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Abstract. Various e-commerce use cases that companies implement in
applications rely on personal data of customers. Privacy and data pro-
tection play an important role when discussing the usage of personal
customer data resulting in a conflicting demand between data collection
and data protection. Researchers have found a promising solution to
this problem: the generation of synthetic data which is not connected to
real people. In this paper, we use the deep learning architecture Condi-
tional Tabular Generative Adversial Network (CTGAN) to synthesize e-
commerce data. Especially the categorical relationships between columns
of e-commerce data include fixed dependencies, where e.g. an entry in
the sub-category column is defining the entry in the category column as
well. These specific characteristics result in the necessity to evaluate the
suitability of the CTGAN architecture for synthesizing e-commerce data
which is the focus of this paper. We present a new similarity measure
for synthetic and original datasets that focuses on categorical correla-
tions: the Cramer’s V deviation (CV-deviation). In our experiments, we
create synthetic e-commerce data from a publicly available dataset us-
ing CTGAN. We use an existing and our newly developed CV-deviation
measure in hyperparameter selection and compare the outcomes. By in-
corporating CV-deviation into the performance metric, we manage to in-
crease the ability of CTGAN to preserve correct categorical relations by
63%. Despite the enhancements the evaluation of the synthetic datasets
shows that there is still room for improvement of the overall architecture
because it seems difficult for the CTGAN model to efficiently learn all
categorical constraints automatically.

Keywords: CTGAN · Categorical Relations · E-Commerce · CV-deviation.

1 Introduction

One of Amazon’s biggest success factors has been its personalized recommenda-
tion system, which is based on massive amounts of data involving transactions
from millions of customers [27]. Recommendation systems in general need a lot
of data to learn the relationships between products, preferences and customer
segments. Not only in the recommendation systems sector, but also in many
other e-commerce areas, the analysis of customer data is a key element, e.g. in



2 M. Mendikowski, M. Hartwig

detection of fraud, in forecasting and inventory management. To solve the in-
creasing demand new ways and models to create e-commerce data are urgently
needed [17]. Due to its personal and sensitive nature, handling customer data
brings its own challenges: How can people’s personal data be protected, when
it is used for analysis [7]? How can sensitive data be shared and multiplied? A
promising solution to this problems is synthetic data: The generation of new data
containing as many properties and information of the original data as possible
while not being linked to the same individuals present in the original dataset
[2]. Synthetic data research is an important area that is becoming increasingly
popular throughout the machine learning field [18].

Especially in Europe, with the new data protection law GDPR, research
achievements in synthetic e-commerce data are of central importance: The GDPR
has led to a decline in usable data and seems to affect the revenues of the Eu-
ropean e-commerce platforms [8]. The ability to use synthetic data to preserve
information content while effectively protecting customer privacy could mean a
breakthrough in European e-commerce market. Especially smaller players who
are uncertain about the risks of using customer data, could benefit from the
usage and sharing of synthetic data.

One architecture that is widely known due to numerous successes in generat-
ing so-called “deep fakes”, i.e. deceptively real synthetic images, videos or audio
content, is the Generative Adverisal Network (GAN) [24]. The Conditional Tab-
ular Generative Network (CTGAN), a specialization of the GAN architecture for
synthesizing tabular data was presented in 2019 by Lei Xu et al. in ’Modeling
Tabular Data Using Conditional GAN’ [26]. A first evaluation of the CTGAN
in generating synthetic insurance data focusing on datasets with scalar values
achieved promising results [14].

In this paper, we address the question of whether the CTGAN architec-
ture can provide promising results in the area of synthetic e-commerce data.
E-commerce data contains many columns with categorical data such as product
categories or postal codes. The correlations between products and other columns
with categorical data is central to recommender systems [20].

We evaluate synthetic e-commerce datasets along several dimensions and
pay close attention to the maintenance of important relationships between the
columns with categorical data. The similarity of categorical correlations between
synthetic and original datasets is measured by the newly proposed measure
Cramer’s V Deviation (CV-deviation).

