
Aus dem Institut für Informationssysteme (IFIS)
der Universität zu Lübeck

Direktor: Prof. Dr. rer. nat. habil. Ralf Möller

Representation Theorems in Computer Science
A Treatment in Logic Engineering

Habilitationsschrift verfasst am Institut für Informationssysteme
der Universität zu Lübeck

zur Erlangung der venia legendi für das Fach Informatik
vorgelegt von

Özgür Lütfü Özçep
Lübeck, 2017

To my parents

Acknowledgements

I would like to thank Prof. Dr. Ralf Möller for all his support and engagement
during the habilitation phase. It was a great pleasure to discuss and work with him
on all topics developed in this monograph. Without his enduring motivation and
patience, his thoughtful comments, and, last but not least, his many helpful ideas,
this habilitation thesis would have not been finished.

Usually, when he had shared one of his ideas with me, he added in an inimitable
humorous style: “Jetzt musst Du es nur noch LATEXen!” (“Now you just have to
LATEX it!”). Of course there was much more work than what these words entail, so
I take full responsibility for all glitches and errors that might have crept in.

Zusammenfassung

In vielen Bereichen der Informatik sind formale Spezifikationen ein wichtiges Mittel
zur Konstruktion, zur Verifikation und zur Analyse von Systemen. Ohne formale
Spezifikation ließe sich nur schwer erklären, was es heißt, dass ein System “korrekt”
arbeitet oder dass ein “zu erwartendes Verhalten” (auch nur näherungsweise) vor-
liegt. Beispiele für formale Spezifikationen finden sich in klassischen Informatikan-
wendungen, wie etwa in Datenbankanwendungen, in der Verarbeitung natürlicher
Sprache unter Verwendung von Wissensbasen oder auch in autonomen Systemen/-
Agenten, für die formale Spezifikationen von Zielen, Plänen sowie von Hypothesen
über den momentanen Zustand der Umgebung nötig sind.

Die Aufgabe des Systemdesigners ist es, formale Spezifikationen zu konstruie-
ren, die seine intendierte Sicht auf die Anwendungsdomäne und das Verhalten des
Systems so gut wie möglich beschreiben. Häufig muss der Designer bei der Wahl ei-
ner geeigneten Sprache aber die Balance zwischen zwei gegenläufigen Zielen wahren:
dem Ziel einer hinreichend ausdrucksstarken formalen Spezifikation und dem Ziel
guter Berechnungseigenschaften der assoziierten Entscheidungsprobleme. Die Aus-
drucksschwäche kann allerdings dazu führen, dass auch nicht-intendierte Strukturen
(Datenstrukturen oder auch Verhaltensstrukturen) beschrieben bzw. zugelassen wer-
den. Eine Prüfung auf die Existenz nicht-intendierter Modelle aus Sicht der Semantik
ist erheblich komplexer als die Prüfung der Erfüllbarkeit einer Spezifikation.

Die üblicherweise fehlende Qualitätsrückmeldung bei der Erstellung von Spezi-
fikationen für Datenbanken, Wissensbasen oder Strukturen von Agenten motiviert
eine gleichermaßen theoretisch wichtige und praktisch relevante Forschungsfrage: Ge-
geben eine formale Sprache aus einer der oben genannten Anwendungen sowie eine
formale Spezifikation über dieser Sprache, wie kann man ein umfassendes Verständ-
nis aller Modelle der formalen Spezifikation erlangen? Zur Durchführung dieses For-
schungsprogramms wurde in der hier beschriebenen Arbeit eine Methodik gewählt,

iii

iv

die auf so genannten Repräsentationstheoremen beruht. Ein geltendes Repräsen-
tationstheorem für eine gegebene Spezifikation in einer formalen Sprache besagt
informell, dass die Menge aller Modelle der formalen Spezifikation durch eine Teil-
menge der Modelle vollständig repräsentiert wird. Dabei sind die repräsentierenden
Modelle nach einem einfachen Konstruktionsprinzip gebildet.

