
Proceedings of Machine Learning Research vol TBD:1–20, 2023 2nd Conference on Causal Learning and Reasoning

Practical Algorithms for Orientations of
Partially Directed Graphical Models

Malte Luttermann∗ LUTTERMANN@IFIS.UNI-LUEBECK.DE
Institute of Information Systems, University of Lübeck, Germany

Marcel Wienöbst∗ WIENOEBST@TCS.UNI-LUEBECK.DE
Institute for Theoretical Computer Science, University of Lübeck, Germany

Maciej Liśkiewicz LISKIEWI@TCS.UNI-LUEBECK.DE

Institute for Theoretical Computer Science, University of Lübeck, Germany

Editors: Mihaela van der Schaar, Dominik Janzing and Cheng Zhang

Abstract
In observational studies, the true causal model is typically unknown and needs to be estimated from
available observational and limited experimental data. In such cases, the learned causal model is
commonly represented as a partially directed acyclic graph (PDAG), which contains both directed
and undirected edges indicating uncertainty of causal relations between random variables. The
main focus of this paper is on the maximal orientation task, which, for a given PDAG, aims to
orient the undirected edges maximally such that the resulting graph represents the same Markov
equivalent DAGs as the input PDAG. This task is a subroutine used frequently in causal discovery,
e. g., as the final step of the celebrated PC algorithm. Utilizing connections to the problem of
finding a consistent DAG extension of a PDAG, we derive faster algorithms for computing the
maximal orientation by proposing two novel approaches for extending PDAGs, both constructed
with an emphasis on simplicity and practical effectiveness.
Keywords: Causal graphical models, Directed acyclic graphs, Markov equivalence, Consistent
extension, Maximal orientation, Meek rules

1. Introduction

The development of probabilistic graphical models enables a mathematically sound language to
handle uncertainty in a coherent and compact way (Spirtes et al., 2000; Pearl, 2009; Koller and
Friedman, 2009; Elwert, 2013). They also provide scientists with intuitive tools for causal anal-
ysis and currently receive substantial attention in epidemiology, sociology and other disciplines.
Moreover, the graphical modeling approach allows for the use of computational methods that have
enabled significant progress towards automated causal inference and causal structure discovery.

Certainly, one of the most prominent graphical models is the directed acyclic graph (DAG),
whose edges encode direct causal influences between the random variables of interest. In practice,
however, the underlying true DAGs are unknown and from observational or limited experimental
data they can only be inferred to a certain degree of uncertainty. In such cases, the learned causal
model is given, typically, as a partially directed acyclic graph (PDAG) which contains both directed
and undirected edges. Such a PDAG represents a class of Markov equivalent DAGs encoding the
same statistical properties and its undirected edges indicate which directed edges may vary across
DAGs of the class (Verma and Pearl, 1990; Meek, 1995; Andersson et al., 1997).

∗Equal contribution.

© 2023 M. Luttermann, M. Wienöbst & M. Liśkiewicz.

LUTTERMANN WIENÖBST LIŚKIEWICZ

G

a

b

c

d e

M

a

b

c

d e

D

a

b

c

d e

Figure 1: A PDAG G with a maximal orientation M . DAG D shows a consistent extension of G.

In this paper, we investigate orientations of PDAG models – primitive tasks used to solve more
complex problems of causal analysis. Our goal is to provide simple and effective algorithms that
improve performance of downstream tasks, e.g., in causal structure learning, active learning or
causal effect estimation. The main focus of our study is on the maximal orientation problem, the
goal of which is to orient a maximal number of undirected edges in a PDAG G such that the resulting
graph, called maximally oriented PDAG (MPDAG), represents the same DAGs as G. It is well
known that the MPDAG can be obtained from the PDAG by closing it under the celebrated Meek
rules (Meek, 1995). For an example PDAG G and its MPDAG M , see Fig. 1.

The primary significance of the MPDAG model, including completed PDAGs (CPDAGs, also
called essential graphs) (Andersson et al., 1997) is that it represents Markov equivalent DAGs in
an elegant and convenient way. It is commonly used for solving many important problems as, e.g.,
counting and sampling Markov equivalent DAGs (He et al., 2015; Wienöbst et al., 2021), estimating
causal effects (Maathuis et al., 2009; van der Zander and Liśkiewicz, 2016; Perković et al., 2017), or
learning causal models (Chickering, 2002), where CPDAGs represent the states of the search space.
Consequently, orienting a given PDAG maximally, is a frequently used primitive in causal inference
and discovery, perhaps most prominently arising in constraint-based causal structure learning, as,
e. g., the final step in the PC algorithm (Spirtes et al., 2000; Kalisch and Bühlman, 2007) and its
modifications. Similarly, several score-based algorithms, e.g., (Pellet and Elisseeff, 2008) based
on a generic feature-selection approach, rely on this task as well. Another important example
are algorithms for active learning which, beyond observational, use experimental (interventional)
data to resolve orientation ambiguities. In searching for an optimal strategy, typical algorithms
iteratively construct interventional essential graphs, which are obtained by orienting subsequent
PDAGs maximally (He and Geng, 2008; Hauser and Bühlmann, 2012; Shanmugam et al., 2015;
Squires et al., 2020). Furthermore, methods enumerating all possible total effects or estimating
bounds on the effects in a Markov equivalence class need a subroutine to compute the maximal
orientations (Maathuis et al., 2009; Guo and Perković, 2021). Often, the maximal orientation task
is performed not only once, but repeatedly, necessitating efficient algorithms for this task.

While the algorithms for computing maximal orientations used in practice resort to directly
applying the Meek rules, the best theoretical methods are based on two other important primi-
tives of causal analysis: (i) the consistent extension of a PDAG to a DAG and (ii) computing the
CPDAG representation of the graphs Markov equivalent to a given DAG. This was already men-
tioned by Chickering (1995) and generalized to instances with background knowledge by Wienöbst
et al. (2021). Using the clever algorithm of Chickering (1995), the second task (ii) can be solved in
linear time. On the other hand, the computational complexity of the first problem, which is to orient
all undirected edges such that no new v-structures arises, is significantly higher. Hence, developing
effective practical methods for finding consistent extensions of PDAGs can be a key building block
in the efficient computation of maximal orientations.

2

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

Previous Work. The study on extendability of PDAGs has been initiated by Verma and Pearl
(1992), who provided a method to find a consistent DAG extension in time O(n4m), where n de-
notes the number of nodes and m the number of edges. At the same time, Dor and Tarsi (1992)
proposed a faster method of time complexity O(n4) which is conceptually simple, easy to imple-
ment, and widely used in practice so far. In 2021, Wienöbst et al. proposed a new algorithm for the
problem which runs in time O(n3). Simultaneously, the authors showed that, under a computational
intractability assumption, the cubic algorithm is optimal.