In our experiments, we generate synthetic data from a publicly available e-
commerce dataset using CTGAN and implement a grid search that optimizes a
subset of CTGAN’s hyperparameters in respect to the e-commerce data. Addi-
tionally to evaluating a base approach, we include the CV-deviation measure in
the hyperparameter training of the CTGAN model to investigate if this change
of focus in the hyperparameter training has an effect on the evaluation parame-
ters. By incorporating CV-deviation into the performance metric of the hyper-
paramter training, we can increase the the average categorical integrity of the
synthetic e-commerce dataset by 17 percentage points.
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The following Section 2 contains preliminaries on the CTGAN architecture.
Subsequently, we present related work to this paper in Section 3. Section 4
displays our method including the formula for CV-deviation and introduces our
implementation process. Section 5 discusses the evaluation of the synthetic e-
commerce datasets. Lastly, Section 6 presents the central findings of this paper
and points out further research directions.

2 Preliminaries

The GAN architecture was published in 2014 by Ian Goodfellow and his team, it
consists of two artificial neural networks, the generator G and the discriminator
D, which resemble two players playing a minmax game against each other [9].
The generator G produces synthetic data samples of a desired instance from
a random noise source. Alternating with original samples from the real data
distribution, these synthetic samples are fed into the discriminator network D,
which determines whether the input belongs to the real dataset. During training
the generator learns to create more realistic instances, while the discriminator
tries to identify those generated instances with greater accuracy [9].

The CTGAN, whose architecture is illustrated in Figure 1, consists of two
neural networks a generator G and a critic C that corresponds to the discrim-
inator in the classic GAN architecture. The CTGAN’s critic scores either 10
real or generated data series according to the network’s estimated authenticity
of the data. There are two main innovations adapted to the generation of syn-
thetic tabular data: mode specific normalization and a conditional training by
sampling [26].

Mode specific normalization is used to transfer the values of the continuous
columns into a combination of a scalar value and a one-hot vector that increases
the ability of CTGAN to create continuous columns with multiple modes during
generation process. Figure 1 shows two datasets as input to the critic, one con-
sisting of 10 rows of real data samples and the other consisting of 10 synthetic
data rows. The continuous values of each row in those sets are represented us-
ing a mode-specific normalization and their categorical values are represented as
one-hot vectors.

Another problem with GANs when creating tabular data is the highly im-
balanced categorical columns, i.e., a column that consists of 90 % of one major
category. CTGAN’s conditional training approach applies a specific column with
categorical data and a specific category from that column as a constraint to the
data generation and the sampling process. Through an integration in the loss
function, CTGAN learns to implement this condition during training. Figure 1
illustrates the influence of this condition as a conditional vector for the gener-
ator G and as a sampling filter for the input of the critic C. The column that
is affected by this condition is chosen at random. To choose the category of
the selected column as a condition, a probability mass function is calculated in
which the calculated probability mass of each category is the logarithm of the
frequency of that category in the selected column. To ensure that the infrequent
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Fig. 1: An illustration of CTGAN architecture.

categories of this selected column are considered to a larger extent, the category
for the condition is randomly determined from this calculated probability mass
function.

In addition to these enhancements, CTGAN also utilizes recent advances in
GAN training such as WGAN-GP, an improved Wasserstein GAN with gradient
penalty [10].

3 Related Work

Since its publication in autumn 2019, CTGAN has been combined with other ar-
chitectures and evaluated with different datasets. Rosenblatt et.al. (2020) made
the architecture differentially private, a formalization of privacy [6], by combining
CTGAN with DP-SGD and PATE technique [19]. Similar to the DPGAN ap-
proach [25], applying DP-SGD to CTGAN adds random noise to the discrimina-
tor and prunes the norm to achieve differential privacy [19]. The PATE-CTGAN
approach is also inspired by a similar approach on the GAN architecture [12],
the original dataset is divided into subsets and each of the subsets has its own
generator and discriminator network [19].

CTGAN has been evaluated on other types of table data and achieved promis-
ing results. Similar to our approach, Kuo et al. made small changes to the original
CTGAN architecture that promise advantages for generating insurance datasets
[14]. Their workflow involves using true data frequency instead of log-frequency
when choosing a value for the condition that influences the generator and the
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sampling process. In 2021, Min Jong et.al. evaluated the CTGAN and the TGAN
in their ability to generate synthetic EEG data. In their evaluations, the CTGAN
achieved higher similarity scores than the TGAN, while the machine learning
performance of the two generative architectures remained similar [15]. In order
to obtain better training data for the evaluation of stability of power systems,
Han et al. use an approach that first creates tabular data with CTGAN, which
is then further processed. The data created with this framework is analyzed with
different methods and achieves good values in several metrics [11]. None of the
above CTGAN evaluations focus especially on relationships between columns
with categorical data, which are in particular important in e-commerce data
where, for example, products are divided into different categories that must be
preserved in the synthetic data.

