
PETS: Predicting E�ciently using Temporal

Symmetries in Temporal PGMs

Florian Andreas Marwitz[0000−0002−9683−5250], Ralf Möller[0000−0002−1174−3323],
and Marcel Gehrke[0000−0001−9056−7673]

Institute of Information Systems, University of Lübeck, Germany
{marwitz,moeller,gehrke}@ifis.uni-luebeck.de

Abstract. Time in Bayesian Networks is concrete: In medical applica-
tions, a timestep can correspond to one second. To proceed in time, tem-
poral inference algorithms answer conditional queries. But the interface
algorithm simulates iteratively into the future making predictions costly
and intractable for applications. We present an exact, GPU-optimizable
approach exploiting symmetries over time during answering prediction
queries by constructing a matrix for the underlying temporal process.
Additionally, we construct a vector capturing the probability distribu-
tion at the current timestep. Then, we can time-warp into the future by
matrix exponentiation. We show an order of magnitude speedup over the
interface algorithm. The work-heavy preprocessing step can be done of-
�ine, and the runtime of prediction queries is signi�cantly reduced. Now,
we can handle application problems that could not be handled before.

Keywords: Dynamic Bayesian Network · Prediction · Probabilistic graph-
ical models.

1 Introduction

Probabilistic Graphical Models (PGMs) encode probability distributions, which
can be used to perform inference [8]. They can be extended to dynamic PGMs to
take temporal behavior into account. In temporal settings, one task is predicting
the probability of a random variable. In general, queries are costly and so are
prediction queries. In, e.g., medical applications, a timestep can correspond to
one second and for the selection of the correct treatment we need to predict into
the future. To exploit factorizations, temporal inference algorithms compute a
set of random variables, called interface, that render two timesteps independent
of each other. Hence, to proceed to the next timestep, these algorithms calcu-
late a conditional query, which is costly. Thus, to answer prediction queries, a
temporal inference algorithm has to possibly eliminate many random variables
in addition to answering the conditional query for each timestep during predic-
tions. However, given a stationary process, the temporal behavior is actually
independent of the current timestep and, for prediction queries, models are not
manipulated with new events. Therefore, we propose to compute the temporal
behavior of the model in an o�ine step and store it in a matrix. We can then

2 F. A. Marwitz et al.

query the distribution of our interface variables for our current timestep and
jump to the timestep we are interested in to answer the query. In medical ap-
plications, the requested timestep can change, so we cannot modify our model,
but rather need to fast forward to the timestep. In doing so, we replace ex-
pensive inference computations with cheap matrix-vector multiplications, while
still getting exact results for answering the query. Our approach is applicable to
all temporal inference algorithms using temporal conditional independences. In
this paper, for illustrative purposes, we restrict ourselves to Dynamic Bayesian
Networks (DBNs) and the interface algorithm (IA) [10].

Judea Pearl introduces Bayesian Networks (BNs) [11]. BNs store a proba-
bility distribution in a factored way using conditional independences. BNs are
extended by Paul Dagum to DBNs [3]. DBNs generalize Hidden Markov Mod-
els and Kalman Filters [13]. Our approach works with discrete random variables
rather than with normal distributions a Kalman Filter requires [6]. Variable elim-
ination (VE) can be used to infer probabilities in BNs or in unrolled DBNs [15].
Kevin Murphy develops the IA for more e�cient inference in DBNs [10] using
the junction tree by Lauritzen and Spiegelhalter [9], which is ideal for answering
multiple queries [9]. The concept of lifting involves identifying similar random
variables and operating with a single representation [7, 14]. Our approach utilizes
time-induced symmetries in the behavior of DBNs. Besides exact inference, we
can do approximate inference, e.g., by representing the belief state as a product of
marginals [2]. Kevin Murphy gives an overview over approximate inference [10].
These approaches all require to perform costly inference for predictions. We pro-
pose an algorithm to skip almost all inference computations during prediction.