Despite its importance, relatively little attention has been paid to the algorithmic aspects of
the maximal orientation problem so far. A commonly used approach relies on the direct, iterative
application of the four Meek rules until none can be applied anymore. This approach is, however,
computationally expensive, and its worst-case run time is O(n4m), where n and m denote the
number of vertices and edges of the graph. In 1995, Chickering proposed a sophisticated algorithm,
avoiding the direct application of the Meek rules, which firstly extends a PDAG to a DAG and next
computes the corresponding CPDAG directly from the DAG. Since a DAG can be transformed to
the corresponding CPDAG in linear time, the total running time of the algorithm is dominated by
the time needed for extension. This approach is used in the GES algorithm (Chickering, 2002) and
in a modified way in the GIES algorithm (Hauser and Bühlmann, 2012), the latter however having
the same worst-case complexity as the direct application of the Meek rules discussed above. More
recently, Wienöbst et al. (2021) generalized both approaches, while maintaining the optimal time
complexity of O(n3), to maximally orient a PDAG to an MPDAG.

Finally, in more structured cases, the maximal orientation task may be performed in linear-time
O(n+m). This occurs in the setting of active learning using single-target interventions (that is, only
single variables can be manipulated at a time) and is shown in Wienöbst et al. (2022) (Theorem 5).

Our contributions. In this work, we focus on the general problem of maximally orienting a
PDAG. The contributions of this paper are twofold: On the one hand, we give a practical evalu-
ation of methods for the consistent extension problem, contributing two novel algorithms for this
task, which are simple yet effective and build upon the algorithm by Dor and Tarsi (1992). On the
other hand, we aim to illustrate the strengths of using consistent DAG extensions in the computa-
tion of the maximal orientation of a PDAG. While this approach has been proposed theoretically
in (Chickering, 1995; Wienöbst et al., 2021), it has only been used in special cases and has not
found widespread application in practice, evidenced by the fact that most software packages such
as pcalg (Kalisch et al., 2012) and causaldag (Squires, 2018) rely on algorithms, which apply
the Meek rules directly. Utilizing consistent DAG extensions instead, yields a better worst-case
complexity and is superior in practice as we demonstrate in our experiments.

2. Preliminaries

We consider partially directed graphs G = (VG, AG, EG), in which the pairs of vertices x, y ∈ V
are connected by directed edges u v (also called arcs, given in AG) or undirected edges u − v
(given in EG). We restrict ourselves to graphs, where at most one edge exists between any pair
x, y ∈ VG and if there is such an edge, we call x and y adjacent, denoted by x ∼G y. The arcs
u v and u v have different orientations and orienting an undirected edge u−v means replacing
it with an arc. Vertex x is called a parent of y if x y ∈ G, a child of y if x y ∈ G and a sibling
of y if x − y ∈ G. The sets of parents, children and siblings of vertex v are denoted by PaG(v),
ChG(v), SiG(v). By NeG(v) = PaG(v) ∪ ChG(v) ∪ SiG(v) we denote the set of neighbors of v

3

LUTTERMANN WIENÖBST LIŚKIEWICZ

a

b c
⇒
R1 a

b c

a

b c
⇒
R2 a

b c

a d

b c
⇒
R3 a d

b c

a d

b c
⇒
R4 a d

b c

Figure 2: The four Meek rules that are used to characterize MPDAGs (Meek, 1995).

and the degree of v counts the number of its neighbors |NeG(v)|. Edges, which have v as endpoint,
are called incident to v. For a set S ⊆ VG, the induced subgraph G[S] contains all edges from G
with both endpoints in S. We skip the subscript if G is clear from the context.

A partially directed graph is called acyclic (or partially directed acyclic graph, PDAG for short)
if it does not contain a directed cycle, that is, a sequence of distinct vertices (c1, c2, . . . , ck), with
k ≥ 3, and edges ci ci+1 for i ∈ {1, . . . , k − 1}, and ck c1. A PDAG without any undirected
edges (EG = ∅) is called a directed acyclic graph (DAG). There is a linear ordering (called topo-
logical ordering) of the vertices of every DAG such that u v if u comes before v in the ordering.

Definition 1 A DAG D is a consistent extension of a PDAG G if

1. D and G have the same vertex set and NeG(v) = NeD(v) for all vertices v,

2. every directed edge in G is also in D, i. e., AG ⊆ AD,

3. for all edges u− v in EG, there is u v in AD or v u in AD, and

4. for all u, v, w ∈ V , the induced subgraph u v w (u ̸∼ w) is in G iff it is in D.

The set of consistent extensions of a PDAG G is denoted by [G]. We remark that an induced
subgraph of the form u v w is also called a v-structure. Hence, every D ∈ [G] has the same
v-structures as G. If [G] ̸= ∅, we call G extendable. Some undirected edges in a PDAG G might
be oriented the same way in all of its consistent extensions. The graph where these undirected
edges are replaced by the corresponding invariant arcs is called the maximal orientation of G, de-
noted by MPDAG(G), which stands for maximally-oriented PDAG. It is a well-known fact that
MPDAG(G) can be computed by repeatedly applying the four Meek rules (Meek, 1995), which
are shown in Fig. 2, to G until none applies anymore. In this work, we consider the following two
fundamental computational problems for PDAGs:

Problem 1 EXT

Input: PDAG G.
Output: D ∈ [G] or ⊥ if [G] = ∅.

Problem 2 MAX-ORIENT

Input: PDAG G.
Output: MPDAG(G).

For MAX-ORIENT, we assume that G is extendable, else G has no causal interpretation and
the definition of MPDAG(G) is without meaning. In this case, EXT can be utilized for efficiently
solving MAX-ORIENT as mentioned above (this is discussed in more detail in Section 5). For EXT,
the notion of a potential-sink is of central importance. It asserts that all incident edges can be
oriented towards a vertex v without introducing a new v-structure or changing the orientation of an
arc. Formally, vertex v in G is called a potential-sink if (i) there is no arc v x directed outward
from v (i. e., Ch(v) = ∅) and (ii) for every sibling y ∈ Si(v), vertex y is adjacent to all other
neighbors of v. For example, vertex e is the only potential-sink in the graph G shown in Fig. 1.

4

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

The following fact states that a consistent extension of a graph G can be obtained by iteratively
removing potential-sinks from G. This strategy is known as the Dor-Tarsi algorithm.

Fact 1 (Dor and Tarsi, 1992) Let G0 be an extendable PDAG and let Gi, 1 ≤ i ≤ n, be obtained
by removing potential-sink vi and its incident edges from Gi−1. It holds that (vn, vn−1, . . . , v1) is a
topological ordering of a consistent extension of G0.

In particular, it is true that every Gi has a potential-sink due to the observation that removing a vertex
and its incident edges from an extendable graph, again yields an extendable graph (extendability is
closed under taking subgraphs).

These notions are exemplified in Fig. 1. The figure shows that the consistent extension D can
be obtained by iteratively identifying a potential-sink (at the start, e is the only potential-sink),
orienting its incident undirected edges towards it, and continuing on the induced subgraph over the
remaining vertices. In this particular case, d would be the potential-sink found afterward, followed
by b and c (in arbitrary order), and finally a.

