
OBDA Stream Access Combined with Safe First-Order Temporal
Reasoning

Özgür L. Özçep and Ralf Möller and Christian Neuenstadt

28.02.2014

Abstract

Stream processing is a general information processing paradigm with different applications
in AI. Most stream languages rely on the concept of a sliding window with a bag semantics,
which is in order for relational streams but may lead to inconsistencies when applied on streams
of assertions evaluated against a concep- tual model. Our approach uses a different semantics
based on ABox sequencing. The query language provides an expressive first order temporal
logic for inter-ABox reasoning. Safety conditions tame the expressiveness so that a meaning
preserving transformation of the query to backend queries on the sources as foreseen in the
OBDA paradigm is guaranteed.

1



OBDA Stream Access Combined with Safe First-Order
Temporal Reasoning (Extended Version)

Özgür L. Özçep1 and Ralf Möller1 and Christian Neuenstadt1

Abstract. Stream processing is a general information processing
paradigm with different applications in AI. Most stream languages
rely on the concept of a sliding window with a bag semantics, which
is in order for relational streams but may lead to inconsistencies
when applied on streams of assertions evaluated against a concep-
tual model. Our approach uses a different semantics based on ABox
sequencing. The query language provides an expressive first order
temporal logic for inter-ABox reasoning. Safety conditions tame the
expressiveness so that a meaning preserving transformation of the
query to backend queries on the sources as foreseen in the OBDA
paradigm is guaranteed.

1 Introduction

Data processing over streams—an ever extended set of time-tagged
data—is a general information processing paradigm with realizations
in different AI applications such as understanding narratives on top
of NLP, interpretation of video streams [9], complex event processing
[2], etc. Early relational stream data management systems (RSDMS)
such as [3] rely on the concept of a sliding window, which is used
to, first, collect data from the stream as far as allowed by the win-
dow size, second do calculations of the contents, and then move for-
ward in time to incorporate new incoming data. The window concept
also has become important in recent RDF stream processing systems
such as C-SPARQL [18], which provides online incremental reason-
ing w.r.t. RDFS+, or SPARQLstream [5], which provides first ideas
on accessing data streams over ontologies and mappings according to
the OBDA paradigm [6]. In OBDA queries on the ontological level
can be transformed/reduced to queries on the backend data sources—
thereby preserving meaning.

All recent systems for processing streams using conceptual mod-
els have in common that they use a “ bag of assertions” semantics for
the window, whereby all incoming assertions in a stream (indepen-
dently of there time tag) are put into a bag. Though this is a direct
adaptation of the window semantics for relational streams as expli-
cated by [3], it has to be noted that this loss of temporal information
bears problems due to potential logical inconsistencies that can occur
w.r.t. the conceptual model.

Also because of this reason, the query language STARQL (pro-
nounced Star-Q-L), which we develop in this paper, implements a
different semantics based on the general concept of ABox sequenc-
ing. Assertions in a window are depending on the time stamps and
the chosen sequencing strategy grouped into ABoxes, the result be-
ing a sequence of ABoxes (at every time point). The semantics of
processing the ABox sequencing has two aspects. The first, intra-

1 Institute for Software Systems, Hamburg University of Technology,
Germany, email: {oezguer.oezcep, moeller, christian.neuenstadt}@tu-
harburg.de

ABox OBDA, is a nearly classical OBDA for each ABox; in fact,
STARQL embeds classical SPARQL queries (http://www.w3.
org/TR/rdf-sparql-query/) within its grammar definition.
However, different from classical OBDA, each ABox is dynamically
constructed from a stream and may have to be combined with pos-
sibly huge (static) ABoxes modeling non-temporal knowledge. The
second aspect, inter-ABox reasoning, combines the outcomes of the
first component and applies some form of temporal reasoning. Both
aspects are mainly covered by the highly expressive sublanguage
within STARQL.

In this paper, we present a result related to the second aspect of
the STARQL semantics. The overall aim is to guarantee that every
STARQL query can be transformed into, e.g., a CQL query [3] over
the backend sources. Intra-ABox OBDA is not problematic w.r.t. the
rewriting of queries, i.e., w.r.t. compiling the intensional knowledge
of the TBox into the query. But for the unfolding of the queries (map-
ping the rewritten queries to queries in the language of the backend
sources) one cannot rely on the unfolding mechanisms for classical
OBDA, i.e., here intra-ABox OBDA and inter-ABox are not sepa-
rable. In order to guarantee unfoldability, the highly expressive first
order logic used in query clauses requires the use of a safety mecha-
nism, which in essence will guarantee the fulfilment of the so-called
well known domain independence property. Considering this prop-
erty, the STARQL framework can be considered to be a contribution
for integrating stream processing into many AI applications.

The article is structured as follows. We first discuss related work
to motivate the query language introduced afterwards. With some
examples from sensor measurement scenarios we motivate the main
features of this language. We define a suitable semantics of a sub-
language of STARQL for inter-ABox clauses, and demonstrate a
safety mechanism to guarantee domain independence. The appendix
contains the syntax and the semantics of STARQL as well as the
proof of the main theorem. Related Work We focus our discussion
on stream-based data processing literature, and assume that sensor
data is transferred to a computer center. From a database perspec-
tive, with data passed from sensors to a central computer system,
many stream related investigations by different research groups have
been pursued in the period from 2003 to 2008. Though not directly
part of AI research, many of the fundamental concepts such as that
of a window are used in more AI/knowledge representation oriented
stream systems such as C-SPARQL, SPARQLstream etc. There exist
different data stream management systems (DSMSs), mainly with
SQL-like stream query languages such as, for instance, CQL [3].
The languages are semantically well-founded and systems have been
tested with well-defined benchmarks. Besides theoretical work and
academic prototypes, such as STREAM [3], TelegraphCQ[7], Auro-
ra/Borealis [10], or PIPES [13], one can also see various commercial
systems, either standalone systems such as StreamBase, Truviso, or



stream extensions to commercial relational DBMSs (MySQL, Post-
greSQL, DB2 etc.). Nevertheless, as of now, the stream community
is far from having a query standard for DSMS (see [11] for some
ideas).