In dieser Monographie werden für verschiedene Fallbeispiele aus den anfangs
genannten Gebieten Repräsentationstheoreme entwickelt und bewiesen. Das erste
Fallbeispiel ist aus dem Bereich des räumlich-qualitativen Schließens und hat als Stu-
dienobjekt zweistellige Nähe-Relationen. Die menschliche Wahrnehmung von Nähe
wird von dem Typ (Granularität) der auf Nähe untersuchten Objekte beeinflusst:
Die Beantwortung der Frage nach Objekten, die in der Nähe eines Baums sind, wird
in einem anderen Skalierungskontext vorgenommen als die Frage nach Objekten
in der Nähe der Stadt Lübeck. Die Arbeit entwickelt ein Nähe-Modell, in der der
Skalierungskontext mittels hierarchisch strukturierter Partitionen eingefangen wird,
und charakterisiert die resultierende Klasse von Nähe-Relationen axiomatisch.

Das zweite Fallbeispiel ist die in der Informatik allgegenwärtige Verarbeitung
von strömenden Daten. In dieser Monographie werden Ströme als potenziell un-
endliche Wörter betrachtet und die Stromverarbeitung abstrakt durch Funktionen,
die Eingabeströme auf Ausgabeströme abbilden, modelliert. Diese Arbeit zeigt, dass
verschiedene, wichtige Eigenschaften der Stromverarbeitung wie z.B. Präfixdetermi-
niertheit und diverse Faktorisierungseigenschaften axiomatisiert und von natürlichen
Klassen von Stromfunktionen erfüllt werden.

Das dritte Fallbeispiel ist das der Wissensrevision, das sich mit der Revision von
Wissensbasen unter neu erworbener, potenziell inkompatibler Information beschäf-
tigt. In dieser Monographie wird eine Unterklasse von Wissensrevisionsoperatoren,
und zwar die Klasse der Reinterpretationsoperatoren, axiomatisch charakterisiert.
Reinterpretationsoperatoren lösen potenzielle Inkonsistenzen zwischen der Wissens-
basis und der Information durch Reinterpretation von Symbolen in der Wissensbasis
auf.

Das Konzept der Repräsentation findet sich auch im Paradigma des ontologieba-
sierten Datenzugriffs (engl.: ontology-based data access, OBDA). Beim klassischen
OBDA wird das Problem der Anfragebeantwortung über einer Ontologie zurückge-
führt auf die Anfragebeantwortung über den Daten. Hierfür wird die Ausgangsan-
frage derart umgeschrieben, dass das intensionale Wissen aus der Ontologie in der

v

umgeschriebenen Anfrage erfasst wird. Allerdings ist das Umschreiben nicht für jede
Ontologie- und Anfragesprache möglich – und die Beweise im Falle der Umschreib-
barkeit sind nicht trivial. Der Beweis darüber, dass sich eine Anfrage umschreiben
lässt, kann mit universellen Modellen geführt werden – und das ist die Stelle, an der
der Repräsentationsaspekt relevant ist: Universelle Modelle bilden eine Klasse von
repräsentierenden Modellen für die Klasse aller Modelle einer Ontologie.

In dieser Arbeit werden an zwei Fallbeispielen entsprechende Umschreibbarkeits-
resultate bewiesen: Im Bereich des qualitativ-räumlichen Schließens ist häufig die
Anfragebeantwortung über komplexen Begriffen, die räumliche und thematische
Aspekte kombinieren, nötig. Die Arbeit entwickelt für diesen Zweck verschiedene
Kandidaten von potenziellen Ontologiesprachen und zeigt auf, für welche dieser
Sprachen ein Umschreiben möglich ist. Im Bereich der Stromverarbeitung wird ein
Umschreibbarkeitsresultat für eine konkrete Stromverarbeitungssprache über tem-
poralen und strömenden Daten (STARQL) bewiesen.

Die in dieser Monographie präsentierten Resultate demonstrieren den Nutzen von
Repräsentationstheoremen zum Design wie auch zur Evaluierung formaler Spezifi-
kationen und können daher als theoretischen Beitrag zur Konstruktion zukünftiger
Entwicklungsumgebungen verstanden werden, die den Anwendungsdesigner durch
automatische Generierung von Repräsentationen unterstützen.