The graph M is the maximal orientation of G. It contains the arc d e as d e cannot occur
in any consistent extension of G (it creates a new v-structure that is not in G, see Meek rule R1)
and a d follows from Meek rule R3, whereas a − b and a − c are oriented in both directions in
different consistent extensions of D and are consequently undirected in M .

3. Two New Simple Algorithms for Extendability

As discussed above, algorithms for extending PDAGs play a key role in the maximal orientation
task. While, from a theoretical point of view, previous results suggest that it is likely not possible
to further improve the asymptotic run time of extendability algorithms, as Wienöbst et al. (2021)
gave a conditional O(n3) lower bound for combinatorial algorithms, from a practical perspective,
the current algorithms are either extremely simple, as Dor-Tarsi’s approach, or very sophisticated
with considerable practical overhead, as the methods proposed by Wienöbst et al. (2021). In this
work, we are searching for a middle ground and give two novel approaches to extend PDAGs, with
the main focus lying on simplicity and effectiveness. The first approach is a direct modification
of the Dor-Tarsi algorithm, which greatly improves its empirical performance. The second one
gives a practical O(n3) algorithm, which is, however, conceptually simpler than the one presented
by Wienöbst et al. (2021) and has significantly less overhead.

3.1. Dor-Tarsi with Degree-Heuristic

The Dor-Tarsi algorithm has an asymptotic run time of O(n4) and is computationally simplis-
tic. It iteratively identifies a potential-sink and then removes it and its incident edges from the
graph. Hence, the whole algorithm consists of n iterations, each amounting to the task of finding a
potential-sink. Naively, a potential-sink can be found in time O(n3) by going through all vertices
and checking for each vertex whether it satisfies the potential-sink property. Implemented this way,
each vertex is repeatedly tested for being a potential-sink throughout the algorithm (until it eventu-
ally becomes a potential-sink and is subsequently removed from the graph). While this brute-force
method appears to be severely worse than more clever approaches, which store and update relevant
information such as a list of all potential-sinks in sophisticated data structures, there are two notable
advantages of this approach: (i) whenever a potential-sink is found, the loop over all vertices can be

5

LUTTERMANN WIENÖBST LIŚKIEWICZ

Algorithm 1: A heuristic implementation of Dor-Tarsi iterating over the vertices in order of
increasing degree.

input : A PDAG G = (V,A,E).
output: D ∈ [G] or ⊥ if [G] = ∅.

1 D := (V, ∅)
2 repeat n times
3 for v ∈ V in increasing degree in G do
4 if v is a potential-sink then
5 Remove v and its incident edges from G.
6 Add arcs {(u, v) | u ∈ SiG(v) ∪ PaG(v)} to D.
7 break
8 end
9 end

10 if no potential-sink has been found then
11 return ⊥
12 end
13 end
14 return D

exited immediately, and (ii) the check for potential-sinkness can be cancelled once a single missing
edge violates the potential-sink property.

Hence, the first observation of this work, discussed in more detail throughout the experiments
in Section 4, is that in many cases, a naive implementation of the Dor-Tarsi algorithm performs
quite well in practice (in particular in cases where many potential-sinks cause frequent early exits
of the for-loop and also for graphs in which the test for potential-sinkness usually fails early), being
competitive with more subtle approaches. Building on the surprising effectiveness of the Dor-Tarsi
method, a heuristic refinement is given in Algorithm 1. The idea is to go through the vertices in
order of increasing degree. Using this heuristic leads to fewer cost in case the loop is exited early
as the iteration in line 3 always starts with the “cheapest” vertices, i. e., those with minimal degree
(checking for potential-sinkness results in worst-case costs quadratic in the number of neighbors
O(|Ne(v)|2)). Fig. 3 exemplifies this advantage.

It demonstrates that checking potential-sinkness for the low-degree vertices first has, on the
one hand, lower cost per vertex and, on the other hand, is often more likely to succeed early (for
example, vertices with degree one and no outgoing edges are always potential-sinks). We note that
some overhead is induced by this approach because the degree of the vertices has to be continuously
updated. However, this cost is mostly tolerable as our experiments presented in Section 4 confirm
and the heuristic yields a simple and practical improvement over the standard Dor-Tarsi algorithm.
Clearly, a heuristic is not always optimal and worst-case examples can be constructed where the
algorithm’s run time reaches its upper asymptotic bound:

Fact 2 There are instances on which the Dor-Tarsi heuristic yields a run time of Ω(n4).

6

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

a

b

c

d

e

PDAG G #Adj. tests for the first potential-sink (ps)

DT:

b
?∼ c, b ?∼ d, b ?∼ e, c ?∼ d, c ?∼ e

a
?∼ c, a ?∼ d, a ?∼ e, c ?∼ d, c ?∼ e

a
?∼ b, a ?∼ d, b ?∼ d

DTH: a
?∼ b

ps(a) ✗

ps(b) ✗

ps(c) ✓

ps(e) ✓

Figure 3: A PDAG and the adjacency tests required by Dor-Tarsi (DT) and the heuristic adaption
(DTH) for finding the first potential-sink. We assume that DT iterates over the vertices in
alphabetical order. DT checks vertices a and b first, which are no potential-sinks. DTH

starts with the lowest-degree vertex e. This reduces the cost of testing potential-sinkness
and increases the chances of finding a potential-sink early.

v w

2k vertices

. . .

2k vertices

. . .

. . .

k vertices

Figure 4: An example instance where the heuristic exhibits run time Ω(n4).

Proof Consider graph G = (V,A = ∅, E) with V = {v, w}∪Cv ∪Cw ∪Cvw, where Cvw consists
of k vertices and Cv and Cw consist of 2k vertices each. The edge set E is constructed as

E = {{x, y} | x, y ∈ CL for L = v, w, vw}∪{{v, x} | x ∈ Cv∪Cvw}∪{{w, x} | x ∈ Cw∪Cvw}.

In words, the cliques Cv, Cw are fully connected to v and w, respectively, and Cvw is fully connected
to both v and w. Moreover, v and w are non-adjacent. The graph is illustrated in Fig. 4.

Dor-Tarsi in combination with the degree-heuristic always iterates over the vertices in Cvw with
initial degree k + 1 first. None of these vertices are, however, potential-sinks. Consequently, Ω(k)
vertices are checked before a potential-sink is found. Moreover, testing for potential-sinkness only
fails for one pair of neighbors, that is, for v and w, causing the loop over the pairs of neighbors to
require Ω(k2) iterations before exiting with high probability. Note that for n = 5k+2, k is in Ω(n).
Overall, the steps undertaken by the heuristic yield a run time of Ω(n4).

7

LUTTERMANN WIENÖBST LIŚKIEWICZ

3.2. Dor-Tarsi with Improved Worst-Case Complexity

In the previous section, a direct and effective heuristic improvement of the Dor-Tarsi algorithm is
presented. In this section, we aim to give another simple adaptation of Dor-Tarsi, but this time with
an O(n3) worst-case run time, thus matching the lower-bounds of the algorithm given in (Wienöbst
et al., 2021).