In the description logic (DL) community, stream-based data pro-
cessing w.r.t. ontologies was first mentioned in [8]. For a recent
stream processing system using DL see [9]. Stream-based processing
has also been investigated w.r.t. the RDF data model. Prominent sys-
tems are C-SPARQL [18] (developed within LarKC, www.larkc.
eu), SPARQLstream [5], or CQELS [16]. For querying time-tagged
triples all systems use extensions to SPARQL. In the spirit of CQL
these systems use some “window” concept to support reactive data
processing with continuous queries. C-SPARQL introduces the no-
tion of “stream reasoning”, referring to answering window-based
continuous queries w.r.t. RDFS+ ontologies. All of theses approaches
rely on the bag-semantics for windows, which as mentioned in the in-
troduction, may cause problems w.r.t. a conceptual model. Consider,
e.g., a model (a TBox in DL speak) stating that a sensor shows at one
time point at most one value. Hence assertions from different time
points with different values for the same sensor may contradict each
other if one forgets about the time stamp. åTo better support scalabil-
ity for ontology-based query answering, a technique called “ontology
based data access” (OBDA) has been proposed. In ontology-based
data access, an ontology with moderate expressivity (DL-Lite [6]) is
used to represent the conceptual domain model such that queries (or
event specifications) can be transformed (rewritten and unfolded) in
a sound and complete way in order to execute them on a conventional
database system or triplestore. In addition, OBDA introduces the use
of so called mapping rules for mapping database representations into
ontology representations, with the advantage that ontology represen-
tations need not be materialised since mapping rules are considered
in the query rewriting process.

Both, temporalizing OBDA (e.g. [4],[14]) and streamifying
OBDA (see, e.g., [18] for RDFS++) are hot topics in current investi-
gations. In particular, state sequences are investigated w.r.t. to OBDA
on streaming data such that queries can be specified using formulas
from linear temporal logic (LTL) [4]). Compare also the languages
used in complexed event processing, e.g., EP-SPARQL/ETALIS [2].
Nonetheless, tests with different streaming benchmarks show (see
e.g. [19]) that implemented systems for stream processing w.r.t. con-
ceptual data models are just at the beginning of their development.

The plethora of approaches indicates that there is no single way
to deal with streaming data. Nonetheless, we argued that the bag-
semantics used in the RDFS or DL stream systems from above may
lead to problems. Hence, in the next section we will explore an ex-
tensible framework based on the ideas of ontology-based data access
for scalability and window-based query specification for expressiv-
ity and flexibility such that event specifications or specifications in
linear temporal logic can be integrated.

2 Sensor Measurement Scenarios

The sensor measurement scenario is considered to be a typical ap-
plication scenario for stream reasoning, and it can easily be em-
bedded into the context of Linked Open Data and the Seman-
tic Web (see http://www.w3.org/2005/Incubator/ssn/
XGR-ssn-20110628/ for a nearly standard ontology for seman-
tic sensor networks). Hence, we develop our query language with
examples from this scenario, thus enabling better comparability with
other approaches.

Before going into the details of the scenario we recapitulate the

usual use of the stream notion. A temporal stream is a set of pairs
(d, t). The first argument is instantiated by an object d from a do-
main D, which we call the domain of streamed objects. The second
argument is instantiated by a timestamp t from a structure (T,≤)
of linearly ordered timestamps. The elements of the the stream are
thought to be arriving at the query answering system in some or-
der. In the synchronized stream setting, which will be in the focus
of this article, one demands that the timestamps in the arrival or-
dering make up a monotonically increasing sequence. In the context
of OBDA for streams, we will have to deal with two different do-
mains of streamed objects. The first domain consists of relational
tuples from some schema; in this case we call the stream a relational
stream. The second domain is made up by data facts, either repre-
sented as ABox assertions or as RDF triples (and as such may be
inhomogeneous).

2.1 A Concrete Example

We discuss a gas turbine monitoring and control application sce-
nario, which is provided by one of the industrial stakeholders
(SIEMENS) within the EU funded FP7 project Optique (http:
//www.optique-project.eu/). STARQL is used and tested
in this project also within this scenario.

Assume that few service centers are run in order to monitor, ana-
lyze, and control hundreds of turbines in various power plants. The
storage system in the data center can be viewed as a central DB,
which stores different types of information, the most relevant being
static data on the one hand, such as turbine infrastructure data, as
well as, on the other hand, time-stamped measurement data stem-
ming from many sensors. In addition, so-called event data (“mes-
sages”) from control units are stored with timestamps indicating the
creation time of the events. Control units are small computation units,
seen as black boxes, getting input from sensors.

A (normalized) relational DB schema for the monitoring scenario
is shown below for demonstration purposes.

SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID,

catID, MesEventText)
CATEGORY(catID, catName)

The schema models two categories of messages, measurements
and event messages. The latter are produced by control units and are
partitioned into categories (categoryID). Some messages contain
warnings or failure hints, others indicate the operational status of the
turbine (start up, running, stopping) and so on. The infrastructure
data contains the description of sensors, their names, and their types,
the components to which they are attached, and, in turn, the assem-
blies to which these are attached.

It is well known and holds also for the monitoring use case that
continuous queries are useful for online predictive diagnosis. But
they can also be effectively used for event detection in a reactive di-
agnosis setting by “replaying” measurements, i.e., simulating NOW
being advanced while starting in the past (maybe faster than in real-
time). Different sets of conceptual domain models might be used dur-
ing these “simulations”. Please note that ontology-based query an-
swering is very important in this context because for different simula-

2



tions one might use different ontologies without changing the queries
manually.

2.2 Lifting the Data to the Logical Level
Accessing data trough the interface of an ontology presupposes a
method to lift the data stored in a SQL database or arriving in a
relational stream into the logical level of ontologies. In the OBDA
setting the chosen method is that of mappings, formally realized as
rules with logical queries on the left hand and SQL on the right hand.

In the monitoring scenario, assume that the ontology signature
contains a concept symbol Sens (for sensors) and an attribute sym-
bol name. The following mapping induces the set of ABox asser-
tions stating which individuals are sensors and how they are named.

Sens(x), name(x, y)←−
SELECT f(SID) as x,Sname as y FROM SENSOR

The lefthand side of the mapping is a conjunctive query and the right-
hand side is a SQL query in which all the variables of the CQ are
used. The information in the row of the measurement table is mapped
to unary facts (Sens(x)) and binary atomic facts (name(x, y)). A
similar mapping could determine all burner tip temperature sensors
BTTSens .

A procedure for complete answering queries w.r.t. a TBox, which
contains intensional knowledge, demands to incorporate the implicit
entailments of the data w.r.t. the TBox. The perfect rewriting ap-
proach behind OBDA does not use classical reasoning on the TBox
and ABox, but compiles a given query using the TBox axioms into a
new query, which is evaluated directly onto the data and yields sound
and complete answers. So, the ABox is not materialized.

The axioms in the pure DL-Lite TBox have to be understood as
stating that at every time point every burner tip temperature sensor is
a temperature sensor, similarly for temperature sensors and sensors.

Besides these traditional mapping, one has to declare mappings
with time tags. As an example, we describe a mapping that gives the
values y which a sensor x shows at time point z.

val(x, y)〈z〉 ←− SELECT f(SID) AS x, Mval as y,
MtimeStamp AS z FROM MEASUREMENT

The ABox induced by such mappings is called a temporal ABox.
Quite similar to the mappings producing time tagged assertions we

can construct mappings from relational streams to streams of time
tagged assertions. In the mapping above, one just has to replace the
reference to the table MEASUREMENT by a reference to a named re-
lational stream with measurements, say relSMsmt (cf. the stream
mapping language S2O in [5]).

