v of the model,
B = v, as capacity. Having B in the model, ReLiA adds an edge between tempr

and B while storing how many resources selecting the range value requires, i.e.,
storing n. When calculating the maximum flow, ReLiA has to multiply all values
arriving at tempr with n to obtain the resources used at B from r. After ReLiA
has added the nodes and edges for the resource restrictions and resources, it
adds an edge between tempi and A = r to R without any capacity limitations
to connect this path to S over tempi. In the last step, after having iterated over
all resources, range values, and actions parfactors, ReLiA returns R.
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Figure 2 shows the corresponding resource graph for our case study. We can
see that our tasks are split into 2 groups. The first group with 10 tasks that are
overdue corresponds to temp0 and the other group with 90 tasks, where we have
no additional information, corresponds to temp1. For both groups, we have the
very same action PRV, leading to both temp0 and temp1 being connected to the
same range values without any capacity restrictions. Overall, delegating a task
can be done at most 20 times as shown on the edge between Delegate(X) = true
and TempD=true. Further, delegating a task requires 1 employee, evident at the
edge between TempD=true and Employee. Additionally, there are 15 employees
as depicted on the edge between Employee and T . For not assigning a task, no
restrictions apply, which can be seen in the lower part of the network with the
paths going over Delegate(X) = false.

Based on such a graph, ReLiA computes all action assignments within the
boundaries of the restrictions, which is a max-flow problem on such a graph.

Calculating Assignments of Maximum Flow To obtain all action assign-
ments that lead to the maximum flow in a given resource graph, ReLiA has to
iterate over all action PRVs and their corresponding range values. The rough idea
is that for each action parfactor, ReLiA has to select paths from source to target.
By combining all paths, ReLiA obtains valid action assignments. An assumption
we make for ReLiA is that each action PRV always has an unrestricted default
case. In the case study, the unrestricted default case in Delegate(X) = false,
which has no further restrictions as denoted by the ⊥ symbols.

Algorithm 3 outlines how ReLiA obtains assignments. Inputs are a resource
graph R of a model G and the number num of action parfactors in G, i.e.,
num = |Ga|. First, ReLiA fills a list n of nodes to traverse with all tempi nodes,
which correspond to action parfactors. Second, ReLiA calls a function named
compile with n and an empty list of paths, p, to compute assignments.

In compile, ReLiA gets the first node, currentNode, from n and computes
all possible paths from S to T over currentNode that assign an action to all in-
stances of the action parfactor behind currentNode. The paths are constructed
in a way that they always use as many instances as possible. For each path,
ReLiA also has to obtain assignments for all other action parfactors. Therefore,
ReLiA calls compile again with the current path(s) and the remaining nodes
to traverse. Last, when ReLiA has no more nodes to traverse, it obtains the
assignments and the corresponding capacities by propagating the used capaci-
ties backwards from the target to the source. Overall, ReLiA roughly computes
maxnum action assignments, where max refers to the highest number of range
values in any of the action PRVs and num = |Ga| as above.

Let us explain Algorithm 3 in more detail by having a look at the resource
graph in Fig. 2. ReLiA starts by adding temp0 and temp1 to n. Then, ReLiA calls
the helper function compile with n and an empty list of paths p. In compile,
temp0 becomes currentNode. The capacity between S and temp0 is 10. As temp0

comes from the action parfactor with two values in the range of its action PRV,
temp0 has two assignments, Delegate(X) = true and Delegate(X) = false, as
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Algorithm 3 Obtaining All Assignments

function ObtainAssignments(Resource graph R, number of action parf. num)
n empty list of nodes
p empty list of paths
i := 0
for i < num do

n = n + tempi

return compile(n,p)

function compile(Nodes to traverse n, current paths p)
currentNode := pop n
for each successor A = r of currentNode do

tempP := path from S over currentNode and r to T
p′ := tempP + p
if tempP uses all capacities of currentNode then

if n not empty then
return compile(n,p′)

else
a := get all capacities and their assignments from p′

return a
else

for each possible completion to use all capacities of currentNode do
p′ := p′+ completion path(s)
if n not empty then

return compile(n,p′)
else

a := get all capacities and their assignments from p′

return a

successors. For the first assignment, Delegate(X) = true, ReLiA finds a path
from S over temp0 and Delegate(X) = true to T . Thus, the path is added to p′.
That path is able to let all 10 instances of the capacity flow to T . Then, ReLiA
again calls compile.