If we take a look at the counterexample from Fig. 4 again, we observe that Algorithm 1 re-
peatedly iterates over the same neighborhoods when searching for a potential-sink, i. e., there is no
information stored between iterations. It is clearly desirable to avoid this repeated computational ef-
fort. Previously, improvements were made by constructing elaborate data structures, which maintain
the set of potential-sinks throughout the course of the algorithm (Wienöbst et al., 2021). Such data
structures, however, induce a significant practical overhead and, in particular, demand an expensive
initialization step at the start of the algorithm, even before searching for the first potential-sink.

To address these issues, our proposed approach iterates over the neighbors of every vertex v
exactly once, even though potential-sinkness of v might be checked multiple times during the course
of the algorithm. After the neighbors of a vertex v have been iterated over, all tuples of neighbors
violating the potential-sink property of v are stored in the set B[v], which is afterward continuously
updated every time vertices are removed from the graph. The sets B[v] are computed lazily, that
is, only at the time the potential-sinkness of v is checked for the first time and thus there is no pre-
computation involved. In case the set of violating neighbors B[v] is empty or becomes empty by
removing other vertices, v satisfies the potential-sink property, which is due to the observation that
throughout the course of the algorithm no new potential-sinkness violations are incurred.

The whole approach is described in detail in Algorithm 2. We combine it with the heuristic from
the previous section, which is generally favorable to use. Algorithm 2 combines the advantages of
both DT and the algorithm from Wienöbst et al. (2021) by, one the one hand, storing information
from previous iterations to ensure an O(n3) worst-case run time while, on the other hand, keeping
the overhead to a minimum and, in particular, not relying on an initialization step.

Theorem 1 Algorithm 2 is implementable with expected worst-case time complexity O(n3).

Proof We assume that edge deletion and adjacency tests are supported in constant time and iterating
over the neighbors of v has cost O(|NeG(v)|). Using hash tables to store the neighbors of a vertex,
these run times are reached in expectation. The graph representation is discussed in more detail in
the appendix (Section A).

The computation of neighbors violating the potential-sink property in line 7 can clearly be im-
plemented in O(n2) by looping over all pairs of neighbors of v and checking adjacency. Due to
the flag C[v], the neighborhood for each vertex v is visited exactly once and thus line 7 is executed
O(n) times, yielding a total run time of O(n3) for searching potential-sinks. The removal of a
potential-sink in lines 10 to 15 runs in time O(n2) as v has at most n neighbors for which edges
are removed from G and added to D and there are at most O(n2) tuples in the sets in B where
v is included. By storing all tuples where v is included separately, we can iterate over them and
remove each tuple from the corresponding set in O(1). As every vertex is removed at most once
from the graph, the removal is repeated O(n) times, yielding a run time of O(n3) for the removal
of all vertices. Consequently, the run time of the whole algorithm is bounded by O(n3).

The correctness of the algorithm follows immediately from the correctness of the Dor-Tarsi
algorithm (Fact 1) as our proposed modification only avoids repeated visits to neighbors but does

8

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

Algorithm 2: An adaptation of Dor-Tarsi with worst-case complexity O(n3).
input : A PDAG G = (V,A,E).
output: D ∈ [G] or ⊥ if [G] = ∅.

1 D := (V, ∅)
2 B := array of n initially empty sets
3 C := bitvector of length n initialized with false
4 while there are vertices left in G do
5 foreach v ∈ V in increasing degree in G do
6 if C[v] = false and ChG(v) = ∅ then
7 B[v] := B[v] ∪ {(u, u′) | u ∈ SiG(v), u

′ ∈ SiG(v) ∪ PaG(v) ∧ u ̸= u′ ∧ u ̸∼G u′}
8 C[v] := true
9 end

10 if C[v] = true and B[v] = ∅ then
11 Remove v and its incident edges from G.
12 Add arcs {(u, v) | u ∈ SiG(v) ∪ PaG(v)} to D.
13 Remove from all sets in B tuples including v.
14 break
15 end
16 end
17 if no potential-sink has been found then
18 return ⊥
19 end
20 end
21 return D

not skip any neighbor check. As a final remark, we note that Algorithm 2 is also implementable
using a combination of linked lists and an adjacency matrix to represent the neighbors of a vertex
v, as proposed by (Wienöbst et al., 2021). Using such a representation, instead of collecting all
neighbors of v violating the potential-sink property in line 7, one could stop as soon as the first pair
of neighbors violating the property is found and store a pointer to the violating neighbor, allowing
to start the iteration over the neighbors of v the next time at the lastly visited neighbor1. However,
using linked lists instead of hash sets to represent adjacencies has no impact on the worst-case
complexity and is not significantly faster than the hashed data structure. More details about the
comparison between these two representations can be found in Appendix A.

4. Evaluation of Extension Algorithms

In this section, we conduct an experimental evaluation of the algorithms discussed in the previous
sections to demonstrate their practical effectiveness. We compare the Dor-Tarsi algorithm (DT),
its heuristic refinement (DTH), its adaptation with improved worst-case complexity (DTIC), and the
algorithm given by Wienöbst et al. (2021) (WBL). All algorithms are implemented in Julia (Bezan-
son et al., 2017). We present the results for random PDAGs, which are generated by (i) creating a

1. Such a strategy is not possible for hashed data structures due to potential rehashing.

9

LUTTERMANN WIENÖBST LIŚKIEWICZ

0

100

200

300

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 3 · n

0

100

200

300

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 5 · n

0

100

200

300

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = log2(n) · n

0

250

500

750

1000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m =
√
n · n

Algorithm DT DTH DTIC WBL

Figure 5: Run times of the algorithms DT, DTH, DTIC, and WBL on randomly generated PDAGs of
n vertices and m edges, with m = 3 · n (top left), m = 5 · n (top right), m = log2(n) · n
(bottom left), and m =

√
n · n (bottom right).

random DAG D, (ii) replacing all directed edges not participating in a v-structure by an undirected
edge, and (iii) orienting between two and five (randomly chosen) undirected edges according to D,
resulting in an extendable PDAG. The initial DAG D is generated by creating a random undirected
graph and afterward using a random permutation of its vertices as a topological ordering according
to which the edges are then oriented. We vary the number of vertices in the input graphs by setting
n = 128, 256, . . . , 8192 and the number of edges is set to m = 3 · n, 5 · n, log2(n) · n,

√
n · n.

For each choice of parameters, we generate ten instances and then run every algorithm ten times on
each instance. The run times reported in this section and in upcoming sections are averages over all
runs on those ten instances. Further experimental results for scale-free PDAGs and chordal graphs
are given in Appendix B.

The results are shown in Fig. 5. In the top left plot, the run times on sparse graphs with m = 3·n
edges are given. For small graphs, there are no visible differences among the run times of the algo-
rithms. However, with an increasing number of vertices, it becomes clear that WBL performs best,
which is quite expected, as it was shown to have linear-time O(m) for sparse graphs (formalized as
constant-degeneracy graphs in (Wienöbst et al., 2021)). The run time of DT increases rapidly as the
number of vertices grows, while both DTH and DTIC exhibit a slightly smaller increase. Although
DTIC does not outperform WBL, it shows a significant improvement compared to DT.