4 Dataset

For our synthesis of e-commerce data, we use the “Superstore” dataset that
contains data on purchases from 2014 to 2017 from an U.S. online store with
various offerings ranging from books to furniture or other household items. To
increase transparency, we choose a dataset which is publicly available on the
Kaggle platform. The dataset does not appear to be anonymized [23].

The unprocessed “Superstore” dataset consists of 9,994 rows and 20 columns
with different information. In order to use the “Superstore” dataset for synthesis,
some information duplicated with the respective ID such as Product Name and
Customer Name are deleted. The “Superstore” dataset has 13 columns with
categorical data, the remaining 4 columns are continuous. The dataset includes
793 individual customers who ordered 1862 different products in 5,009 individual
orders. All products can be divided into 17 subcategories, which in turn are
divided into the three categories Furniture, Office Supplies and Technology [23].

5 Method and Implementation

In this section, we describe our method and the steps in our implementation.
We start by introducing CV-deviation, our new evaluation metric for synthetic
datasets to better incorporate columns with categorical data. We then display
the evaluation methods we use to analyze the synthetic e-commerce datasets.
Furthermore, we describe the general implementation of training the CTGAN
models. Lastly, we present our technical setup and performed grid search.

5.1 Cramer’s V Deviation

In order to achieve higher similarity between synthetic and original e-commerce
data, we intend to use a performance metric that especially supports categorical
integrity of synthetic data. The Cramer’s V is a measure of statistical associ-
ation between two categorical variables, it returns a value between 0 and 1,
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with a higher value representing a greater correlation of the two variables. The
Cramer’s V with Wicher Bergsma correction (CV) for column pair (Di, Dj) with
categorical data and number of categories |Di| and |Dj | in table T with Number
of rows Nr is calculated as follows [4]:

CV =

√
Φ̃2

min(k̃ − 1, r̃ − 1)
,

Φ̃2 = max(0, Φ2 − (k − 1)(r − 1)

(n− 1)
), Φ2 =

χ2

n
,

k̃ = k − (k − 1)2

n− 1
, r̃ = r − (r − 1)2

n− 1
,

χ2 = chi-square test of independence [13] of (Di, Dj),

k = |Di|, r = |Dj |, n = Nr

(1)

We define the corrected Wicher Bergsma Cramer’s V of a column pair with
categorical data j ∈ P2(D1, ..., DNd

) of tabular dataset T with columns with
categorical data D = {D1, ..., DNd

} as: CVT (j).
To create a performance metric using CV as a base, we combine the Cramer’s

V withWicher Bergsma correction with the Root Mean Squared Error [5] and ob-
tain the Cramer’s V Deviation (CV-deviation). The CV-deviation of real table T
and synthetic table Tsyn with columns with categorical data D = {D1, ..., DNd

}
and (|D| > 1) is calculated as follows:

CV-deviation(T, Tsyn) =

√√√√ 1

|P2(D)|
∑

j∈P2(D)

(CVT (j)− CVTsyn(j))
2 (2)

The CV-deviation measures the difference of the statistical correlations between
all pairs from the columns with categorical data in the synthetic table Tsyn to the
corresponding correlations in the real table T . The CV-deviation is a similarity
measure for a pair of real and synthetic tabular data and therefore can only
be applied to datasets that have the same columns with categorical data. The
CV-deviation can take 0 as the lowest result and 1 as the highest value, the
closer the result is to 0, the more similar are the statistical relationships among
the columns with categorical data with respect to the CV value. If we were to
calculate the CV-deviation from a dataset to itself, the result would be 0.