This time, n only contains temp1 and p′ contains one path. Now, temp1 be-
comes currentNode, which again has two assignments as successors, over which
ReLiA iterates. For the first assignment, Delegate(X) = true, ReLiA finds a
path from S over temp1 and Delegate(X) = true to T . Thus, the path is
added to p′, leading to two paths being in p′. This newly added path does
not send all 90 instances, but only 5 since 5 is the remaining capacity on the
last edge going into T . The remaining 85 instances can be send from S over
temp1 and Delegate(X) = false to T , which then is added to p′. In case there
would be other paths to use all instances, ReLiA would have to iterate over
them. Having no more nodes to travers, ReLiA computes the assignment for the
paths in p′. Here, ReLiA outputs Delegate(X) = true for the 10 overdue tasks,
Delegate(X) = true for 5 tasks, where we have no additional information, and
Delegate(X) = false for the remaining 85 tasks.
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We now jump back to the point where ReLiA iterates over all successors of
temp1 with p′ containing only the path from S over temp0 and Delegate(X) =
true to T sending 10 instances. The node temp1 has another assignment, namely
Delegate(X) = false, as successor and ReLiA finds a path from S over temp1

and Delegate(X) = false to T . Hence, that path is added to p′ in addition to
the one path from temp0 in p. That path uses all 90 instances, leading to an
assignment of Delegate(X) = true for the 10 overdue tasks and Delegate(X) =
false for 90 tasks, where we have no additional information.

ReLiA also traverses the path for Delegate(X) = false for temp0, for which
ReLiA again has to traverse all paths from temp1 as it is still contained in
n at this point. Finally, ReLiA returns four action assignments to test for
MEU. In addition to the two assignments above, the third assignment set reads
Delegate(X) = false for the 10 overdue tasks, Delegate(X) = true for 15
tasks, where we have no additional information, and Delegate(X) = false for
the remaining 75 tasks. The forth assignment set contains Delegate(X) = false
for the 10 overdue tasks and Delegate(X) = false for the 90 tasks, where we
have no additional information. Hence, ReLiA computes the desired four action
assignments with corresponding capacities that obey all restrictions.

Before we discuss theoretical aspects of ReLiA, we consider related work of
lifted inference and relational decision support.

3.3 Related Work

We take a look at inference under uncertainty in relational models as well as
relational decision support.

First-order probabilistic inference leverages relational aspects. For models
with known domain size, it exploits symmetries in a model by handling indistin-
guishable instances with representatives, known as lifting [23]. Poole [23] intro-
duces parametric factor graphs as relational models and proposes lifted variable
elimination (LVE) as an exact inference algorithm on relational models. Other
lifted inference algorithms include (i) the lifted junction tree algorithm (LJT)
[6], (ii) first-order knowledge compilation [7], (iii) probabilistic theorem proving
[11], and (iv) lifted belief propagation [1],

Nath and Domingos [18] introduce Markov logic decision networks (MLDNs),
which are relational models with action and utility nodes. Nath and Domingos
calculate approximate solutions to an MEU problem in a MLDN, grounding
the model [20]. Another approach of Nath and Domingos includes unnecessary
groundings [19]. Apsel and Brafman [3] propose an exact lifted solution to the
MEU problem based on [18]. Gehrke et al. [10] extend LJT to meuLJT to solve
MEU problems in PDecMs exactly while also supporting marginal queries.

Additional research focuses on sequential decision making by investigating
first-order (PO)MDPs [25,15,26], which use lifting techniques from de Salvo Braz,
Amir, and Roth [24]. In contrast to first-order POMDPs, which are solved of-
fline using policy iteration, we propose to support online decision making, i.e.,
by solving an MEU problem. In this paper, we introduce resources and enable
restriction actions to bring PDecMs closer to real-world applications.
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3.4 Discussion

In this section, we discuss the assumption we make about restrictions as well as
how to compute an MEU with the possible actions.