Summary

In many applications of computer science (CS), formal specifications are an impor-
tant tool for the construction, the verification, and the analysis of systems. The
reason is that without formal specifications one could hardly explain whether a
system worked “correctly” or showed an “expected behavior”. Examples of formal
specifications can be found in classical CS applications such as database applica-
tions, natural-language processing based on knowledge bases or autonomous sys-
tems / agents which require formal specifications for goals, plans, hypotheses on the
current state of the environment.

A system designer faces the challenging task of designing formal specifications
that capture his intended model of the application domain or the intended behavior
of the system as appropriately as possible. But the chosen formal specification may
fail to capture the intended model or may contain non-intended models. The latter
happens, in particular, in those cases where the expressiveness-feasibility balance was
chosen in favor of a polynomial-time algorithm instead of an expressive language.
Testing for the existence of non-intended models from a semantical perspective is
quite more complex than a satisfiability test of the formal specification.

The missing quality feedback during the design of formal specifications in the
area of databases, knowledge bases and agents is the motivation for a theoretically
important and practically relevant research question: Given a formal language from
one of the applications mentioned above and given a formal specification in that lan-
guage, how can one develop a deep understanding of all models of the specification?
In following this research query, the work described in this monograph relies on a
method based on so-called representation theorems. A valid representation theorem
for a formal specification states that the set of all models of a formal specification is
representable by a subset of all models. Hereby, the representing models are required
to be constructed according to a simple principle.

vi

vii

This monograph develops representation results in the context of three applica-
tions mentioned in the beginning. The first is from the area of qualitative spatial
reasoning and considers binary relations of spatial relatedness. Human perception
of spatial relatedness depends on the type (granularity) of the considered objects:
For example, when answering the query asking for all objects near a tree, a different
scaling context is relevant compared to the case where one has to answer the query
asking for all objects near the city of Lübeck. This thesis develops a model of spatial
relatedness that captures the scaling context with hierarchical partitions of a spatial
domain, and characterizes the resulting relations axiomatically.

The second case example considers stream data processing, which is ubiquitous
in CS. In this monograph, streams are modelled as potentially infinite words, and
stream processing is abstractly modelled by functions that map input streams to
output streams. This monograph shows that various important properties of stream
processing such as prefix-determinedness or various factorization properties can be
axiomatized, and it further shows that the axioms are fulfilled by natural classes of
stream functions.

The third case example is belief revision, which is concerned with the revision
of knowledge bases under new, potentially incompatible information. In this mono-
graph I consider a subclass of revision operators, namely the class of reinterpretation
operators, and characterize them axiomatically. Reinterpretation operators dissolve
potential inconsistencies by reinterpreting symbols of the knowledge base.

The concept of representation can be identified also in the paradigm of ontology-
based data access (OBDA). In strict OBDA the problem of query answering is
reduced to answering a query over the data. To this purpose the original query
is rewritten such that the intensional knowledge of the ontology is captured by
the rewritten query. However, rewriting is not possible for all ontology and query
languages—and the proofs in case of rewritability are not trivial. Rewritability can
be proved with so-called universal models—and this is where the representation
aspect is relevant: Universal models are models that represent all models of an
ontology.

In this work, mainly two rewritability results are shown: In the area of qualitative
spatial reasoning it often happens that one has to answer queries over complex
concepts that combine thematic and spatial aspects. This monograph develops
various potential ontology languages and shows for which rewritability is given. In

viii

the area of stream processing a rewritability result is given for the stream-temporal
query language STARQL.

The results of this monograph demonstrate the use of representation theorems for
the design as well as the evaluation of formal specifications and, hence, they can be
conceived as theoretical contributions for building future application-development
kits that support application designers with automatically built representations.

Contents

1 Introduction 1
1.1 Role of Logics . 3
1.2 Problem: Need for Representations 6
1.3 Contribution: Representation Theorems 11
1.4 Overview of Chapters . 18

2 Preliminaries 20
2.1 Logics . 20

2.1.1 First-order Logic . 20
2.1.2 Propositional Logic . 26
2.1.3 Description Logics . 29

2.2 Ontology-based Data Access . 30
2.3 Notion of Representation . 36
2.4 The Region Connection Calculi (RCC) 38

3 Representing Spatial Relatedness 45
3.1 Partitions and Spatial Relatedness 48
3.2 Spatial Relatedness vs. Proximity . 50
3.3 The Upshift Operator . 53
3.4 Main Axioms . 54