The huge cost for prediction queries in inference algorithms is because the
probability distributions are simulated iteratively. We present a new algorithm
PETS for logarithmic time-warping to a requested timestep and illustrate it
using DBNs as focus. When advancing in time during prediction, we always
perform the same calculations. PETS exploits these symmetries and constructs a
matrix-vector representation for them. The matrix representation enables GPU-
optimization of our algorithm and fast exponential squaring leads to logarithmic
time-warping. The construction of the matrix can be done o�ine, so the cost per
timestep is reduced signi�cantly from costly inference to a cheap matrix-vector
multiplication. The horizon t of a query is the number of timesteps between
the current timestep and the queried timestep. The runtime for large horizons
t of PETS is exponential only in the number of interface nodes, while the IA is
in the worst-case exponential in the number of nodes in the current timestep.
PETS can be used as a submodule in existing inference algorithms to speedup
prediction queries: If we are at timestep t and want to predict the probability
distribution in timestep t+ h, the inference algorithm could utilize our matrix-
vector formulation. Notably, we can run our algorithm on edge devices, when the
o�ine step is done beforehand, or on GPUs for more complex models or queries.

We start in Section 2 with the required preliminaries. After that, we present
PETS in Section 3. In Section 4, we evaluate PETS. We end with a conclusion.

PETS: Predicting E�ciently using Temporal Symmetries in Temporal PGMs 3

2 Preliminaries

In this section, we de�ne BNs and DBNs. BNs model probability distributions
exploiting conditional independences. Additionally, DBNs take temporal behav-
ior into account. We build on the de�nitions of Pearl and Murphy [12, 10].

A BN is a directed acyclic graph. For a probability distribution P (X1, . . . , Xn)
over random variables X1, . . . , Xn, the graph consists of n nodes, one for each
random variable. The edges in the network model in�uences. Each node Xi has
a conditional probability distribution (CPD) P (Xi | Pa(Xi)) assigned, where
Pa(Xi) stands for the parents of Xi in the network. The semantics of a BN is

P (X1, . . . , Xn) =

n∏
i=1

P (Xi | Pa(Xi)). (1)

While a BN can represent any probability distribution, it lacks the ability
to take temporal e�ects on the random variables into account. Figure 1 shows a
DBN. The umbrella network consists of two random variables R, indicating that
it is raining, and U , indicating that we take the umbrella. Both are repeated for
every day. A BN would need to include all random variables for all timesteps. A
DBN consists of two BNs (B0, B→) splitting the de�nition of a temporal process
into two parts: B0 de�nes a prior over the variables X1 = {Xi

1 | i = 0, . . . , n}
and B→ de�nes the temporal behavior. That is, the probability distribution of
all random variables in timestep t given their parents. The parents of a node Xi

t ,
t > 0, can be in the same timestep t or in the previous timestep t− 1. Figure 1
gives an example for de�ning B0 and B→ for the umbrella network by Russell
and Norvig [13]: The initial distribution de�nes P (R0) and P (U0 | R0) and the
transition distribution de�nes P (Rt | Rt−1) and P (Ut | Rt). The semantics can
be de�ned by unrolling the network, i.e., instantiating the model for T timesteps:

P (X0:T) =

T∏
t=0

n∏
i=1

P (Xi
t | Pa(Xi

t)). (2)

The prediction task is to compute P (Yt+π | Et) for t, π ∈ N0 with π > 0 for
some Y,E ⊆ X with Y ∩E = ∅. Figure 1 gives an example for a DBN modeling
the probability of rainy days and whether we take an umbrella [13]. When it
is raining (Ri = true), we take the umbrella (Ui = true) with a probability of
0.9. Otherwise, we take the umbrella with a probability of 0.1. If it is raining
today, it rains tomorrow with a probability of 0.7. Otherwise, it rains with a
probability of 0.3. On the �rst day, it rains with a probability of 0.7. Now, we
could be interested in the probability of P (U7 | R0), the probability that we take
the umbrella next week. In general, the probability distribution over variables
Xt can be computed given Xt−1. The key observation is, that there is a set
It−1 ⊆ Xt−1 su�cient for computing P (Xt | It−1) = P (Xt | Xt−1). This set is
called interface and consists of all variables in Bt−1 with successors in Bt [10].
The interface in Figure 1 is {Rt−1}. In the next section, we show how we can
exploit temporal symmetries to perform e�cient predictions by matrix-vector
multiplication.