To make it concrete, we assume that the relational streams are de-
scribed in the stream relational query language CQL [3]. So assume
that relSMsmt is a stream of time tagged tuples, which arrive over
a TCP socket and may, e.g., be produced by a simulation stream on
the table MEASUREMENT. The stream mapping then would be

val(x, y)〈z〉 ←− SELECT
Rstream(f(SID) as x, Mval as y, MtimeStamp as z)
FROM relS MSmt[NOW]

The query language which will be introduced in the next sec-
tion operates on the ontological level, its inputs being TBoxes,
static ABoxes, temporal ABoxes and (not necessarily homogeneous)
streams of ABox assertions. The stream of ABox assertions under-
lying most of the following examples is the measurement stream

SMsmt . Its initial part, called S≤5s
Msmt here, contains timestamped

ABox assertions giving the value of a temperature sensor s0 at 6
time points starting with 0s.

S≤5s
Msmt = {val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉

val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

3 The Query Language STARQL
Now let us see informally, how an appropriate query language
for sensor data streaming scenarios could look like within the
challenging paradigm of OBDA. We will describe the query lan-
guage STARQL (Streaming and Temporal ontology Access with a
Reasoning-based Query Language) on the abstract logical level,
thereby assuming that the data in the databases and the relational
streams have already been mapped (virtually) to the logical level of
TBoxes, static or temporal ABoxes, and ABox assertion streams.

3.1 A Basic Example
For the ease of exposition let us first assume that the terminological
TBox is empty. The engineer may be interested whether the temper-
ature measured in the sensor s0 grew monotonically in the last two
seconds, i.e., in the interval [NOW − 2s,NOW ]. We first present
the solution in our new streaming language STARQL and use it to
explain the main conceptual ideas, the most important one being that
of ABox sequencing.

CREATE STREAM S_out AS
SELECT { s0 rdf:type RecentMonInc }<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
SEQUENCE BY StdSeq AS SEQ
HAVING FORALL i < j IN SEQ,?x,?y:
IF ({ s0 val ?x }<i> AND { s0 val ?y }<j>)
THEN ?x <= ?y

The solution is centered around a window of range 2s. Every 1 sec-
ond, which is determined by the slide parameter and denoted above
by ->1s, the window moves forward in time and gathers all times-
tamped assertions whose timestamp lies in the interval [NOW-2s,
NOW]. Here, NOW denotes the current time point. The development
of the time has to be specified locally in the query or directly for all
queries by some pulse function.

At every time point, the window content is a set of timestamped
assertions which together make up a temporal ABox. For the first two
time points 0s, 1s we do not get well defined intervals for [NOW −
2s,NOW ], but it is natural to declare the contents at 0s and 1s as the
set of timestamped ABox assertions which have arrived up to second
0 resp. 1. For the other time points, we have proper intervals, and so
the resulting temporal ABoxes from 0s to 5s are defined as follows.

Time Temporal ABox
0s {val(s0, 90◦)〈0s〉}
1s {val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉}
2s {val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉}
3s {val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉}
4s {val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉}
5s {val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

Now we have at every second a set of timestamped assertions. In
order to apply ABox and TBox reasoning we group these assertions
together into (pure) ABoxes. The result of the grouping is a finite

3



sequence of ABoxes (ABoxes are sequenced w.r.t. the order of their
timestamps). We can use this sequence of classical ABoxes to filter
out those values v for which it is provable that val(s0, v) “holds”.

The ABox sequencing operation is introduced by the keyword
SEQUENCE BY in the query. There may be different methods to get
the sequence, the most natural one is to merge all assertions with
the same timestamp into the same ABox. The query above refers to
this built-in sequencing method StdSeq. Other sequencing methods
may be defined by following an SQL-like create declaration.

In our simple example, the standard ABox sequencing leads to
simple ABoxes, as the stream does not contain ABox assertions with
the same timestamp. Please note that ABoxes in a sequence can be
combined with larger static ABoxes (see below). Just for illustration,
we note that the ABox sequence at time 5s is defined as follows:

Time ABox sequence
5s {val(s0, 92◦)}〈3s〉, {val(s0, 93◦)}〈4s〉, {val(s0, 95◦)}〈5s〉

The sequence at 5s contains the timestamped ABoxes, e.g., the first
one is the ABox {val(s0, 92◦)} with timestamp 〈3s〉.

Now, as there is at every time point a sequence of ABoxes, one can
refer, at every time point, to every (pure) ABox within the sequence
in order to apply DL reasoning. This is actually done in the query
above within a so-called HAVING clause. Here, the HAVING clause
is a boolean expression. In general, it may be some predicate logical
formula with open variables.

The evaluation of the expression { s0 val ?x }<i> (or
val(s0, x)〈i〉 in DL notation) relies on DL deduction: Find all x that
can be proved to be a filler of value for s0 w.r.t. to the ABox Ai.
A TBox and other (static) ABoxes used for deduction can be men-
tioned in a USING clause. Similarly, { s0 val ?y }<j> means
that one wants to find all values y which are provably recorded in
sensor s0 w.r.t. the jth ABox in the sequence. The resulting values
x, y must be such that the y (recorded in the later ABox j) must be
larger than the former.

The result of the monotonicity query is a stream of ABox as-
sertions of the form RecMonInc(s0)〈t〉, defined by the form be-
ing specified after the SELECT keyword. The timestamp template
<NOW> indicates that the assertions for the output stream are times-
tamped with the evolving time parameter of the sliding window. For
the first seconds until 5s the output stream is defined as follows:

S≤5s
out = {RecMonInc(s0)〈0s〉, RecMonInc(s0)〈1s〉,

RecMonInc(s0)〈2s〉, RecMonInc(s0)〈5s〉}

So, the query correctly generates assertions saying that there were
recent monotonic increases according to the query for time points 0s,
1s, and 2s, and then again only at time point 5s.

As the monotonicity condition could be useful for other different
queries, our language also provides the possibility to define names
for HAVING predicates. We call these definitions “aggregators”. The
aggregator definition is demonstrated in the following listing.

CREATE AGGREGATE OPERATOR monInc(SEQ,f(*)) AS
FORALL i < j in SEQ,x,y:
IF (f(x)<i> AND f(y)<j>) THEN x <= y

The aggregation operator monInc(·, ·) gets two arguments, the first
being a sequence of ABoxes and the second being a boolean func-
tional in one open argument, i.e., an expression standing for a term
with one argument, which if substituted results in a boolean term. In

the case of the new query, the functional is given by ?sens val *.
Here, the variable ?sens is thought to be already bound. The open
argument is marked by a star *. Please note that monInc(·, ·) is just
one example used here for illustration purposes.