3.4.1 Spatial Relatedness is Grounded 54
3.4.2 Alignment of Upshift Close-ups 56
3.4.3 Isolated Points . 57
3.4.4 Splittings . 58

3.5 Representation Theorem for Spatial Relatedness 59
3.6 Dynamics of Partition Chains . 60

ix

CONTENTS x

3.7 Spatial Relatedness for Region Based Calculi 64
3.8 Related Work . 72
3.9 Résumé . 73

4 Scalable Spatio-thematic Query Answering 75
4.1 Weak Combinations of DL-Lite with RCC 78
4.2 Example Scenario . 84
4.3 Strong Combinations of DL-Lite with RCC 87
4.4 Related Work . 89
4.5 Résumé . 90

5 Stream Processing 94
5.1 Preliminaries . 96
5.2 Stream Queries in the Word Perspective 99
5.3 Constant-Size Windows . 104
5.4 Considering Time in the Word Model 110
5.5 Memory-Bounded Queries . 113
5.6 Related Work . 119
5.7 Résumé . 121

6 High-level Declarative Stream Processing 123
6.1 The STARQL Framework . 125

6.1.1 Example . 125
6.1.2 Syntax . 128
6.1.3 Semantics . 129
6.1.4 Properties of STARQL . 132
6.1.5 Rewritability of HAVING Clauses 136

6.2 Separation-based versus Holistic Semantics 137
6.3 Comparison with TCQs . 140
6.4 Related Work . 142
6.5 Résumé . 143

7 Representation for Belief Revision 145
7.1 Preliminaries . 149
7.2 Reinterpretation Operators . 152

CONTENTS xi

7.3 A Representation Theorem for Implication-Based Choice Revision . . 157
7.3.1 Prime Implicates and Uniform Sets 158
7.3.2 Postulates for Implication-Based Choice Revision 160

7.4 Model-Based Belief Revision . 162
7.5 Equivalence Results . 164
7.6 Related Work . 167
7.7 Résumé . 168

8 Conclusion 170

A Proofs 175

Chapter 1

Introduction

In many applications of computer science (CS), formal specifications are an im-
portant and even necessary tool for the construction, verification, and analysis of
systems. This observation can be illustrated with three classes of applications that
a computer scientist might be familiar with.

Databases. In database applications, formal specifications appear, e.g., in the
design of schemata for data representation. Every student of database systems is
taught to build entity-relationship (ER) models or UML diagrams, and—based on
these—to design appropriate database tables. These formal specification frameworks
allow for describing the relevant entities of a given domain and also the relations
that hold between them. On the database level the ER model is reflected in the
choice of tables, columns, and integrity constraints such as primary and foreign keys
to which the data have to adhere. Data are accessed via declarative query languages
such as SQL for which the intended meanings of queries, i.e., the intended sets of
answers, are specified formally.

Chapter 4 and Chapter 5 of this monograph are related to some of the aspects
of formal specifications in databases.

Knowledge Bases. Many applications that are based on processing natural lan-
guage (NLP) or controlled natural language (CNL) rely on the use of knowledge bases
which represent terminological knowledge and facts via logical formulae. Query
answering (QA) over knowledge bases is quite more challenging than QA over
databases. The reason is that, in order to ensure the correctness and the complete-

1

CHAPTER 1. INTRODUCTION 2

ness of the set of answers, implicit knowledge following from the logical formulae has
to be taken into account. The research described in Chapter 3 and Chapter 4 of this
monograph is motivated by the design of knowledge bases that can be used, e.g., in
geographic information systems (GIS) in order to store spatio-thematic objects and
access them via queries such as “Show me all secure playgrounds that are nearby!”.

An equally challenging task as QA is that of storing new data in knowledge
bases. The reason is that new data may not be consistent with the knowledge base
at hand, so that a revision of the knowledge base is required in order to ensure its
consistency (similar to ensuring integrity of databases). Belief revision is a field
in the intersection of CS, logic, and theory of science providing a general strategy
to deal with potential inconsistencies under new information. A specific form of
belief revision that is useful for applications such as ontology development, ontology
debugging, and ontology alignment is the topic of Chapter 7 of this monograph.