5.2 Evaluation Method

We evaluate the synthesized e-commerce datasets in detail and compare them
with the original dataset. Therefore, we examine the similarity of column distri-
butions of synthetic datasets to the column distributions of the original “Super-
store” dataset looking at overall distribution measures, upper and lower bounds
for continuous columns and number of categories for columns with categorical
data. We also inspect the integrity of relationships between column pairs with
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categorical data in our synthetic datasets. Some columns with categorical data
in e-commerce data have a special relationship to each other that does not allow
new combinations in the synthetic data, i.e., a cellphone always belongs to the
sub-category technology and not furniture. Detection of column pairs with this
categorical integrity requires expert knowledge about the relationships between
columns, which is not always available. We furthermore compare the Cramer’s
V values of the synthetic datasets with the results of the original dataset to
display an overview of the similarity of categorical statistical correlations of the
synthetic datasets to the original dataset.

5.3 General Implementation

The CTGAN training process and all evaluation of the synthetic datasets is writ-
ten in Python 3.7. We create CTGAN models using version 0.12 of the Synthetic
Data Vault (SDV) library. The SDV library is an set of open source software sys-
tems concerning synthetic data, this project was launched by the Massachusetts
Institute of Technology in 2018 [21]. The implementation of the SDV CTGAN
is the realization of the original paper [26]. For each combination of the selected
hyperparameters that we optimize in this paper, we create a CTGAN model that
is trained with the appropriate parameters on the “Superstore” dataset. After
training, we save every CTGAN model and create 10,000 rows of synthetic data
with the saved model.

5.4 Gridsearch and Technical Setup

For optimizing CTGAN in respect to e-commerce data we implement a grid
search over the following hyperparameters: epochs {100, 300, 500, 700, 900},
batch size {100, 300, 500, 700, 900, 1000}, log frequency {True, False} (whether
to use the logarithm of the frequency of a value in a column with categorical
data to determine the conditional input), learning rate (LR) for the critic {2e-4,
2e-5} and critic steps {1,5} (number of critic updates to do for each generator
update). The original CTGAN uses 1 critic update and the default from the
WGAN-GP paper is 5 [10]. The grid search results in 240 different CTGAN
models. We compute each model on a Quadro RTX 6000 and parallelize this
process multiple times on a cluster server.

Each of the 240 created synthetic datasets is evaluated with two performance
metrics. The first performance metric is the SDV Single Table Metric, which is
included in the SDV library. The SDV Single Table Metric itself is a collection
of other lower level metrics that can be divided into multiple groups. We use the
following three groups of metrics (based on the SDV framework) to measure the
quality of our synthetic data:

statistical metrics: KSTest, CSTest
likelihood metrics: GMlikelihood
detection metrics: LogisticDetection
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The SDV Metric returns a score between 0 and 1, being 0 the worst and 1 the
best possible score [21].

As a second performance metric, we supplement the SDV metric with an ad-
ditional component for categorical relationships: we use a combined and equally
weighted score from the normalized SDV metric value and the normalized 1 -
CV deviation value. This combined metric, CVSDV, also scores the synthesized
datasets on a scale of 0 to 1, with a score closer to 1 indicating higher similarity
to the original dataset.

6 Results and Discussion

In this chapter, we evaluate two synthetic datasets, the dataset that scores high-
est in the SDV metric and the dataset that has the highest score in our new
CVSDV metric. We start by evaluating the similarity of the synthetic column
distributions to the original distributions. Afterwards, we inspect how closely
the original relationships of the columns with categorical data are transferred
to the synthetic data. The two best combination of hyperparameters in terms of
SDV metric and CVSDV metric are shown in Table 1.

Table 1: Hyperparameters synthetic datasets with highest SDV or CVSDV
Dataset Epochs Batch Size Log Freq. Cr. Steps Cr. LR SDV CVSDV

highest SDV 100 1000 False 5 2e-4 0.6323 0.6477
highest CVSDV 500 900 False 5 2e-4 0.5835 0.7945

6.1 Column Distribution

Both the Kolmogorov–Smirnov test [3] for continuous columns and the Chi-
Squared test [13] for columns with categorical data show high similarity between
synthetic and original dataset (see Table 2).