Assumptions about Restrictions An assumption we make is that each action
parfactor has a default action, which is unrestricted. The implication of the
assumption for ReLiA is that it has to iterate over all action parfactors one
time. In case such an assumption would not hold, the difference would be that
the order in which ReLiA iterates over the action parfactors could matter in
the sense that a different iteration order could lead to other assignments for
actions. Thus, without the assumption, ReLiA would need to iterate over each
permutation of action parfactors to calculate the action assignments.

Extending our Case Study An interesting extension to our case study is to in-
troduce hard tasks as a new logvar name with a corresponding PRVs and action
parfactor. Assume that delegating a hard tasks requires two employees for ex-
ecution. Although our model then has two different action PRVs and the two
corresponding action parfactors require the same resource, ReLiA computes valid
assignments given the number of employees available. While constructing the re-
source graph, ReLiA identifies that both action parfactors require the same type
of resource, even though they concern different action PRVs. Thus, there only
is one node for employees in the resource graph. While computing the assign-
ments, ReLiA ensures that the capacity gets multiplied with 2 when taking the
edge between the nodes tempDelegateHardTask(Y ) and Employee in the corre-
sponding resource graph. Hence, the required resources to perform an action are
accounted for. Similar to our case study so far, with splits due to evidence, both
action parfactors pointing to the same resource poses no problem to ReLiA.

To complete our case study, we briefly describe how to obtain the best action
for the action assignments next.

Computing an MEU Having the action assignments, any algorithm solving the
lifted MEU problem, e.g., [10,3], can calculate best actions leading to the high-
est expected utility. The action assignments ReLiA computes are the actions
to iterate over in Eq. (2). Thus, an algorithm solving the MEU problem does
not have to generate (all) action assignments anymore. However, normally in a
lifted MEU, a range value of an action is selected for each group of indistin-
guishable instances. The action assignments of ReLiA do not necessarily assign
the same range value for all indistinguishable instances of a group as a result
of the restrictions. In our case study, one assignment is Delegate(X) = false
for the 10 overdue tasks, Delegate(X) = true for 15 tasks, where we have no
additional information, and Delegate(X) = false for the remaining 75 tasks.
Thus, the tasks, for which we have no additional information, need to be split
even further. As all instances are indistinguishable, it does not matter which
instances are split off. Thus, an algorithm solving the MEU problem using the
action assignments of ReLiA might need to split logvars before it can calculate
the corresponding expected utility.
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3.5 Theoretical Analysis

Let us now investigate the theoretical implications of ReLiA. Here, we focus on
two points, namely whether always using the maximum capacity for paths to
obtain assignments is reasonable as well as how ReLiA compares to calculating
action assignments in a similar fashion for a ground model.

Fewest Possible Action Sets ReLiA only obtains assignments with the highest
possible capacity given the restrictions, e.g., Delegate(X) = true for the 10
overdue tasks. In theory, ReLiA could also compute all other assignments, e.g.,
Delegate(X) = true for 9 overdue tasks and Delegate(X) = false for the one
remaining overdue task, Delegate(X) = true for 8 and Delegate(X) = false for
2, and so on. The reason why ReLiA only obtains assignments with the highest
capacity and not also all other possible assignment lies within the semantics
of PDecMs. Computing an expected utility involves adding up all utilities at
the end. Assuming that the two action range values map to different potentials
and keeping in mind that the instances within a group are indistinguishable,
one of the range values leads to a higher expected utility than the other, which
is true for all instances of that group. Thus, we only need to check assigning
all instances either the one value or the other. As a consequence, ReLiA only
has to obtain assignments with the highest possible capacity. Preferably, ReLiA
assigns all instances the same action but with restrictions, groups may be split
further to stay within the boundaries of the restrictions. Hence, by only obtaining
assignments with the highest capacity, ReLiA provides reasonable assignments
and highly reduces the number of action assignments to reason over.