3.2 Multiple Streams

Many interesting time series features have to combine values from
different streams. In the monitoring scenario, this could be the com-
bination of the measurement streams with the event streams in order
to detect correlations. The simplest combination is that of a union
of streams which is directly provided in the same comma-separated
notation as in pure SQL.

SELECT { ?sens rdf:type RecentMonInc }<NOW>
FROM S_Msmt_1 [NOW-2s, NOW]->1s,

S_Msmt_2 [NOW-4s, NOW]->2s
...

But in many cases, the simple union of the ABoxes is not an ap-
propriate means, because the timestamps of the streams might not be
synchronized, so the simple idea of joining ABoxes with the same
timestamp may lead to an ABox sequence that is well defined but
pragmatically irrelevant. For example, if some temperature sensor is
recorded to show some value at time 8:35h 12s whereas a different
(pressure) sensor shows some value at a slightly different time 8:35h
33s, then the engineer may have an interest in converting these asser-
tions into the same ABox: Because, only if the values of both sen-
sors fulfil some conditions “at the same time” (read as “in the same
ABox”) will the engineer be able to infer additional knowledge.

For these situations, STARQL provides means for directly defin-
ing other (non-standard) sequencing operation, which can be re-
ferred to within the SEQUENCE BY clause of a query. For example,
STARQL provides sequencing constructors based on typical similari-
ty/equivalence relations on timestamps. The similarity relations must
obey the time ordering, so that the similarity classes can be consid-
ered as focussing-out operations on the timestamps. Having different
sequencing constructors means a general modeling flexibility which
cannot be simulated conveniently with preprocessing steps or with
mappings on the streams. In particular, one can think of sequencing
methods for which it is necessary to invoke deduction in the grouping
of the ABox in order to check, e.g., consistency.

4 The HAVNG-Clause Sublanguage

The strength of STARQL lies within its high expressiveness of its
HAVING clause language, which is a first-order logic sub-language
allowing also for all-quantifiers, implication, disjunction, negation,
and concrete domains such as the real numbers. So, it has to be tamed
with safety conditions in order to reach the aim of classical OBDA,
which is to reduce queries on the ontological level (here STARQL
queries) equivalently to queries on the backend data sources (here:
SQL and stream queries such as CQL posed to relational data stream
management system). The main observation to guide the construc-
tion for the safety conditions of STARQL is that SQL like languages
fulfil the property of domain independence.

We will roughly sketch the semantics of HAVING clauses after
the discussion of another STARQL query in which reasoning over a
TBox is needed–thereby demonstrating the demanding aspects of a

4



suitable semantics. The following subsections then discus safety con-
ditions aimed at domain independence and last but not least the result
stating domain independence for the safe sub-fragment of HAVING
clauses.

4.1 Semantics of HAVING Clauses

Suppose that an engineer is interested in a subclass of sensors that
grew monotonically in the last seconds, namely the subclass of tem-
perature sensors. The data give more information regarding the sen-
sors; so for example, there are temperature sensors which are at-
tached to some components, such as burner tip temperature sensors.
We assume first that the TBox T contains the axioms BTTSens v
TSens, TSens v Sens, and while there are mappings generating
a specific ABox assertion BTTSens(s0), there are no mappings for
general temperature sensors TSens.

Now, we formulate a query, asking for temperature sensors having
grown monotonically in the last 2s. Within the WHERE clause one

SELECT {?sens rdf:type RecentMonInc}<NOW>
FROM S_Msmt [NOW-2s, NOW]->1s
USING STATIC ABOX <http://Astatic>,

TBOX <http://TBox>
WHERE { ?sens rdf:type TSens }
SEQUENCE BY StdSeq AS SEQ
HAVING monInc(SEQ, ?sens val *)

can specify intra-ABox conditions (unions of conjunctive queries)
for generating variable bindings (in SPARQL syntax). Here we use
just ?sens rdf:type TSens asking for temperature sensors.

The evaluation of the condition in the WHERE clause and in the
HAVING clause incorporates not only the ABoxes in the generated
sequence but also the TBox and the static ABox. The incorporation
of these resources is specified in the query with the keyword USING.
So, if Ai is an ABox in the sequence, then the relevant local knowl-
edge base at position i in the sequence w.r.t. which the conditions are
evaluated is KBi = T ∪ Astatic ∪ Ai. Indeed, in order to identify
s0 in the input stream as a temperature sensor, one has to incorpo-
rate, first, the fact from the static ABox stating that s0 is a burner tip
temperature sensor, and second the subsumption from the TBox.

In general, the conditions in the WHERE clause and in the HAVING
clause may be more complex. In fact we consider unions of conjunc-
tive queries which is known to allow for rewritability w.r.t. DL-Lite
ontologies. This condition language goes together with any member
of the DL-Lite family that guarantees FOL rewritability. In particular,
we will look at DL-Lite with concrete domains in order to be able to
represent sensor values (and timestamps) [17]. The advantage of the
ABox sequencing approach is that we can rely on the certain answer
semantics for this embedded condition queries.

The semantics of HAVING clauses rests on the meaning of the in-
dexed atoms, whose meaning in turn are given by the certain answer
semantics for the embedded SPARQL queries. The idea is to view
the tuples in the certain answer sets as members of a sorted FOL
structure It. For a detailed treatment of the semantics of STARQL
we refer the user to the technical report [15]. Here we want to make
the idea of specifying the semantics of the HAVING clause lan-
guage a bit more concrete. Assume that the sequence of ABoxes
at some given time point t is seq = (A1, . . . ,Ak). Then the do-
main of It consists of the index set {1, . . . , k} as well as the set
of individual constants and the set of value constants. Now, if the

HAVING clause contains, for example, the time tagged condition
query (val(s0, x)〈i〉) (with embedded UCQ val(s0, x)), then we in-
troduce for it a binary relation symbol R. This symbol is denoted in
It by the certain answers of the embedded query extended with the
index i: RI = {(a, i) | a ∈ cert(val(s0, x),KBi)}. Constants are
denoted by themselves in It. This already fixes a structure It with
finite denotations of its relation symbols. Hence we can consider (the
active domain of) It as a finite DB and also speak about evaluating a
HAVING clause on this DB.

A major step towards showing transformability in the sense of
OBDA is to show that a safe fragment of the HAVING-clause lan-
guage is domain independent [1] over It. The idea of domain in-
dependence is that for answering a query on a DB (in logical terms:
evaluating a query on an FOL structure) one can rely on the so-called
active domain, the set of constants occurring in the query and the DB.
In particular, as queries and DBs are finite, domain independence
guarantees that the result sets are finite.