4 F. A. Marwitz et al.

R0

U0

(a) B0 for the umbrella network

Rt−1 Rt

Ut

(b) B→ for the umbrella network

Fig. 1: Graphical representation of B0 and Bt for the umbrella network [13].

3 PETS Algorithm: Predicting E�ciently using Temporal

Symmetries

In this section, we develop PETS for fast prediction in temporal models assum-
ing a stationary process and �rst order Markov assumption. As stated earlier,
we focus on DBNs. When advancing in time, we multiply always the same tem-
poral behavior, encoded by P (It | It−1), on the model. The transition matrix A
captures these symmetries and models the change P (It | It−1). The state vec-
tor st contains the current distribution P (It) over the interface. Together, we
have a matrix-vector representation of the interface and it's change over time.
Now, we can proceed in time during prediction using cheap matrix-vector mul-
tiplication: Intuitively, we get P (It) =

∏t
i=1 P (Ii | Ii−1) · P (I0) = At · s0. The

outline of PETS is as follows: First, PETS builds the transition matrix and the
current state vector. Then, PETS can calculate the distribution over the in-
terface variables for each timestep by matrix-vector multiplication. In the end,
PETS materializes st−1 and answers queries on Bt using VE. Materializing is
the process of updating the CPDs such that the interface variables occur with
the probability given by st−1. Thus, PETS performs the following �ve steps,
which we describe in the same order: (i) identify interface, (ii) identify basis
probabilities, (iii) build transition matrix, (iv) build current state vector, and
(v) query answering. Algorithm 1 shows pseudocode for PETS.

Identify Interface In Section 2, we de�ne the interface. Thus, we can loop
over all nodes in B0 and check if they have a successor in B1.

Identify Basis Probabilities The interface renders two adjacent timesteps
independent of each other. Moreover, given an assignment for the interface vari-
ables, the probability distribution for all other variables is deterministic. In fact,
we can rewrite P (Xi

t) in terms of interface variables. Because we may need joint
probabilities, we cannot formulate this as a linear combination. We call the set of
distributions over (possibly joint) random variables required to compute P (It+1)
through P (It+1 | It) from P (It) basis probabilities. Then, we can write P (it−1),
it−1 ∈ It−1, as a linear combination of basis probabilities. The coe�cients of

PETS: Predicting E�ciently using Temporal Symmetries in Temporal PGMs 5

Algorithm 1 PETS. index maps an assignment to an index, relevant(x) maps
to the relevant basis probabilities to compute P (x)

Require: DBN (B0, B→), query P (Yt+π | E0:t) with π > 0
Ensure: p = P (Yt+π | E0:t)
identify interface and basis probabilities
for all assignments b for all basis probabilities B do

R← relevant(B)
for all assignments r of R do

A[index(b), index(e)]← P (B = b | R = r) ▷ �ll transition matrix
end for

end for

for all assignments b for all basis probabilities B do

st[index(b)]← P (Bt = b | E0:t) ▷ �ll state vector
end for

st+π−1 ← Aπ−1 · st ▷ advance in time
unroll B0, B1

materialize st+π−1 into B0 ▷ ensure CPDs to match st
p← P (Y1) on B0, B1 ▷ answer query

the linear combination constitute the transition matrix modeling the temporal
behavior. We could also use the joint probability distribution over the interface
as basis probabilities. Exploiting conditional independences, this is not always
needed and in this subsection, we describe a method for �nding only the neces-
sary joint probabilities.