Table 2: Chi-Squared test and Kolmogorov–Smirnov test results.
Synthetic Dataset Chi-Squared Test Kolmogorov–Smirnov test

highest SDV score 0.998794 0.880171
highest CVSDV score 0.995688 0.908547

All continuous columns of the two synthetic datasets do not exceed the value
range of the original columns. However, it is noticeable that both synthetic
datasets strongly decimate the upper and lower limit of the value range in some
continuous columns like Sales. The table-evaluator [22] Figure 2 shows the syn-
thetic datasets cumsum of the Sales column, a statistical quality control that
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(a) Dataset highest SDV score. (b) Dataset highest CVSDV score.

Fig. 2: Cummulative sum Sales column in synthetic datasets.

measures change [1]. We recognize a few purchases of more than 5,000$ in the
Sales distribution of the original dataset, these edge cases are missing in both
synthetic datasets resulting in a about 76% smaller value range. Overall both
synthetic datasets lack about 40% value range in continuous columns compared
to the original dataset.

Some synthetic columns have fewer categories than the columns in the origi-
nal dataset. For example, this is the case for columns like Product ID that have
a large amount of possible categories (1862). Columns with fewer categories like
Region or Sub-Category contain the same categories as the original dataset. Fig-
ures 3, 4a and 4b display the distribution of the column with categorical data
Sub-Category : a strong increase of purchases of “Bookcases” can be seen in both
synthetic datasets. The cause for these unusually high “Bookcases” values could
be mode collapse, a failure typical for GAN architectures [26].

6.2 Categorical Integrity

Figures 5, 6a and 6b illustrate the Wicher Bergsma Cramer’s V (CV) [4] values
of all pairs of columns with categorical and temporal data in the original dataset
and in the two synthetic datasets. In the heatmaps, a high CV score indicating
high statistical association is connected with a lighter color. The original dataset
has high CV values between columns in the lower left quarter of the heatmap, this
pattern is more evident in the heatmap of the dataset whose hyperparameters
were optimized with the CVSDV metric. The best SDV score dataset has overall
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Fig. 3: Distribution Sub-Category column original dataset.

much lower CV values, visualized by the lower maximum value of the scale of the
heatmap at 0.25, compared to the maximum value of the scale of the CVSDV
dataset heatmap, which reaches a value of 0.6. The CV-deviation value confirms
a closer proximity of the best CVSDV dataset to the original dataset, the CV-
deviation of the best CVSDV dataset is 0.32 and that of the best SDV dataset
reaches a higher value of 0.37.

The original CV heatmap (Figure 5) visualizes some special categorical rela-
tionships that do not allow new combinations in the synthetic dataset with very
high values, such as City and Postal Code with a CV value of 0.99. In Table 3 we
can see the absolute numbers and percentage by which both synthetic datasets
correctly reflect these type of relationships. The synthetic dataset, whose model

Table 3: Categorial integrity in synthetic datasets.
Column Pair Number Combinations Correct SDV Correct CVSDV

(Category/Sub-Category) 17 5,315(53%) 7,865(79%)
(Category/Product ID) 1,862 4,385(44%) 4,442(44%)
(Product ID/Sub-Category) 1,862 864(9%) 1,007(10%)
(City/State) 604 1,268(13%) 3,099(31%)
(City/Postal Code) 632 489(5%) 1,643(16%)
(City/Region) 583 4,124(41%) 6,506(65%)
(State/Postal Code) 631 1,015(10%) 2,546(25%)
(State/Region) 49 3,589(36%) 6,968(70%)
(Region/Postal Code) 631 2,982(30%) 5,226(52%)

was optimized with the CVSDV metric, achieves a higher number of correct
matches for each individual column pair. The largest absolute difference oc-
curs at (State/Region), here the CVSDV dataset achieves a better result by
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(a) Dataset highest SDV score.
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(b) Dataset highest CVSDV score.

Fig. 4: Distribution Sub-Category column in synthetic datasets.
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Product ID

Category

Sub-Category
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0.71 0.44 0.45 0.1 0.36 0.09 0.88 0 0.97 1 0 0.02 0
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Fig. 5: Cramer’s V of column pairs in original dataset.

3379 correct data rows, which means an increase of 94 % compared to the SDV
dataset. Applying the CVSDV performance metric increases the number of cor-
rectly assigned rows for the column pair (City/Postal Code) by as much as 235%,
which is the highest percentage improvement. It is noticeable that for categories
with many possible combinations like (Product ID/Sub-Category) both synthetic
datasets achieve very low matches. Overall, the SDV dataset achieves an average
of 27 % correct matches and the CVSDV dataset average is 17 percentage points
(or 63%) higher at 44 % correct categorical assignments.