The formal definition of domain dependence [1] assumes a DB or
a FOL structure I and a query. We will mainly talk about the struc-
ture I or, more concretely, about the corresponding minimal Her-
brand model HB(I). Let be given a global domain of possible ob-
jects Dom from which all constants in HB(I) stem. The active do-
main of a query q over a structure HB(I), denoted ad(q, I) is the set
of all constants appearing in q and HB(I). The set of answers for a
query w.r.t. a relativized domain D ⊆ Dom, denoted ansD(q, I), is
defined by restricting the domains of all quantifiers in q to D. A query
is called domain independent iff for all I and for all D1, D2 with
ad(q, I) ⊆ D1∪D2 ⊆ Dom one has ansD1(q, I) = ansD2(q, I).
In particular, for domain independent queries the result set w.r.t. the
whole global domain Dom is the same as the result set w.r.t. the
active domain.

4.2 Safe HAVING Clauses

In its general form (as described in [15]), HAVING clauses are not do-
main independent. For example, in the HAVING clause of the form
y > 3 with free concrete domain variable y the result set would be an
infinite set of bindings for y, namely, all real number bigger than 3.
So we have to describe a safety mechanism which extends the gram-
mar rules for HAVING clauses by adornments for variables, in which
the safety status of each variable is mentioned. In the extended gram-
mar, safety adornments are stated first for atomic HAVING clauses
and then inductively defined for complex HAVING clauses.

We use markings/adornments for the variables from the set
{+,−,−−}, the intuitive meaning being that variables with a tag +
are guarded and so can be free in the HAVING clause, variables with
tag − are not guarded, but would be guarded if the formula in which
they occur were negated, and variables tagged −− are not guarded.
Then we define exactly those HAVING clauses to be safe that can be
constructed with the extended grammar and have only free variables
that are tagged with +.

Atomic HAVING clauses are either atoms for state indices (such
as i < j in the monotonicity example above) or value compar-
isons (such as ?x <= ?y) or, most importantly, state indexed UCQs
such as { s0 val ?x }<i>. Variables in the atoms for state in-
dices are all marked with +, the same holds for the indexed UCQs.
Value atoms are marked with −−. For example, we have the fol-
lowing HAVING clauses with their adornments: i < j(i+, j+);
x ≤ y(x−−, y−−); and val(s0, x) < i > (x+, i+).

In the inductive construction of the HAVING clauses, the grammar
rules update the guard tags of the variables, depending on the logical

5



constructor. For example, consider the grammar rule for constructing
an auxiliary HAVING clause auxhCl using an all quantifier.

auxhCl(~x−1 , ~x
−
2 , ~y

−
1 , ~y−2 , ~z−1 , ~z−−2

~j+, i+) −→
FORALL ~y ′ IF auxhClCQ(~x+

1 , ~y
′+, y, ~y+1 , ~z+1 , i+) THEN

auxhCl(~x+
1 , ~x

+
2 , ~y

′g, ~y−1 , ~y−2 , ~z−−1 , ~z−−2
~j+,~j, i+ )

The rule ensures that variables that are occurring after the implication
and that are bounded by the all quantifier are guarded by variables in
a conjunction of time indexed atoms (named auxhClCQ above). The
remaining variables are updated according to the effects of implica-
tion. Other rules in the induction step are constructed in a similar
way. (We refer the readers to the complete grammar in the extended
version of this paper at http://www.sts.tu-harburg.de/
people/oezcep/papers/papers.html.)

We give some examples for complex (non-)guarded HAVING
clauses. In val(s0, y)〈i〉 ∧ y > 3(y+, i+), the variable y is safe;
we have the conjuncts val(s0, y)(y+) and y > 3(y−−). The gram-
mar rule for conjuncts says that the safer guard (here +) wins over
the non-safe guard −−, so that y is adorned with + in the whole
formula. In ¬(hasV al(s0, y)〈i〉 ∧ y > 3) (y−, i+) the variable y
is unsafe; but it contrast to the y in clause y > 3 it is guarded by an
atom, so that a second negation for this formula would make it safe.

4.3 Safe HAVING Clauses are Domain Independent
Domain independence is well known to hold for relational algebra.
This fact can be used to show that also formulas that are in Safe
Range Normal Form (SRNF) and that are range restricted are do-
main independent (cf. [1, p.86]). HAVING clauses, that are safe in
our sense, can be transformed equivalently into SRNF formulas that
are indeed range restricted. The reduction gives the following theo-
rem. (For a proof see the extended version).

Theorem 1 All safe HAVING clauses (considered as queries on the
DB It of certain answers within an actual ABox sequence at time
point t) are domain independent.

As there is a concrete construction from safe range SRNF formula
into relational algebra [1, p.89], one can explicitly (with some minor
restrictions on STARQL) construct transformations to CQL and also
to ADP [12], a distributed data management system.

5 Conclusion
The paper has presented a query framework lying in the intersec-
tion of classical OBDA and stream processing. The query language
(necessarily) extends the sliding window concepts, which are known
from many languages for relational stream data management sys-
tems as well as recent systems for RDFS, with ABox sequencing
constructors. The advantage of using a sequence based methodology
over other approaches are, first, that the sequence sets up a (nearly)
standard context in which standard OBDA reasoning services can be
applied, and second, that the query language can be equipped with a
neat semantics based on the certain answer semantics for pure DL-
Lite ABoxes (see [15]). STARQL’s combination of sufficient expres-
siveness on the conceptual level with high expressiveness w.r.t. arith-
metical, and statistical computations as well as event specifications
can be implemented in a safe manner in order to reach domain inde-
pendence. This lays the ground for a complete and correct transfor-
mation to streaming query languages on the backend data sources.

ACKNOWLEDGEMENTS
This work has been partially supported by the European Com-
mission as part of the FP7 project Optique (http://www.
optique-project.eu/).

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,

Addison-Wesley, 1995.
[2] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Stream reasoning

and complex event processing in ETALIS’, Semantic Web, 3(4), 397–
407, (2012).

[3] A. Arasu, S. Babu, and J. Widom, ‘The CQL continuous query lan-
guage: semantic foundations and query execution’, The VLDB Journal,
15, 121–142, (2006).

[4] F. Baader, S. Borgwardt, and M. Lippmann, ‘Temporalizing ontology-
based data access’, in CADE-13, (2013).

[5] J.-P. Calbimonte, O. Corcho, and A.J.G Gray., ‘Enabling ontology-
based access to streaming data sources’, in Proceedings of the 9th inter-
national semantic web conference on the semantic web - Volume Part I,
ISWC’10, pp. 96–111, Berlin, Heidelberg, (2010). Springer-Verlag.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodrı́guez-Muro, and R. Rosati, ‘Ontologies and databases: The
DL-Lite approach’, in Semantic Technologies for Informations Systems
– 5th Int. Reasoning Web Summer School (RW 2009), volume 5689 of
LNCS, 255–356, Springer, (2009).

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M.A. Shah, ‘TelegraphCQ: Continuous dataflow process-
ing for an uncertain world’, in CIDR, (2003).