Assume we want to compute P (Ut) in Figure 1. Unrolling only the current
timestep, we get P (Ut) = P (Ut | Rt) ·P (Rt | Rt−1) ·P (Rt−1) by Equation 2. The
conditional probabilities P (U1 | R1) and P (R1 | R0) are part of the model and
thus known. We call P (Rt−1) a basis probability, because we can write P (Ut) as
a linear combination of P (Rt−1). For some variables, we may have to calculate a
joint probability. We cannot write this as a linear combination of single variables,
so we include the joint variables as an additional basis probability. This enables
us to further use the matrix formulation.

For �nding the required joint probabilities to include as basis probabilities, as
we want to keep the set as small as possible, PETS runs a depth-�rst search for
each node v ∈ I following edges in reversed direction and terminating a branch
once it reaches a node in the interface. This cannot be substituted by a simple
lookup of the predecessors, because an interface variable may depend on a non-
interface variable, which itself depends on an interface variable. The set of needed
basis probabilities relevant(Xi) for a variable Xi are all nodes in the interface
visited during the depth-�rst search for that node and added to the set of basis
probabilities. Because some variable v ∈ relevant(Xi) may need the probability
of other variables in the interface, we augment the basis probabilities iteratively:
For each set relevant(Xi), PETS adds the set

⋃
v∈relevant(Xi) relevant(v) to

the set of basis probabilities and sets relevant(relevant(Xi)) to the newly added
basis probability. Then, PETS unions all basis probabilities sharing some variable

6 F. A. Marwitz et al.

and sets relevant accordingly to account for joint treatment of same variables.
By the end of this step, we have identi�ed all basis probabilities M . For storing
them in a matrix and vector, we �x any order on them. In the umbrella network,
the basis probabilities consist of only Rt−1 and thus match the interface.

Build Transition Matrix We can calculate all probability distributions in Bt

with the help of the basis probabilities. We can encode the calculation of the
basis probabilities in a matrix, because we argue earlier that we can write the
probabilities as linear combinations of basis probabilities. Thus, the transition
matrix A models P (Mt | Mt−1). The nodes mt−1 ∈ Mt−1 and mt ∈ Mt do not
have to be neighbors. Therefore, we need to calculate P (mt = i | Mt−1) for
all m ∈ M and store that in the corresponding row in A for mt = i. In fact,
PETS calculates this probability by running VE with all evidences Mt−1 = j
over all domains to obtain the linear combination of mt = i on basis Mt−1. In

the umbrella network, the transition matrix is A =

(
0.7 0.3
0.3 0.7

)
. Note that, in

general, the transition matrix is not simply composed of transition probabilities.

Build Current State Vector The current state vector st captures P (Mt).
Therefore, PETS runs VE to calculate P (mt) for all mt ∈ Mt. With the transi-
tion matrix A, PETS can then calculate the state at the requested timestep t+π

by st+π = Aπ ·st. In the umbrella network, the initial state vector is s0 =

(
0.3
0.7

)
.

Query Answering Assume we want to know P (Yt+π | Et) for some Yt+π ⊆
Xt+π, Et ⊆ Xt. In short, PETS answers queries in three steps: First, PETS
calculates the state vector st+π−1. Then, PETS materializes st+π−1 forcing the
distribution over the interface variables to match the state vector. Finally, PETS
runs VE to answer the query. When an observation is added at some timestep,
we can update the probability distributions over the interface accordingly and
update the state vector. Afterward, our algorithm can be used further.

For calculating st+π−1, PETS computes the current state vector st regarding
Et and fast forwards to st+π−1 = Aπ−1 · st. Materializing st+π−1 means forcing
the CPDs of the interface variables to match the state vector. For basis prob-
abilities containing only one random variable, we can just update the CPD of
that variable and remove all ingoing edges. For joint basis probabilities, we must
ensure that these random variables are treated jointly and not independently:
We add a new node for new variable Jj for all joint basis probabilities j ∈ M .
We connect Jj to all random variables included in the joint basis probability j.
We update the CPD of variable v included in basis probability j to pass through
its value assigned by Jj with probability one. Analogously, speaking in terms of
IA, we construct the ingoing message for the junction tree for timestep t.