For completeness, we briefly consider the temporal integrity of the synthetic
datasets. There are also temporal requirements that must be met in the synthetic
data in order to reflect a real purchase process, e.g. the Ship Date must be tem-
porally after the Order Date. The correct chronological order of the date columns
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0.19 0.14 0.14 0 0.12 0.1 0.2 0.13 0.17 0.06 0.14 0.07 0.1

0.1 0.05 0.08 0.12 0 0.08 0.1 0.09 0.09 0.09 0.06 0.14 0.08

0.13 0.11 0.09 0.1 0.08 0 0.15 0.13 0.18 0.06 0.14 0.07 0.15

0.26 0.18 0.17 0.2 0.1 0.15 0 0.19 0.21 0.22 0.18 0.22 0.16

0.29 0.14 0.19 0.13 0.09 0.13 0.19 0 0.24 0.22 0.13 0.18 0.09

0.25 0.16 0.17 0.17 0.09 0.18 0.21 0.24 0 0.19 0.13 0.21 0.13

0.11 0.11 0.11 0.06 0.09 0.06 0.22 0.22 0.19 0 0.09 0.14 0.15
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(a) Dataset highest SDV score.
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0.38 0.23 0.22 0.19 0.15 0.24 0.33 0 0.29 0.64 0.25 0.42 0.21

0.33 0.2 0.22 0.23 0.11 0.25 0.25 0.29 0 0.5 0.21 0.4 0.22

0.35 0.28 0.29 0.11 0.29 0.16 0.54 0.64 0.5 0 0.3 0.31 0.3

0.21 0.15 0.15 0.19 0.1 0.21 0.22 0.25 0.21 0.3 0 0.35 0.2

0.38 0.29 0.29 0.21 0.29 0.15 0.4 0.42 0.4 0.31 0.35 0 0.66

0.27 0.19 0.18 0.23 0.15 0.18 0.23 0.21 0.22 0.3 0.2 0.66 0
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(b) Dataset highest CVSDV score.

Fig. 6: Cramer’s V of column pairs in synthetic datasets.

is maintained in both datasets to 50 percent, the CVSDV dataset reaches only
minimally better values than the SDV dataset.

7 Conclusion

Overall, the CTGAN architecture seems to be a promising architecture to gener-
ate e-commerce data. Both synthetic datasets have similar column distributions
to the original dataset and the reduction of the definition range in continuous
columns only plays a minor role, since this only affects a small subset of the
data.

For a real world application of synthetic e-commerce data, it is important
that each data row reflects a correct buying processes, and therefore keeping
correct categorical relationships is a key point. For both evaluated synthetic
datasets, this categorical integrity is only maintained at an average percentage
of less than 50 percent: SDV metric dataset (27%) and CVSDV metric dataset
(44%), which is not satisfactory. Especially for column pairs with a large num-
ber of categories, CTGAN has problems to reflect their relationships correctly in
the synthetic data. However, there is a significant overall increase in the dataset
whose CTGAN hyperparameters are optimized with the CVSDV metric. Apply-
ing the CVSDV performance metric more than doubles the number of correct
assignments for some column pairs and improves the average categorical integrity
by 17 percentage points.

In order to use CTGAN for the production of synthetic e-commerce data,
other approaches are still needed that will lead to better categorical integrity.
One approach, could be to integrate statistical evaluation metrics, such as the
presented CV-deviation, into the direct training process of CTGAN and thus
enforce greater adherence to categorical relations at an earlier stage. Another
interesting approach could be increasing the pac size, i.e., the number of data
rows that the critic receives as samples, to more than 10. Viewing multiple rows
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of data simultaneously could make the correlations between columns more visible
to the network and improve the ability of the CTGAN architecture to translate
such relationships into synthetic data. To improve the overall performance of the
CTGAN architecture other loss function could be tested which lead to a good
performance in current GAN models like the adversial loss used in NSGAN with
R1 regularization [16].

Another research direction would be to add the training of a real-life recom-
mender system as a subsequent evaluation step. The recommender performance
achieved with the synthetic dataset could be then compared with the recom-
mender perforamance of the original dataset.
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