10

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

In both the top right plot and the bottom left plot, WBL yields still the best performance among
the algorithms. For denser graphs, with m =

√
n · n (bottom right), WBL yields a weaker perfor-

mance than the other algorithms. This can be explained by the fact that WBL relies on an initial-
ization step, which requires an iteration of every pair of neighbors for each vertex in the graph and
thereby induces costs of O(n3) for dense graphs. Those costs emerge even before searching for the
first potential-sink and they are particularly high as the initialization loops cannot be exited early.
All of the three other approaches do allow for early exits, which turns out to be a non-negligible
advantage because the graph is getting smaller and smaller during the course of the algorithm, mean-
ing that the high initialization effort of WBL dominates the run time. Particularly for denser graphs,
DT is even slightly faster than DTH and DTIC, which indicates that both DTH and DTIC induce some
overhead by continuously maintaining the vertices in sorted order by their degree.

Overall, DTIC provides a stable performance across different graph sizes and graph densities,
verifying that it combines the advantages of DT and WBL. DT is often a solid choice in practice
but its performance depends heavily on the order of checking vertices for potential-sinkness and
thus combining its advantages with a guaranteed worst-case run time of O(n3) yields a promising
algorithm for practical applications.

5. Application to Maximal Orientations

Building on the results in the previous sections, we are able to demonstrate an immediate application
of extension algorithms. As shown by Chickering (1995) and Wienöbst et al. (2021), it is possible
to utilize extension algorithms when computing the maximal orientation of a PDAG G. In practice,
it is common to implement the step from PDAG to MPDAG the “direct way”, that is, by repeatedly
applying the Meek rules (shown in Fig. 2) in a while-loop. We argue that using consistent extensions
not only gives desirable worst-case guarantees, but also performs remarkably well in practice.

5.1. How to Use Extendability for the Computation of Maximal Orientations

Applying the Meek rules repeatedly to a PDAG G yields its maximal orientation. A direct imple-
mentation, which loops over the given graph repeatedly is computationally expensive, leading to
worst-case run times such as O(n4 ·m)2. Clearly, it is preferable to traverse the graph only a single
time, while deciding which edges should be oriented. The crucial observation is that this can be
achieved by utilizing a topological ordering of a consistent extension of G.

More precisely, when computing the maximal orientation of a PDAG, one can distinguish be-
tween two situations: (i) the result of applying the Meek rules yields a CPDAG, such as in the final
phase of the PC algorithm, and (ii) in case of additional background knowledge, the resulting graph
is not necessarily a CPDAG, but a maximally oriented PDAG (i. e., an MPDAG).

In case (i), the CPDAG can be obtained without applying the Meek rules by extending the PDAG
into a DAG and afterward computing the corresponding CPDAG directly from the DAG. Indeed,
for this second step from DAG to CPDAG, Chickering (1995) gave a linear-time algorithm3. In
case (ii), starting with the CPDAG obtained as in (i), that is, by performing Chickering’s DAG-
to-CPDAG algorithm on a consistent extension D, further orienting all edges which are directed

2. O(m) edges might be oriented successively and naively checking the applicability of the Meek rules results in costs
of O(n4).

3. The algorithm proceeds by checking for each edge whether it should be undirected. Although not utilizing the Meek
rules, the algorithm makes heavy use of the topological ordering provided by the consistent extension.

11

LUTTERMANN WIENÖBST LIŚKIEWICZ

0

100

200

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 3 · n

0

50000

100000

150000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m =
√
n · n

Algorithm CE-MEEK DIRECT-MEEK

Figure 6: Run times of the algorithms DIRECT-MEEK and CE-MEEK on randomly generated PDAGs
with m = 3 · n edges (left) and m =

√
n · n edges (right).

in G (i. e., the background knowledge edges), and afterward applying the Meek rules in a single
iteration over the vertices of the graph in order of a topological ordering of D yields the maximal
orientation (Wienöbst et al., 2021). While this procedure appears quite involved, we demonstrate
that the extension step is actually the most expensive part and the subsequent steps are comparably
cheap. Moreover, we show that this strategy is significantly faster than applying the Meek rules
directly. From a theoretical point of view, these approaches guarantee an O(n3) worst-case run
time, which is a significant improvement as well.

5.2. Experimental Comparison with the Direct Application of the Meek Rules

In this section, we compare the two approaches to maximally orient a given PDAG in an experimen-
tal evaluation. More specifically, we compare the direct application of Meek’s rules (DIRECT-MEEK)
to the above mentioned approach originally introduced by Chickering (1995) and generalized to ar-
bitrary PDAGs by Wienöbst et al. (2021), which utilizes the topological ordering of a consistent
extension (CE-MEEK). The input PDAGs are the same as in Section 4, and further results for scale-
free PDAGs are provided in Appendix C.

The run times of the two approaches on random PDAGs are presented in Fig. 6. Not surprisingly,
CE-MEEK outperforms DIRECT-MEEK on every input graph. While the difference in their run times
is relatively small on sparse input graphs (left), it increases drastically as n grows on denser input
graphs (right)4. In addition to the plain comparison of run times, we also analyze the time spent
by CE-MEEK on the different phases of the algorithm. More specifically, we measure the time
for (i) computing a consistent extension, (ii) finding the corresponding CPDAG, and (iii) applying
the Meek rules in a single iteration over the vertices. The results for the same input graphs as
before are depicted in Fig. 7. Each bar is divided into the proportions of the total run time for
the three phases, i. e., adding together the proportions of the three phases equals 100 percent of
the run time. For sparse graphs (left), the majority of the time (more than 75 percent) is spent on
phase (i), demonstrating that in order to obtain fast algorithms to compute maximal orientations, it

4. We use DTIC to compute the consistent extension. For sparse graphs, the use of WBL can give a significant speedup,
which would in turn translate to CE-MEEK.

12

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

0.00
0.25
0.50
0.75
1.00

128 256 512 1024 2048 4096 8192
npr

op
or

tio
n

of
to

ta
lt

im
e

m = 3 · n

0.00
0.25
0.50
0.75
1.00

128 256 512 1024 2048 4096 8192
npr

op
or

tio
n

of
to

ta
lt

im
e

m =
√
n · n

Phase (i) (ii) (iii)

Figure 7: Proportions of the total run time of CE-MEEK for the three phases on randomly generated
PDAGs with m = 3 · n edges (left) and m =

√
n · n edges (right).

is crucial to have algorithms solving the extension problem efficiently. Even though the proportion
of phase (ii) dominates for dense graphs (right) with many vertices, phase (i) still accounts for a
significant portion (at least 25 percent) of the total run time.