Agents. In systems with autonomous sub-systems, alias agents, even further for-
mal specifications are required, say, in order to describe the intended behavior of
agents in their dynamic environment. A rational agent perceives sensor data from
an environment and acts therein so “as to achieve one’s goals, given one’s beliefs”
[russell95artificial]. This simple yet fundamental characterization hints to the
challenging problem of transforming sensor data into high-level conceptualizations—
required for reasoning with beliefs and goals—and transforming operations on the
higher level to operations on the lower level. Hence, for the design of agents, formal
specifications of the following kinds are needed: specifications of the background
knowledge in a knowledge base, specifications of goals, possible actions and plans as
well as specifications of beliefs on the current state of the environment. Needless to
emphasize that the kinds of transformations should be performant because agents
acting in a dynamic environment perceive information via (possibly high-paced)
streams of timestamped data, and because not all data elements can be stored. In
Chapter 5 of this monograph, foundational aspects of stream processing are dis-
cussed. In Chapter 6 the focus is on high-level declarative stream processing with a
query language enabling QA w.r.t. a knowledge base.

Computer science draws its tools for formal specification from mathematical
logic, a field studying different types of specific logics1. In fact, in all CS applications

1Note the plural use: there is the field of logic having various logics as its objects of study.

CHAPTER 1. INTRODUCTION 3

mentioned above, the formal specifications are either specific formulae in a specific
logic or at least related to logical formulae. The following section describes the role
of logic in more detail.

1.1 Role of Logics

Ever since the rise of CS as a fully fledged discipline on its own, it had—and continues
to have—fruitful interactions with the field of logic. The influence of logic on CS is
considered to be that strong that some researchers talk of the “Unusual Effectiveness
of Logic in Computer Science”2, comparing it with the “Unreasonable effectiveness
of Mathematics in the Natural Sciences” [wigner60unreasonable]. The authors of
[halpern2001onThe] even go further and consider the birth of CS as an outcome
of the development of the field logic3, in particular as outcome of the ambitious
automatization program for mathematics conducted by Hilbert and colleagues from
1900 to 1928.

That logic could not be the foundational framework for mathematics—as en-
visioned by Hilbert—was proven with results of Gödel on the incompleteness of
arithmetics and on the non-provability of set theory in between 1931 and 1933 as
well as with results of Church and Turing in 1936/37 on the non-decidability of
validity for first-order logic (FOL). The awakening caused by these results also led
to a shift in focus, away from problems of pure mathematical logic to CS-related
aspects of logics—indicating the impact of CS to logic: algorithmic aspects of im-
portant problems from logic, such as model checking, validity/satisfiability checking
etc. have become important research topics in logic. And also here the impact is
very deep. A point in case is the fact that there is a plethora of “industrial logics”
(to borrow a term from Vardi’s paper [vardi09from]). As the term indicates, these
kinds of logics are really used for practical problems arising from industrial needs
and as such, roughly, share the property of an adequate balance between expres-
sivity and feasibility. The challenge in finding the right balance should be obvious:
Solving algorithmic problems defined over specifications in a more expressive logic

2This is the title of a paper which appeared in the Bulletin of the Journal of Symbolic Logic
[halpern2001onThe].

3“In the beginning, there was Logic” and “Computer science started as Logic” is the literal
wording that can be found in the accompanying slides to paper [halpern2001onThe]. See:
https://people.cs.umass.edu/~immerman/pub/cstb.pdf (accessed: 26-12-2016)

https://people.cs.umass.edu/~immerman/pub/cstb.pdf

CHAPTER 1. INTRODUCTION 4

is not feasible for certain instances, i.e., will require non-polynomial time or more
than logarithmic space. And so in each individual CS application, the application
designer has to achieve the right balance.