[8] V. Haarslev and R. Möller, ‘Incremental query answering for im-
plementing document retrieval services’, in Proceedings of the In-
ternational Workshop on Description Logics (DL-2003), Rome, Italy,
September 5-7, pp. 85–94, (2003).

[9] R.J. Hendley, R. Beale, C.P. Bowers, C. Georgousopoulos, C. Vassiliou,
P. Sergios, R. Moeller, E. Karstens, and D. Spiliotopoulos, ‘CASAM:
collaborative human-machine annotation of multimedia’, Multimedia
Tools and Applications Journal, 1–32, (2013).

[10] J.-H. Hwang, Y. Xing, U. Çetintemel, and S. B. Zdonik, ‘A coopera-
tive, self-configuring high-availability solution for stream processing’,
in ICDE, pp. 176–185, (2007).

[11] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrish-
nan, U. Çetintemel, M. Cherniack, R. Tibbetts, and S. Zdonik, ‘To-
wards a streaming SQL standard’, Proc. VLDB Endow., 1(2), 1379–
1390, (2008).

[12] H. Kllapi, E. Sitaridi, M.M. Tsangaris, and Y. E. Ioannidis, ‘Schedule
optimization for data processing flows on the cloud’, in SIGMOD Con-
ference, pp. 289–300, (2011).

[13] J. Krämer and B. Seeger, ‘Semantics and implementation of continuous
sliding window queries over data streams’, ACM Trans. Database Syst.,
34(1), 1–49, (April 2009).

[14] F. Lécué and J.Z. Pan, ‘Predicting knowledge in an ontology stream’,
in IJCAI, ed., F. Rossi. IJCAI/AAAI, (2013).

[15] Ö. L. Özçep, R. Möller, C. Neuenstadt, D. Zheleznyakov, and E. Khar-
lamov, ‘Deliverable D5.1 – a semantics for temporal and stream-based
query answering in an OBDA context’, Deliverable FP7-318338, EU,
(October 2013).

[16] D.L. Phuoc, H.Q. Nguyen-Mau, J.X. Parreira, and M. Hauswirth, ‘A
middleware framework for scalable management of linked streams’, J.
Web Sem., 16, 42–51, (2012).

[17] O. Savkovic and D. Calvanese, ‘Introducing datatypes in dl-lite’, in
Proc. of the 20th European Conf. on Artificial Intelligence (ECAI 2012),
volume 242 of Frontiers in Artificial Intelligence and Applications, pp.
720–725. IOS Press, (2012).

[18] E. Della Valle, S. Ceri, D. Barbieri, D. Braga, and A. Campi, ‘A first
step towards stream reasoning’, in Future Internet – FIS 2008, volume
5468 of LNCS, 72–81, Springer Berlin / Heidelberg, (2009).

[19] Y. Zhang, P. Minh Duc, O. Corcho, and J.P. Calbimonte, ‘SRBench: A
Streaming RDF/SPARQL Benchmark’, in Proceedings of International
Semantic Web Conference 2012, (November 2012).

6



Appendix A: Grammar for STARQL HAVING
clauses
We give the grammar for the HAVING clause language with its safety
mechanism. We let X stand for all variables in the WHERE clauses.
clause. These variables can be handled as if they were constants, as
the instantiations are fixed. So every variable from X occurring in
the HAVING clause is guarded.

The HAVING clause opens a context on which aggregation and fil-
ter conditions on a sequence of ABoxes are formulated. The ABox
sequence seq is always finite (as the streams are isomorphic to the
natural numbers), hence there is a finite interval I(seq) of natu-
ral numbers with the usual ordering, which represents the order of
timestamps within the window. We loosely use i ∈ seq instead of
i ∈ I(seq). Regarding the indices we assume the existence of the
existence of the first element, denoted by the constant 0, existence
of 1 (if at least two elements are in I). Moreover, we assume the
existence of a maximum constant, denoted max(I) or just max if
the context is clear. Moreover, let be given a plus-relation defined
for all i, j, k ∈ I as the usual addition relation I |= plus(i, j, k) iff
i + j = k.

Let Ψ(~x, ~y) denote a UCQ with free (distinguished) variable sets
~x, ~y. The set of variables ~x are variables among the set of variables ~X
used after the SELECT keyword and bounded to constants within the
WHERE clause. Hence, these variables all can be thought of as non-
free variables - and so will be handled as such. The set of variables
~y are variables to be used in the HAVING clause as distinguished
variables or bounded by the existentials.

There are different types of atoms allowed in the HAVING clause.
The first group is made up by embedded filter queries and an in-
dex of the sequence. The second group contains atoms over the con-
crete domain values. The third group are arithmetic atoms over the
indexes. Moreover, there are atoms using macro predicates. We de-
viate a little bit from the context free representation by allowing for
co-occurrences of the same variables on the lefthand side and the
righthand side of a grammar rule. An atom havingAtom(~y+

1 , ~y−1 ) is
one containing the variables in ~y+

1 , ~y−2 , the ones in ~y1 are guarded the
other not guarded. Let gi be a meta variables standing for the guard
status of a variable xg

i , gi ∈ {+,−,−−, }. We assume the following
ordering on the guards:

∅ � −− � − � +

The special case of g = ∅ is a convenience notation meaning for
x∅ that x does not occur at all in the formula. The status of all
the variables within the following clauses are governed by rules
as described in the Figure 5. The entry for l1 ∧ l2 in row l1 =
−−, l2 = − is −−. This is to be read as follows: Take any formula
F1(z−−, ~x) ∧ F2(z−, ~y), where the subformula F1 has a variable z
which is labelled −− and perhaps other variables ~x and where the
subformula F2 contains the same variable z which is labelled−−
and perhaps other variables ~y. Then the marking of the whole for-
mula w.r.t z is −−. The only restriction is that neither F1 nor F2 is
an identity assertion.

The rules (for∧,∨,→) handle only the cases of variable labels co-
occurring in the sub-formulae. So the following grammar rules for
the HAVING clauses have to incorporate also the cases of variables
that occur only in one sub-formula but not both. So we extend the
table above by the rules in Fig. 5. Now ∅ for li stands for the fact that
there is no corresponding variable in formula Fi

As said before, we do not make the completion explicit but only
simulate the consequences for the labelings directly on the grammar.

l1 l2 ¬l1 l1 ∧ l2 l1 ∨ l2 l1 → l2
−− −− −− −− −− −−
−− − −− −− − −
−− + −− + −− −−
− −− + −− − −−
− − + − − −
− + + + − +
+ −− − + −− −
+ − − + − −
+ + − + + −

Figure 1. Combination of Guards

l1 l2 l1 ∧ l2 l1 ∨ l2 l1 → l2
−− ∅ −− −− −−
− ∅ − − −−
+ ∅ + −− −
∅ −− −− −− −−
∅ − − − −
∅ + + −− −−

Figure 2. Guard combination with non-existing variable in second
component

The havingClause filter conditions are built on the basis of the
havingAtoms as FOL formulas using them as subformulae. Here
we use the abbreviation auxhCl for AuxiliaryhavingClause, hCL for
havingClause (= safe auiliary having clause) and hIndAt for hIn-
dexedAtom. For a vector of variables ~x let set(~x) denote the un-
derlying set of variables. Then for any op ∈ {∪,∩,∆, \} let :
~x op ~y = set(x) op set(~y).