6. Conclusions

In this paper, we demonstrate the effectiveness of utilizing consistent extensions for the task of
maximally orienting a PDAG. We started by revisiting the extension problem, presenting two new
approaches to efficiently compute consistent DAG extensions in practical applications. The first ap-
proach (DTH) refines the widespread Dor-Tarsi algorithm by the employment of a simple heuristic,
which reduces the computational effort by prioritizing low-cost vertices throughout its iterations.
The second approach (DTIC) stores additional information between iterations to avoid duplicate it-
erations and thereby matches the worst-case complexity of the WBL algorithm, which achieves the
conditional lower bound of O(n3) for the extension problem. In a practical evaluation, we show
that DTIC exhibits the most stable performance overall, combining the advantages of the other ap-
proaches. Based on those insights and results, we highlight an important application – the maximal
orientation of PDAGs, a procedure ubiquitous in causal discovery. We demonstrate experimen-
tally that utilizing consistent extensions yields highly reliable and effective algorithms for this task,
which outperform the direct use of the Meek rules currently used most commonly.

Acknowledgments

The research of Malte Luttermann was partly supported by the Medical Cause and Effects Analysis
(MCEA) project.

References

Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex Networks. Reviews of
Modern Physics, 74:47–97, 2002.

13

LUTTERMANN WIENÖBST LIŚKIEWICZ

Steen A. Andersson, David Madigan, and Michael D. Perlman. A Characterization of Markov
Equivalence Classes for Acyclic Digraphs. The Annals of Statistics, 25:505–541, 1997.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A Fresh Approach to
Numerical Computing. SIAM Review, 59:65–98, 2017.

David Maxwell Chickering. A Transformational Characterization of Equivalent Bayesian Network
Structures. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
(UAI-95), pages 87–98. Morgan Kaufmann Publishers Inc., 1995.

David Maxwell Chickering. Optimal Structure Identification with Greedy Search. Journal of Ma-
chine Learning Research, 3:507–554, 2002.

Dorit Dor and Michael Tarsi. A Simple Algorithm to Construct a Consistent Extension of a Partially
Oriented Graph. Technicial Report 185, Cognitive Systems Laboratory, UCLA, 1992.

Felix Elwert. Graphical Causal Models. In Handbook of Causal Analysis for Social Research,
Handbooks of Sociology and Social Research, pages 245–273. Springer, 2013.

Richard Guo and Emilija Perković. Minimal Enumeration of all Possible Total Effects in a Markov
Equivalence Class. In Proceedings of the Twenty-Fourth International Conference on Artificial
Intelligence and Statistics (AISTATS-21), pages 2395–2403. PMLR, 2021.

Alain Hauser and Peter Bühlmann. Characterization and Greedy Learning of Interventional Markov
Equivalence Classes of Directed Acyclic Graphs. Journal of Machine Learning Research, 13:
2409–2464, 2012.

Yang-Bo He and Zhi Geng. Active Learning of Causal Networks with Intervention Experiments
and Optimal Designs. Journal of Machine Learning Research, 9:2523–2547, 2008.

Yangbo He, Jinzhu Jia, and Bin Yu. Counting and Exploring Sizes of Markov Equivalence Classes
of Directed Acyclic Graphs. Journal of Machine Learning Research, 16:2589–2609, 2015.

Markus Kalisch and Peter Bühlman. Estimating High-Dimensional Directed Acyclic Graphs with
the PC-Algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H. Maathuis, and Peter Bühlmann.
Causal Inference Using Graphical Models with the R Package pcalg. Journal of Statistical
Software, 47:1–26, 2012.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models – Principles and Techniques.
MIT Press, 2009.

Marloes H. Maathuis, Markus Kalisch, and Peter Bühlmann. Estimating High-Dimensional Inter-
vention Effects from Observational Data. The Annals of Statistics, 37:3133–3164, 2009.

Christopher Meek. Causal Inference and Causal Explanation with Background Knowledge. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-95), pages
403–410. Morgan Kaufmann Publishers Inc., 1995.

14

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd edition,
2009.

Jean-Philippe Pellet and André Elisseeff. Using Markov Blankets for Causal Structure Learning.
Journal of Machine Learning Research, 9:1295–1342, 2008.

Emilija Perković, Johannes Textor, Markus Kalisch, and Marloes H. Maathuis. Complete Graph-
ical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of
Ancestral Graphs. Journal of Machine Learning Research, 18:220:1–220:62, 2017.

Oylum Şeker, Pinar Heggernes, Tınaz Ekim, and Z. Caner Taşkın. Linear-Time Generation of
Random Chordal Graphs. In Proccedings of the 10th International Conference on Algorithms
and Complexity (CIAC-17), pages 442–453. Springer International Publishing, 2017.

Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G. Dimakis, and Sriram Vishwanath.
Learning Causal Graphs with Small Interventions. In Advances in Neural Information Processing
Systems 28 (NIPS-15), pages 3195–3203. Curran Associates, Inc., 2015.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT Press,
2nd edition, 2000.

Chandler Squires. causaldag: Creation, Manipulation, and Learning of Causal Models, 2018.
URL https://github.com/uhlerlab/causaldag.

Chandler Squires, Sara Magliacane, Kristjan Greenewald, Dmitriy Katz, Murat Kocaoglu, and
Karthikeyan Shanmugam. Active Structure Learning of Causal DAGs via Directed Clique Trees.
In Advances in Neural Information Processing Systems 33 (NIPS-20), pages 21500–21511, 2020.

Benito van der Zander and Maciej Liśkiewicz. Separators and Adjustment Sets in Markov Equiva-
lent DAGs. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, (AAAI-16),
pages 3315–3321. AAAI Press, 2016.

Thomas Verma and Judea Pearl. Equivalence and Synthesis of Causal Models. In Proceedings of
the Sixth Conference on Uncertainty in Artificial Intelligence (UAI-90), pages 255–270. Elsevier
Science Inc., 1990.

Thomas Verma and Judea Pearl. An Algorithm for Deciding if a Set of Observed Independencies
Has a Causal Explanation. In Proceedings of the Eighth International Conference on Uncertainty
in Artificial Intelligence (UAI-92), pages 323–330. Morgan Kaufmann Publishers Inc., 1992.

Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz. Polynomial-Time Algorithms for Count-
ing and Sampling Markov Equivalent DAGs. In Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI-21), pages 12198–12206. AAAI Press, 2021.

Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz. Polynomial-Time Algorithms for Count-
ing and Sampling Markov Equivalent DAGs with Applications. arXiv preprint arXiv:2205.02654,
2022.

Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz. Extendability of Causal Graphical Mod-
els: Algorithms and Computational Complexity. In Proceedings of the Thirty-Seventh Conference
on Uncertainty in Artificial Intelligence (UAI-21), pages 1248–1257. PMLR, 2021.

15

https://github.com/uhlerlab/causaldag

LUTTERMANN WIENÖBST LIŚKIEWICZ

Appendix A. Comparison of Graph Representations

Choosing an appropriate graph representation is crucial to obtain effective extension algorithms. In
particular, two important operations that need to be executed fast to solve the extension problem
efficiently are adjacency tests and the removal of vertices and edges from the graph. In this section,
we compare two different graph representations to support carrying out these operations efficiently.
The first representation utilizes a hashed data structure to represent adjacencies in a graph and a the
second one employs a combination of linked lists and an adjacency matrix for this purpose.