Fortunately, in searching for an appropriate logic with the required complex-
ity, system and application designers can rely on theoretical results from the field
of descriptive complexity [immerman95descriptive, immerman99descriptive].
Descriptive complexity investigates correspondences between the expressivity of
a logic and the complexity of solving problems formulated in this logic. This
field—and the wider field of finite model theory—started with a result of Fagin
[fagin74generalized] that characterizes existential second-order logic by the com-
plexity class of problems solvable in nondeterministic polynomial time (NPTIME).
Further correspondences were discovered soon afterwards, and actually one of them,
the correspondence of the complexity class AC0 and FOL is used also in Chapter
4 of this monograph. These correspondences give general resource bounds on what
can be expressed with a given logic. For example, if a problem specified in a new
language cannot be expressed in FOL, then it will require more time/space resources
as allowed according to AC0. Stated in the other direction, the AC0-FOL correspon-
dence says: If computing a problem needs more time/space than specified by AC0,
then it cannot be expressed in FOL. Interestingly enough, the logical characteri-
zation of the class of polynomial time (PTIME) algorithms on finite non-ordered
structures is still open.4

As for the reasons of the unusual effectives of logic in CS, the authors of [halpern2001onThe]
mention that logics have the following properties making them suitable for CS: First,
a logic provides a formalism (semantics) for describing mathematical structures. In
logic, mathematical structures are defined w.r.t. a signature (sometimes also called
vocabulary) consisting of sets of individual names, relation names with given arities
and function names with given arities. Then, a mathematical structure for a sig-
nature consists of a domain of objects, and a denotation function that maps each
individual name to an object of the domain, each relation of arity n to an n-ary re-
lation over the domain and each n-ary function symbol to an n-ary (total) function
over the domain. A simple example are graph structures. The signature consists

4In fact, if one could prove that there cannot be a logic characterizing PTIME over arbitrary
finite structures, as conjectured by Gurevich, the long-standing open problem whether PTIME =
NPTIME would have to be answered negatively, because—as mentioned in the text—NPTIME is
characterized by second-order logic. For more details see, e.g., [libkin04elements]

CHAPTER 1. INTRODUCTION 5

of a single binary relation symbol E, and a graph structure for such a signature
is made up by the set of vertices as the domain and a denotation for E, which is
a binary relation standing for the edge relation. But also “dynamical” structures
such as streams, sequences of states, or processes can be described as mathematical
structures.

Secondly, a logic provides a language (syntax) based on the signature in order
to describe the properties of mathematical structures. With such a language log-
ical expressions such as terms—denoting objects of the application domain—and
sentences—describing the application domain and evaluated to true or false—can
be constructed. For example, in the case of graphs it is enough to have—next to
logical symbols—the binary relation symbol E of the signature in order to express,
say, the property of being symmetric: For all vertices x, y, if there is an edge from
x to y, then there is an edge from y to x, formally: ∀x∀y(E(x, y)→ E(y, x)) holds.

Related to these points, and even founding them, is a clear distinction between
syntax, which governs the rules to set up the sequences of characters to talk about the
objects of interest, and semantics, which governs the rules to associated (intended)
meanings with the sequences. This last point regarding the distinction between syn-
tax and semantics is of immense importance because it allows for speaking about
the “intended meaning” of an expression, of its “expressive power”, of the “correct-
ness and completeness” of a calculus etc. In particular, as stated above, one can
define syntactical entities called sentences and define precisely the truth conditions
of sentences, i.e., the conditions under which a structure makes a sentence true.
Structures that make a sentence or a set of sentences true are called models. Com-
ing back to the example applications from the beginning, it is clear that semantics
formally ground and justify the notions of “correctness and completeness” of answers
of an SQL query, or of the “inconsistency” of a knowledge base, or the “expected
behavior” of an agent.

Sometimes the syntax/semantics distinction is blurred, for example the construc-
tion of the Herbrand structure relies on the syntactical elements of the given language
(or theory). Also, some hard-core proof theorists do not even believe in the useful-
ness of this distinction—at least when considering truth-conditional semantics à la
Tarski.5 Furthermore, the classical approach to belief revision [agm1985], named

5A radical example for abandoning the classical distinction between syntax and truth semantics
is the program that Girard developed in several papers under the title “The Geometry of Inter-

CHAPTER 1. INTRODUCTION 6

AGM belief revision after its founders Alchourrón, Gärdenfors and Makinson, relies
on an abstract notion of logic based on consequence operators (see also Chapter 7
of this monograph). These do not refer to mathematical structures, truth values
or any other semantical notion at all. Nonetheless, later work on belief revision
works also with the classical approach to logic. And even in the AGM approach
there is a benefit of associating meanings with syntactical entities. Moreover, it is
possible to simulate semantical objects on the base of syntactical entities (via maxi-
mally consistent sets). Both views on a logic—semantic-based and the one based on
consequence operators—are considered as useful for the treatment of belief-revision
operators. Summing up, the syntax/semantics distinction is useful, it is part of
textbook definitions of logics, and it has been the base for many research questions
in the field of logic.