Please note that the guard conditions are of syntactical nature so
that one cannot guarantee that the guards are the same for logically
equivalent formulae. Take e.g.

(¬(hasV al(s0, z)〈i〉 ∧ z > 4) ∧ ∃j.j 6= j)(z−) (1)

This formula is equivalent to bottom (because the second conjunct is)
— and bottom has no free variable at all. We can only guarantee the
following: For all formula F that are equivalent to a formula auxhCL
generated by the grammar it holds that every variable in F has a
weaker (or equal) guard than the variable in auxhCL.

Appendix B: Proof of Theorem 1
A desirable property of query languages over DBs or more logically,
relational FOL structures I is the independence of the answer set
from the chosen domain in the struct. We will talk of mainly of of
the structure I or more concretely of the corresponding minimal
herbrand model HB(I). This can be formalized with the notion of
domain independence as explicated in the classical textbook on the
foundation of databases [1]. Let be given a global domain of pos-
sible objects Dom from which all constants in HB(I) stem from.
In our case the Dom consists of individual constants and value con-
stants and time index constants. The active domain of a query q over
a structure HB(I), denoted ad(q, I) is the set of all constants ap-
pearing in q and appearing in HB(I). The set of answers of a query

7



indTerm(i+) −→ i

indTerm() −→ max | 0 | 1
havingIndexedAtom(~x∅, ~y+, i+) −→ Ψ(~x, ~y) <i>

(for Ψ(~x, ~y) being a UCQ and ~x ∈ X , ~y /∈ X)

havingIndexedAtom(x−−, y−−) −→ x = y

for y, x /∈ X ∪ V arval)

havingIndexedAtom(x+) −→ x = a | a = x

(for a ∈ (X ∩ V arind) ∪ Constconst, x ∈ V arind \X)

havingValueAtom(z+1 ) −→ z1 = v | v = z1

(for z1 ∈ V arval \X , and v ∈ Constval)

havingValueAtom(z+1 ) −→ z1 = z2 | z2 = z1

(for z1 ∈ V arval \X , and z2 ∈ X ∩ V arval)

havingValueAtom(z−−1 , z−−2 ) −→ z1 = z2

(for z1, z2 ∈ V arval \X
(for op ∈ {<,<=, =, >, >=})

havingValueAtom(z−−1 , z−−2 ) −→ z1 op z2

(for op ∈ {<,<=, >, >=} and z1, z2 ∈ V arval \X
havingValueAtom(z−−1 ) −→ z1 op v

(op ∈ {<,<=, >, >=} and z1 ∈ V arval \X , v ∈ V alconst

havingValueAtom(z−−1 ) −→ z1 op z2

(op ∈ {<,<=, >, >=} and z1 ∈ V arval \X , z2 ∈ (X ∩ V alvar)

havingIndexArithAtom(ig11 , ig22 ) −→ indTerm1(ig11 ) op indTerm2(ig22 )

(for op ∈ {<,<=, =, >, >=})
havingIndexArithAtom(ig11 , ig22 , ig33 ) −→ plus(indTerm1(ig11 ), indTerm2(ig22 ), indTerm3(ig33 ))

arithAggr −→ COUNT | AVG | SUM | MIN | MAX

Figure 3. Grammar Rules for Atomic HAVING clauses

8



auxhCl(~z+, i+) −→ havingIndAt(~z+, i+)

auxhCl(~zg) −→ havingIndAt(~zg)

auxhCl(~zg11 , ~zg22 ) −→ havingIndAt(~z1
g1 , zg22 )

auxhCl(zg11 , zg22 ) −→ havingV alueAtom(zg11 , zg22 )

auxhCl(i+1 , i
+
2 ) −→ havingIndexArithAtom(i+1 , i

+
2 )

auxhCl(i+1 , i
+
2 , i

+
3 ) −→ havingIndexArithAtom(i+1 , i

+
2 , i

+
3 )

auxhClCQ(~z+, i+) −→ havingIndAt(~z+, i+)

auxhClCQ(~z+1 , ~z+2 , i+1, i
+

2) −→ auxcClCQ(~z+1 , i+1) ∧ auxcClCQ(~z+2 , i+2)

auxhCl(

(~x1 ∩ ~x2)+, (~x1 \ (~x2 ∪ ~y2 ∪ ~z2))−,

(~x1 ∩ ~y2)−, (~x1 ∩ ~z2)−−,

~y−1 , (~z1 ∩ ~y2)−, (~z1 \ ~y2)−−, ~y−2 ,

(~x2 \ (~x1 ∪ ~y1 ∪ ~z1))−, (~x2 ∩ ~y1)−,

(~x2 ∩ ~z1)−−, (~z2 ∩ ~y1)−,

(~z2 \ ~y1)−−, (~z2 \ ~y1)−−,~i+1 ,~i
+
2

) −→ auxhCl(~x+
1 , ~y

−
1 , ~z−−1 ,~i+1 ) OR

auxhCl(~x+
2 , ~y

−
2 , ~z−−2

~i+2 )

auxhCl(

(~x1 ∪ ~x2)+,

(~y1 \ (~z2 ∪ ~x2))−, (~y1 ∩ ~z2)−−,

(~z1 \ ~x2)−−

(~y2 \ (~z1 ∪ ~x1))−, (~y2 ∩ ~z1)−−,

(~z2 \ ~x1)−−

) −→ auxhCl(~x+
1 , ~y

−
1 , ~z−−1 ,~i+1 ) AND

auxhCl(~x+
2 , ~y

−
2 , ~z−−2

~i+2 )

where both conjuncts are different from an

identity of the form x = y for x, y ∈ V arind ∪ V arval

auxhCl(z
max{g1,g2,h1,h2}
1 , z

max{g1,g2,h1,h2}
2 , ~z3

g3) −→ auxhCl(zg11 , zg22 , ~z3
g3) AND zh1

1 = zh2
2

auxhCl(~x−, ~y+, ~z−−,~i+) −→ NOT auxhCl(~x+, ~y−, ~z−−,~i+)