Comparison to the Ground Case While computing action assignments, ReLiA
uses the fact that instances are indistinguishable. Calculating such action assign-
ments on a ground model, a corresponding algorithm could not exploit this fact.
Without indistinguishable instances, such an algorithm would have to model ac-
tions for each instance. Each instance would be connected to the source with an
edge having a capacity of 1. ReLiA iterates over all of these nodes and then their
range values. As mentioned above, ReLiA roughly computes maxnum, where
num is the number of action parfactors after splitting. In a ground case the
number of assignments would be maxnum, where num is the number of ground-
ings of action parfactors, which can be a huge number. In our example num
would be 100, so even for boolean range values a ground algorithm would have
to compute roughly 2100 action assignments. Hence, there is a combinatorial
blow up as all permutations of actions would need to be tested. Further, while
solving an MEU problem, there are many redundant calculations, which is in-
feasible for large enough numbers. Therefore, restricting resources and actions
in a lifted case allows for a practical formalism.

4 Case Study: Enterprise Architecture Analysis

Johnson et al. [13] present an Enterprise Architecture (EA) analysis, extending
propositional influence diagrams, which essentially are Bayesian networks with
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Fig. 3. A PDecM about IT security components (resources are represented as nodes
without a border)

utility and action or decision nodes added. They do not consider the relational
aspect, which blows up a propositional model if many components, processes, or
employees are involved. Therefore, we can review EA analysis using PDecMs and
consider what role ReLiA can play in this analysis. We take the case study in [13]
and adapt it to the relational setting, which enables us to consider employees
and work stations.

Figure 3 shows a PDecM for an EA scenario regarding IT security for a
company where a decision maker has to set up an architecture for its IT se-
curity system. The model considers the following components of IT security
as randvars: (i) intrusion detection applications (ID), (ii) anti-virus applica-
tions (AV ), (iii) cryptographic control applications (CC), (iv) user training pro-
cesses (UT ), (v) incident management processes (IM), and (vi) back-up pro-
cesses (BU). The randvars are parameterised with S for work stations and E for
employees where appropriate. Regarding the applications, there are decisions to
be made about the number of licenses to purchase, which may be limited. Re-
garding user training, the format of the training sessions is to be considered in
terms of cost and number of people that can be trained at once. Regarding inci-
dent management, the number of people trained to handle incidents is limited.
Regarding back-ups, the capacity of servers is limited. Overall, these components
influence the integrity, confidentiality, and availability of a company, which in
turn influence the competitive advantage as well as the efficiency emerging out
of the decisions, which then influences the profit the company might make.

Given different scenarios for capacities, ReLiA computes the action assign-
ments to consider for each scenario. Using these assignment sets, meuLJT solves



14 M. Gehrke et al.

the corresponding MEU problems for each scenario, yielding one MEU assign-
ment set for each scenario. The decision maker then can compare the results and
incorporate further external factors in their final decision.

5 Conclusion

We introduce restrictions to PDecMs as a representation for models to support
decision making. Restrictions are crucial as not every action can be performed
as often as desired as well as resources are not limitless. We presnt ReLiA to
compute all possible lifted assignments in restricted PDecMs. ReLiA computes
all required action assignments, which an algorithm that solves the MEU problem
in a lifted way can iterate over to identify best actions given restrictions. Further,
ReLiA significantly reduces the assignment space to iterate over, making explicit
that calculating assignments under restrictions is only feasible in lifted models.

Future work includes investigating whether actions can be learnt online, as
for example Morgenstern does for agents using a specific logic [17]. Another
interesting path would be to look into the situation calculus [16] and investigate
whether additional restrictions can be included for decision support without
adding another layer of logic on top. Additionally, we look into applying the
presented theory to business process modelling. Johnson et al. [14] enabled us to
show the usefulness of the theory in EA analysis for extended influence diagrams,
going beyond propositional probabilistic models. With many instances, a lifted
approach such as the presented one appears to be indispensable.
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