Integrating Query Variables Often we are interested in the probability dis-
tribution of the same query variable yt+π for many t. In this case, PETS calls

PETS: Predicting E�ciently using Temporal Symmetries in Temporal PGMs 7

VE for every t. However, we can integrate yt into the transition matrix and state
vector to compute the probability distribution of yt on the �y skipping all VE
calls except for initialization. The basic idea is to treat yt as a basis probability
and integrate yt into the transition matrix and the state vector. Consequently,
we have to redo all mentioned steps regarding basis probabilities for the newly
added one. In the end, we do not need VE to calculate P (yt+π) as opposed to
general queries of the form P (Yt+π | Et) and the inference step collapses into
matrix-vector multiplication. Suppose we want to know P (Ut) for all t ∈ [1, T]
in the umbrella network. We then have

A =


0.7 0.3 0 0
0.3 0.7 0 0
0.59 0.31 0 0
0.41 0.69 0 0

 , s0 =


0.3
0.7
0.31
0.69

 , (3)

with the �rst two components in referring to R and the last two to U . The last
two rows in A represent P (Ut | Rt1) = P (Ut | Rt) · P (Rt | Rt−1). The last
two entries in s0 are the probability distribution P (U0) = P (U0 | R0) · P (R0).
Please note that the umbrella network is a very small DBN, leading to a simple
transition matrix and current state vector.

Correctness and Runtime Unrolling a DBN yields a BN, and Equations 1
and 2 coincide. For calculating P (Xi

t), we need to calculate the probability dis-
tribution of the parents of Xi, going back to B0. By the �rst-order Markov
assumption, it is su�cient to extend Equation 1 only up to the interface to the
previous timestep. Then, we have a linear combination in the basis probabilities,
which include the interface variables and their required joints. By construction,
our transition matrix stores the coe�cients of the linear combination and the
state vector the probability distribution over the basis probabilities. Therefore,
one matrix-vector multiplication advances the probability distribution over the
basis probabilities exactly one timestep.

The runtime of PETS is at most O(t · q3 · i6 · d3k + q2 · i4 · d2k · n · 2n) for
horizon t, number of query variables q integrated into state vector, interface size i,
maximum domain size d, maximum number of reachable nodes in interface k and
n nodes in B0. We can speed the �rst summand up by replacing t by log t when
using fast exponential squaring instead of iterative matrix-vector multiplication.
We can split the runtime in an o�ine preprocessing and online prediction part.
The o�ine runtime is O(q2 · i4 · d2k · n · 2n), mainly because of the matrix
construction. The online runtime is O(t·q3 ·i6 ·d3k), when the current state vector
is given. The construction of the current state vector is in O(q ·i2 ·n·2n+q ·i2 ·dk)
and the IA has to compute it anyhow.

Summing Up In this section, we develop PETS, a new prediction algorithm
capable of answering P (Yt+π | Et) for some Yt+π ∈ Xt+π, Et ⊆ Xt. First,
PETS identi�es the basis probabilities required for computing the probability
distribution over the interface variables. Then, PETS constructs a transition

8 F. A. Marwitz et al.

matrix, which models the temporal behavior of the basis probabilities, and a
state vector, containing the probability distribution for the basis probabilities in
the current timestep. Finally, PETS uses matrix-vector multiplication to advance
in time. The horizon-dependent runtime is O(t · q3 · i6 · d3k). In particular, the
cost per timestep is only exponential in the number of interface variables.

4 Evaluation

The main motivation behind PETS is to reduce costly VE calls to advance in
time and replace them with cheap matrix-vector multiplications. In this section,
we evaluate the runtime of PETS compared to IA. We use pgmpy to imple-
ment PETS and use its implementation of the IA [1]. We evaluate two variants
of PETS: The �rst is PETS without integrating the query variables into the
transition matrix and state vector, and the second is with integrating the query
variables. We call the second variant integrated PETS. When measuring the run-
time of (integrated) PETS, we include the construction of the transition matrix
and state vector. In particular, this means that PETS is never slower when only
the online runtime is measured. The evaluation is divided into three parts: First,
we investigate the e�ect of saving VE calls. Second, the e�ects of a growing
interface, and third, a theoretical view of when PETS outperforms IA.