Same variable markings as for

NOT auxhCl(~x+
1 , ~y

−
1 , ~z−−1 ,~i+1 ) OR

auxhCl(~x+
2 , ~y

−
2 , ~z−−2

~i+2 ) −→ IF auxhCl(~x+
1 , ~y

−
1 ,~i+1 ) THEN auxhCl(~x+

2 , ~y
−
2 ,~i+2 )

auxhCl(~x+, ~y−, ~z−−,~i+) −→ FORALL i ′ IN seq auxhCl(~x+, ~y−, ~z−−,~i+, i′+) |
EXISTS i ′ IN seq auxhCl(~x+, ~y−, ~z−−,~i+, i′+) |

auxhCl(~x−1 , ~x
−
2 , ~y

−
1 , ~y−2 , ~z−1 , ~z−−2

~j+, i+) −→ FORALL ~y ′ IF auxhClCQ(~x+
1 , ~y

′+, y, ~y+
1 , ~z+1 , i+) THEN

auxhCl(~x+
1 , ~x

+
2 , ~y

′g, ~y−1 , ~y−2 , ~z−−1 , ~z−−2
~j+,~j, i+ )

auxhCl(~x+
1 , ~x

+
2 , ~y

+
1 , ~y−2 , ~z+1 , ~z−−2

~j+,~j+, i+) −→ EXISTS ~y ′hIndAt(~x+
1 , y

′+, ~y+
1 , ~z+1 , i+) AND

auxhCl(~x+
1 , ~x

+
2 , ~y

′g, ~y−1 , ~y−2 , ~z−−1 , ~z−−2
~j+, i+ )

hCl(~z) −→ auxhCl(~z+)

for z ∈ V arval ∪ V arind

Figure 4. The non-atoci rules for the HAVING grammar

9



w.r.t. to a relativized domain D with ad(q, I) ⊆ Dom is defined by
restricting the domains of all quantifiers in q to ansD(q, I), evaluat-
ing this query against I as usual and restricting the tuples such that
all components are in D. Now, a query is called domain independent
iff for all I and for all D1, D2 with ad(q, I) ⊆ D1 ∪ D2 ⊆ Dom
one has ansD1(q, I) = ansD2(q, I). In particualr, for domain inde-
pendent queries the answers w.r.t. to the whole global domain Dom
is the same as the answer w.r.t. to the active domain.

We will show how to transform HAVING clauses to the relational
algebra (SQL). In particular this will show that the HAVING clause
language is domain independent as relational algebra is domain in-
dependent. The first idea for doing the transformation is to normalize
the HAVING clause using rules that are also used in generating a for-
mula in safe range normal form (SRNF) [1, S.85]. For a formula F
let SRNF (F ) be the formula resulting from applying the rules in
Fig. 5 (until no rule cannot be applied anymore). A formula F is said
to be in SRNF iff F = SRNF (F ).

1. Rename variables such that no variable symbol occurrence is
bound by different quantifiers and such that no variable occurs
bound and free

2. Eliminate occurrence of F → G by substituting with occurrences
of ¬F ∨G.

3. Eliminate double negations
4. Eliminate ∀ quantifiers by ∀z ; ¬∃z¬.
5. Push ¬ through using de Morgan rules;

Figure 5. Normalization rules for HAVING clause

Domain independence for formulas in SRNF are handled in the
literature citeabiteboul95foundations also by a guard concept. This
is realized by a function rr see Figure 6 that is simpler than our
guard notion as it presumes formulas in SRNF form. (But note that
the second and third rules are my adaptations to relational algebra
with concrete domains.)

1. rr(r(t1, . . . , tn)) = variables in t1, . . . , tn.
2. rr(x op y) = ∅ for x, y ∈ V arval, op ∈ {<,>}
3. rr(x op v) = rr(x op v) = ∅ for x ∈ V arval, v ∈

Constval, op ∈ {<,>}
4. rr(x = a) = rr(a = x) = {x} (for
5. rr(F ∧G) = rr(F ) ∪ rr(G)

6. rr(F∧(x = y)) =

{
rr(F ) ∪ {x, y} if rr(F ) ∩ {x, y} 6= ∅
rr(F ) else

7. rr(F ∨G) = rr(F ) ∩ rr(G)
8. rr(¬F ) = ∅

9. rr(∃~xF ) =

{
rr(F ) \ set(~x) if set(~x) ⊆ rr(∃~xF )
return ⊥ else

Figure 6. Definition of syntactic range restriction rule

A formula F in SRNF is called range restricted iff free(F ) =
rr(F ) and no subformula returned ⊥.

A well known theorem states that range restricted formula in
SRNF are exactly as expressive as relational algebra—which is know

to be domain independent. Hence it is well known that safe range
SRN formulas are domain independent (which in particular means
that all sets of answers are finite).

Theorem 2 Range restricted formula in SRNF form are domain in-
dependent.

We are now going to show that all HAVING clauses are domain in-
dependent by relating our guards with the guards for of [1], showing
that the resulting equivalent formula in SRNF is indeed safe range.

Now we can proof the theorem, which is restated here.

All HAVING clauses (considered as queries on the DBs of certain
asnwers within an actual ABox sequence) are domain independent.

Let hcl(~u+) be a safe HAVING. Let hclNF (~u) =
SNFR(hcl(~u+) be the formula resulting from applying the
normalization rules in Fig. 5. The status of all the guards are
not changed by the rules. Now, we see that for all subformula
G(~x+, ~y−, ~z−−) in hclNF (~x) we have

(*) rr(G) = set(~x) = all positively marked variables in x

The proof of (∗) is by structural induction on construction of the for-
mula hclNF (~x). Let G(~x+, ~y−, ~z−−) be an atomic clause. Then
rr(G) = set(~x) follows directly from the definitions. The case of
conjunction is clear too as any + guard combines with any other
guard to +. Now take negation G = ¬F (~x+, ~y−, ~z−−). The defini-
tion of rr for the negation case says rr(G) = ∅. Actually we know
that F is an atomic formula. Looking at all guards for these formulas
in the grammar we see that no one of these is marked with −, hence
actually set(~y) = ∅ and we have G(~x−, ~z−−), so there is no posi-
tively marked variable in G, hence indeed we get that rr(G) = ∅ =
the positively marked variables in G. The case for disjunction is clear
as a positive label results for a variable in a disjunction only if both
variables exists in the disjuncts and are labelled +. Now the last case
is that of the exists quantifier G = ∃xF (~x+, ~y−, ~z−−). According
to induction assumption rr(F ) = set(~x). G may result from a trans-
formation of an exists subformula ∃xat(x+, . . .) ∧ F ′ in hcl(~u+).
So the variable x is by definition in the set ~x of positively marked
variables in F , hence rr(G) = rr(F ) \ {x}. But G does not occur
as free variable in G, hence the set of positively marked variables in
G is actually set(~x) \ {x} which proves the induction claim. Now
G may also result from applying somewhere the rule ∀ ≡ ¬∃¬. But
again, there is an atom which is guarding the all quantifier so that one
gets again a formula of the form ∃xat(x+, . . .) ∧ F ′.

10