The graph representation used throughout the course of this paper keeps track of three sets
storing the neighbors (ingoing, outgoing, and undirected) for each vertex in the graph. To access
elements in these sets in expected constant time, hashing is applied. Representing the neighbors of
every vertex with the help of hash sets leads to a simple, yet practical graph representation. However,
iterating over hash sets (e. g., during the potential-sink check) is suboptimal, as the entire hash table
has to be iterated over. Furthermore, as outlined in Section 3.2, a representation based on linked
lists allows DTIC to exit its loops earlier, that is, as soon as a neighbor violating the potential-sink
property is found, which is not possible if neighbors are stored in a hashed data structure.

To analyze the impact of these aspects on the performance of DTIC and the other algorithms,
we also implemented a graph representation using an adjacency matrix and linked lists to store
adjacencies in the graph, which was proposed by (Wienöbst et al., 2021). More precisely, there are
three linked lists to store the ingoing, outgoing, and undirected neighbors, respectively, for each
vertex. The adjacency matrix contains a pointer to the corresponding linked list entry for every
edge in the graph. Adjacency tests run in constant time on the adjacency matrix and the removal
of vertices from the graph runs in constant time as well, as the corresponding pointer in the matrix
enables an access to any neighbor in the linked list in O(1). The main drawback of this approach is
clearly the large memory requirement of the O(n2) adjacency matrix. Allocating the corresponding
memory is also time-consuming.

We found that the usage of linked lists instead of hash sets does not provide significant improve-
ments for the run times of the extension algorithms. In most of the evaluated scenarios, the contrary
is the case. A direct comparison of implementations using hash sets and linked lists can be found in
Table 1 where the input graphs and settings are the same as in Section 4.

Clearly, the usage of linked lists appears to be at a disadvantage for the instances considered
in this work. However, we remark that, in some cases, the usage of linked lists is beneficial. For
example, on chordal graphs (see Appendix B for more details), DT is faster on graphs with a linked
list implementation compared to graphs using a hashed data structure. In Appendix B, we also
introduce scale-free PDAGs, for which the comparison of hash sets and linked lists yields the same
relations as in Table 1. In conclusion, our experiments demonstrate that the linked list representation
introduces overhead, which does not pay off for the generally sparse graphs considered in this work
and usually occurring in practice.

Appendix B. Further Experimental Results for Extendability

To complement the experimental results for randomly generated PDAGs presented in Section 4,
we evaluate the algorithms DT, DTH, DTIC, and WBL on scale-free PDAGs and chordal graphs.
Scale-free graphs are graphs whose degree distribution is a power law distribution, i. e., there are
few vertices with a high degree while most of the vertices have a rather small degree. The scale-
free PDAGs are generated in a similar fashion as the graphs from Section 4, that is, the general

16

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

n DT DT-LL DTH DTH-LL DTIC DTIC-LL WBL WBL-LL

128 0.83 0.14 0.88 0.19 0.94 0.20 1.29 0.26
256 1.80 0.41 1.89 0.54 1.97 0.58 2.60 0.68
512 3.89 1.60 4.07 1.88 4.13 2.03 5.21 2.15
1024 9.96 6.76 10.19 7.62 9.72 8.28 10.88 9.53
2048 27.01 39.55 25.66 40.40 23.32 42.86 23.35 50.90
4096 87.13 149.06 85.38 190.61 68.50 201.69 51.98 236.52
8192 370.79 606.02 323.64 608.67 222.52 654.45 116.92 871.23

n DT DT-LL DTH DTH-LL DTIC DTIC-LL WBL WBL-LL

128 0.87 0.19 0.97 0.28 1.04 0.29 2.35 0.46
256 1.86 0.55 2.11 0.81 2.23 0.84 5.61 1.21
512 3.92 1.97 4.71 2.86 4.93 2.98 13.09 4.30
1024 9.62 9.14 11.90 11.68 12.14 12.08 30.98 15.93
2048 23.60 48.02 30.77 54.55 31.38 56.30 75.68 72.03
4096 72.80 175.78 93.31 236.88 96.00 244.46 209.80 323.04
8192 269.53 685.58 333.44 752.79 336.09 785.27 594.51 1159.83

Table 1: Comparison of the algorithms DT, DTH, DTIC, and WBL with a linked lists implementation
(-LL) on random PDAGs with m = 3 ·n edges (above) and m = log2(n) ·n edges (below).

procedure of (i) creating a random DAG D, (ii) replacing all directed edges not participating in
a v-structure by an undirected edge, and (iii) orienting between two and five (randomly chosen)
undirected edges according to D stays the same but the initial DAG D is generated in a different
way. More precisely, the initial DAG is generated by first creating a random undirected scale-free
graph using the Barabási-Albert model (Albert and Barabási, 2002) and afterward constituting a
random permutation of its vertices as a topological ordering according to which the edges are then
directed. All parameter choices are identical to those in Section 4.

To generate the chordal graphs, we apply the random subtree intersection method introduced
by Şeker et al. (2017). Chordal graphs provide an interesting addition to PDAGs as they are fully
undirected and extendable by definition, thus demanding quite some computational effort to extend
the graph. We set n = 128, 256, . . . , 8192 again and use k = 3, 5, log2(n),

√
n as a parameter

for the random subtree intersection method. The parameter k determines the average size of the
random subtrees used to generate the chordal graph and thus controls the number of edges in the
graph. However, the exact number of edges slightly differs between instances.

The results for scale-free PDAGs can be found in Fig. 8 where we observe the same patterns as
in Fig. 5, i. e., WBL is the fastest for sparser graphs (m = 3 · n, 5 · n, log2(n) · n) but is the slowest
on denser graphs (m =

√
n · n) while the opposite holds for DT (that is, DT is the slowest on sparse

graphs with m = 3 · n and the fastest on dense graphs with m =
√
n · n). In total, DTIC yields

a stable performance again, showing that DTIC retains the practicality of DT while maintaining the
theoretical bounds on the run time complexity of WBL.

17

LUTTERMANN WIENÖBST LIŚKIEWICZ

0

100

200

300

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 3 · n

0

100

200

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 5 · n

0

100

200

300

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = log2(n) · n

0

250

500

750

1000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m =
√
n · n

Algorithm DT DTH DTIC WBL

Figure 8: Run times of the algorithms DT, DTH, DTIC, and WBL on randomly generated scale-free
PDAGs of n vertices and m edges, with m = 3 · n (top left), m = 5 · n (top right),
m = log2(n) · n (bottom left), and m =

√
n · n (bottom right).