Faster Runtime We use two DBNs to evaluate PETS: the umbrella network as
given in Figure 1 and a dynamic sprinkler network [4]. The task for all algorithms
is to answer {P (Yπ)}15π=1 for all random variables Yπ in Bπ. We plot the runtime
in seconds against growing horizon π ∈ [1, 15]. The runtime of the o�ine step
is plotted for π = 0. Figure 2 shows the results. The runtime of the IAs grows
quadratic for both DBNs, while the runtimes of the PETS variants are linear. For
the umbrella network and a horizon of 15, PETS outperforms the IA by a factor
larger than 15. Integrated PETS outperforms the IA by a factor of more than
39. The o�ine step accounts for 15 % of the runtime in timestep 15 for PETS,
and almost 70 % for integrated PETS. For the dynamic sprinkler network and a
horizon of 15, PETS outperforms the IA by a factor larger than 14. Integrated
PETS outperforms the IA by a factor of more than 20.

Growing Interface Size To test the e�ect of increasing interface size on the
runtime of PETS, we construct a sink network consisting of n interface variables
connected to a sink, e.g., the umbrella network with n interface variables all
pointing to the sink umbrella.

Figure 3a shows the runtime for the three algorithms on the sink network
with interface sizes starting at two and going up to nine. PETS is faster than
IA because PETS does not store the full joint probability distribution over the
interface variables by default. PETS performs a depth-�rst search to �nd only
the necessary basis probabilities and stores a small transition matrix exploiting
conditional independence. However, integrated PETS does, for this network,

PETS: Predicting E�ciently using Temporal Symmetries in Temporal PGMs 9

(a) Test results for the umbrella net-
work as given in Figure 1 [13].

(b) Test results for a dynamic variation
of the sprinkler network [4].

Fig. 2: Prediction times for two DBNs.

store the full joint to answer queries about non interface variables, and therefore
the runtime is exponential in the interface size. Figure 3b shows the runtime
of the three algorithms for the sink network with an interface size of eight,
querying {P (Yπ)}25π=1. In this �gure, we can see the labor-intensive preprocessing
when integrating query variables: Integrated PETS is about 30 times slower than
PETS. In spite of this, the IA is slower than both variants of PETS from horizon
11 on. This shows that even some heavy preprocessing pays o�. The di�erence in
runtime between PETS and integrated PETS is because integrated PETS makes
many VE calls to integrate query variables into the matrix-vector representation.
As Figure 3b shows, this does not pay o� when querying only one horizon at
a time, but it can be bene�cial when querying in many timesteps. Figure 3b
shows that integrating query variables does not pay o� when querying only once.
However, it can be bene�cial when querying in many timesteps. PETS requires
one VE call per prediction query of non-interface variables, so integrated PETS
is faster when the number of prediction queries is greater than the number of
VE calls required to integrate the query variables.

Theoretical Evaluation PETS includes preprocessing to construct the matrix-
vector representation. In this subsection, we investigate at what point this pre-
processing pays o� compared to the IA. In the worst case, the matrix is con-
structed over a joint basis probability for the entire interface. Then we have dk

possible evidences leading to O(i4 · d2k) VE calls. For this estimation, we run
VE once for each entry in the matrix. After that, we only have one more VE
call for each prediction query. The IA calls VE once per timestep. Let n be the
number of prediction queries and hi the horizon for each prediction query. Then
PETS outperforms IA in terms of VE calls once

∑
hi > i4 · d2k + n. In the

umbrella network, we have a variable with boolean cardinality in the interface.
Thus, PETS performs 4 VE calls to construct its matrix. With only one pre-
diction query, PETS is faster once h > 5 or overall two prediction queries with

10 F. A. Marwitz et al.

(a) Prediction time for growing inter-
face size in the sink network.

(b) Prediction time for the sink net-
work with an interface size of eight.

Fig. 3: Prediction times for increasing interface sizes.

h = 3. In general, one is often interested in prediction from every time step into
the future with a given horizon, so the initial o�ine costs pay o� fast.

5 Conclusion

Temporal inference algorithms proceed iteratively in time for prediction queries.
However, we multiply the same temporal behavior for each timestep to the model.
We propose PETS, a new algorithm that exploits these temporal symmetries
to time-warp to the requested timestep for e�cient prediction. PETS stores
the transition probabilities P (It | It−1) of the interface in a transition matrix.
Next, a vector is constructed to capture the probabilities for the current state.
After that, we can proceed in time by simple matrix-vector multiplication, as
opposed to expensive inference. Moreover, the matrix-vector multiplication can
be optimized on GPUs. The o�ine runtime of PETS is exponential in the number
of random variables in the network, while the online runtime per timestep is only
exponential in the size of the interface. Whereas, the runtime per timestep of
the IA is exponential in the number of nodes in the network. Having a transition
matrix A to go forward in time naturally raises the question whether we can
go back in time with a backward transition matrix over the interface to answer
hindsight queries. Moreover, we can investigate including lifting in the matrix
construction leading to possible further speedups. Additionally, we can try to
integrate the ideas presented in this paper to speed up planning in PGMs [5].

Acknowledgements The research for this paper was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
Excellence Strategy � EXC 2176 'Understanding Written Artefacts: Material,
Interaction and Transmission in Manuscript Cultures', project no. 390893796.
The research was conducted within the scope of the Centre for the Study of
Manuscript Cultures (CSMC) at Universität Hamburg.

PETS: Predicting E�ciently using Temporal Symmetries in Temporal PGMs 11

References

1. Ankan, A., Panda, A.: pgmpy: Probabilistic graphical models using python. In:
Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer
(2015)

2. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In:
Proceedings of the Fourteenth conference on Uncertainty in arti�cial intelligence.
pp. 33�42 (1998)

3. Dagum, P., Galper, A., Horvitz, E.: Dynamic network models for forecasting. In:
Uncertainty in arti�cial intelligence. pp. 41�48. Elsevier (1992)

4. Darwiche, A.: Modeling and reasoning with Bayesian networks. Cambridge univer-
sity press (2009)

5. Gehrke, M., Braun, T., Möller, R.: Lifted temporal maximum expected utility. In:
Advances in Arti�cial Intelligence: 32nd Canadian Conference on Arti�cial Intelli-
gence, Canadian AI 2019, Kingston, ON, Canada, May 28�31, 2019, Proceedings
32. pp. 380�386. Springer (2019)

6. Hartwig, M.: New Methods for E�cient Query Answering in Gaussian Probabilistic
Graphical Models. Ph.D. thesis, University of Lübeck (September 2022), phD thesis

7. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. arXiv
preprint arXiv:1205.2637 (2012)

8. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

9. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society: Series B (Methodological) 50(2), 157�194 (1988)

10. Murphy, K.P.: Dynamic bayesian networks: representation, inference and learning.
University of California, Berkeley (2002)

11. Pearl, J.: Probabilistic reasoning using graphs. In: Uncertainty in Knowledge-Based
Systems: International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems Paris, France, June 30�July 4, 1986
Selected and Extended Contributions. pp. 200�202. Springer (1987)

12. Pearl, J.: Bayesian networks (2011)
13. Russell, S.J., Norvig, P.: Arti�cial intelligence a modern approach. Pearson Edu-

cation, Inc. (2010)
14. Singla, P., Domingos, P.M.: Lifted �rst-order belief propagation. In: AAAI. vol. 8,

pp. 1094�1099 (2008)
15. Zhang, N.L., Poole, D.: A simple approach to bayesian network computations. In:

Proc. of the Tenth Canadian Conference on Arti�cial Intelligence (1994)