Further, Fig. 9 displays the run times of DT, DTH, DTIC, and WBL on chordal graphs. Note that
the y-axes are log-scaled in all plots. DT is inferior to all other algorithms sparse graphs (top left
and top right) and also becoming the slowest on slightly denser graphs (bottom left). Eventually,
the run time of DT becomes almost 100 times slower than the run times of the other algorithms, for
example at n = 8192 and k = 3 (among others). WBL handles sparse graphs (top left and top right)
roughly as good as DTH and DTIC but cannot keep pace for the denser graphs shown at the bottom
plots. The results indicate that DTH and DTIC yield the best performance on graphs where more
effort is necessary to compute a consistent extension.

Appendix C. Further Experimental Results for Maximal Orientations

For the sake of completeness, we also give further experimental results for the algorithms DIRECT-
MEEK and CE-MEEK in addition to the results presented in Section 5.2. We report the results for
scale-free PDAGs which are identical to those from the previous section and add more edge densities
to the evaluated scenarios from Section 5.25.

5. Chordal graphs are obviously not interesting in the setting of maximal orientations as they contain only undirected
edges and hence no Meek rule is applicable on them.

18

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

1

10

100

1000

10000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

k = 3

10

100

1000

10000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

k = 5

1e+01

1e+02

1e+03

1e+04

1e+05

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

k = log2(n)

1e+02

1e+04

1e+06

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

k =
√
n

Algorithm DT DTH DTIC WBL

Figure 9: Run times of the algorithms DT, DTH, DTIC, and WBL on randomly generated chordal
graphs with k = 3 (top left), k = 5 (top right), k = log2(n) (bottom left), and k =

√
n

(bottom right) with all y-axes being log-scaled.

Fig. 10 depicts the run times of DIRECT-MEEK and CE-MEEK on randomly generated PDAGs
containing m = 5 · n and m = log2(n) · n edges. These PDAGs are generated the same way
as the PDAGs in Fig. 6. The run times pictured in Fig. 10 show the same pattern as in Fig. 6,
namely that CE-MEEK is faster than DIRECT-MEEK in every scenario and the advantage of CE-
MEEK increases with an increasing number of vertices and edges in the input graph, verifying that
the use of consistent extensions for the computation of maximal orientations is highly beneficial.

The time spent by CE-MEEK on the different phases of the algorithm for PDAGs with m = 5 ·n
and m = log2(n) · n edges is plotted in Fig. 11. While the left plot is similar to the left plot from
Fig. 7, the right plot in Fig. 11 exhibits a greater proportion of the total run time needed for phase (i)
(that is, computing a consistent extension) than the right plot in Fig. 7, showing that phase (i) is
dominant for sparser graphs and phase (ii) requires the majority of the total run time for dense
graphs (m =

√
n · n, right plot in Fig. 7).

Fig. 12 presents the run times of DIRECT-MEEK and CE-MEEK on scale-free PDAGs. As in
Fig. 6 and Fig. 10, CE-MEEK is superior to DIRECT-MEEK on all input graphs. Overall, handling
scale-free PDAGs takes more computational effort compared to handling PDAGs having their edges
distributed at random.

19

LUTTERMANN WIENÖBST LIŚKIEWICZ

0

200

400

600

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 5 · n

0

1000

2000

3000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = log2(n) · n

Algorithm CE-MEEK DIRECT-MEEK

Figure 10: Run times of the algorithms DIRECT-MEEK and CE-MEEK on randomly generated
PDAGs with m = 5 · n edges (left) and m = log2(n) · n edges (right).

0.00
0.25
0.50
0.75
1.00

128 256 512 1024 2048 4096 8192
npr

op
or

tio
n

of
to

ta
lt

im
e

m = 5 · n

0.00
0.25
0.50
0.75
1.00

128 256 512 1024 2048 4096 8192
npr

op
or

tio
n

of
to

ta
lt

im
e

m = log2(n) · n

Phase (i) (ii) (iii)

Figure 11: Proportions of the total run time of CE-MEEK for the three phases on randomly generated
PDAGs with m = 5 · n edges (left) and m = log2(n) · n edges (right).

Furthermore, a visualization of the time spent by CE-MEEK on the different phases of the al-
gorithm for scale-free input PDAGs is given in Fig. 13. The plots for m = 3 · n (top left) and
m =

√
n · n (bottom right) are similar to the plots in Fig. 7 and the plots for m = 5 · n (top right)

and m = log2(n) · n (bottom left) are similar to the plots in Fig. 11. Despite the similarities, we
observe greater proportions of phase (ii) (i. e., finding the corresponding CPDAG to the DAG com-
puted in the first phase) in Fig. 13 than in Fig. 7 and Fig. 11, showing that phase (ii) requires more
effort on scale-free PDAGs than on PDAGs having their edges distributed at random. It becomes
evident again that higher graph densities increase the proportion of phase (ii) of the total run time.

20

PRACTICAL ALGORITHMS FOR ORIENTATIONS OF PARTIALLY DIRECTED GRAPHICAL MODELS

0

200

400

600

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 3 · n

0

500

1000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = 5 · n

0

2000

4000

6000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m = log2(n) · n

0

50000

100000

150000

200000

128 256 512 1024 2048 4096 8192
n

tim
e

(m
s)

m =
√
n · n

Algorithm CE-MEEK DIRECT-MEEK

Figure 12: Run times of the algorithms DIRECT-MEEK and CE-MEEK on randomly generated scale-
free PDAGs of n vertices and m edges, with m = 3 · n (top left), m = 5 · n (top right),
m = log2(n) · n (bottom left), and m =

√
n · n (bottom right).

21

LUTTERMANN WIENÖBST LIŚKIEWICZ

0.00

0.25

0.50

0.75

1.00

128 256 512 1024 2048 4096 8192
n

pr
op

or
tio

n
of

to
ta

lt
im

e m = 3 · n

0.00

0.25

0.50

0.75

1.00

128 256 512 1024 2048 4096 8192
n

pr
op

or
tio

n
of

to
ta

lt
im

e m = 5 · n

0.00

0.25

0.50

0.75

1.00

128 256 512 1024 2048 4096 8192
n

pr
op

or
tio

n
of

to
ta

lt
im

e m = log2(n) · n

0.00

0.25

0.50

0.75

1.00

128 256 512 1024 2048 4096 8192
n

pr
op

or
tio

n
of

to
ta

lt
im

e m =
√
n · n

Phase (i) (ii) (iii)

Figure 13: Proportions of the total run time of CE-MEEK for the three phases on randomly generated
scale-free PDAGs of n vertices and m edges, with m = 3 · n (top left), m = 5 · n (top
right), m = log2(n) · n (bottom left), and m =

√
n · n (bottom right).

22

	Introduction
	Preliminaries
	Two New Simple Algorithms for Extendability
	Dor-Tarsi with Degree-Heuristic
	Dor-Tarsi with Improved Worst-Case Complexity

	Evaluation of Extension Algorithms
	Application to Maximal Orientations
	How to Use Extendability for the Computation of Maximal Orientations
	Experimental Comparison with the Direct Application of the Meek Rules

	Conclusions
	Comparison of Graph Representations
	Further Experimental Results for Extendability
	Further Experimental Results for Maximal Orientations