Regarding above-mentioned observations on the common history of CS and the
field of logic it does not come as a surprise that much of the current work in compu-
tational engineering involves “logic engineering” [areces00logicPHD]. The mono-
graph at hand has to be considered as a contribution to the foundations of logic
engineering in various fields of CS, mainly within the larger field of knowledge based
representation and reasoning, in particular within belief revision, qualitative spatial
and temporal reasoning, agent theory, stream processing/reasoning, and databases.
The monograph at hand also contains results that are relevant for research on “se-
mantic technologies” and their use in industry. However, as explicated in the follow-
ing section, my insights are not the result of the current, established practice of just
applying “semantical technologies” but, rather, are the result of a critical analysis
of this practice.

1.2 Problem: Need for Representations

Summing up the last section, in my view, logics provide the right tools and results
for using formal specifications within CS applications such as those mentioned in
the beginning of this chapter. But, now, the application/system designer really has
to use them: He faces the challenging task of designing formal specifications that

action”. In the last of these papers, entitled “Geometry of Interaction V: Logic in the hyperfinite
factor” (fully revised version (October 2009)), which is an unpublished manuscript available online,
he calls for a foundation of logic where the semantical objects are not primitives.

CHAPTER 1. INTRODUCTION 7

capture his intended model of the application domain or the indented behavior of
the system as appropriately as possible. But the chosen formal specification may
fail to capture the intended model or may contain non-intended models. The latter
happens, in particular, in those cases where the expressiveness-feasibility balance was
chosen in favor of a polynomial-time algorithm instead of an expressive language.

Even if the designer decides to use a very expressive language for the formal
specification, he has to take a closer look into the models of a formal specification.
Because non-intended models are lurking in the guise of non-standard models in
any formal specification. This holds in particular for logics for which an upwards
Löwenheim-Skolem theorem can be proved. The Löwenheim-Skolem theorem also
holds for FOL and it states in this case that any FOL theory having a model has
a model of arbitrary size. An illustrative example [benthem91logic] is the task of
modeling with FOL a discrete, infinite flow of time as a structure (T,<) where T
stands for a set of time points and the binary relation < stands for the order of time
points. In FOL it is possible to formulate a finite set of sentences DI (standing for
discreteness) that describes the intended structure. Concretely, DI states that <
is transitive, irreflexive, linear, infinite into the past as well as into the future, and
< is discrete. The designer’s intended (standard) structure is the structure (Z, <Z)
consisting of the integers and its natural order. But in addition to this model, DI
has many non-standard models such as the structure (Z ⊕ Z, <Z⊕Z) consisting of
two disjoint copies of the integers, where the order within the two instances is as
in Z and where all elements from the first instance come before all elements of the
second instance.

The existence of many (un)-intended models is not a result of constructing an
artificial scenario, rather it is a typical phenomenon due to the nature of the task
an application/system designer faces: He has to transform his ideas, his cognitive
models, and possibly also the requirements of others—which may be formulated
in natural language—into formal mathematical specifications. Hence, there is a
clear need for supporting system designers with quality feedbacks for the formal
specifications they construct.

The observation on the lack of a quality feedback may be at odds with the
frequently claimed success of “semantic technologies” that were developed within
the semantic-web and description-logics community. For sure, there are relevant
theoretical results on different fragments of description logics, and there are relevant

CHAPTER 1. INTRODUCTION 8

practical results regarding reasoning systems as well as standardization issues such
as the web layer stack (RDF, OWL etc.). Also, regarding the design of ontologies,
state-of-the art reasoners give quality feedbacks w.r.t. simple metrics about, for
instance, the number of axioms, depth of concept nesting, or semantical aspects,
such as the consistency of an ontology. Furthermore, there are some elaborated
frameworks for various specific tasks of ontology evaluation [voelker08aeon]. But
all these results and existing systems should not obscure the fact of the necessity
for further quality feedback for the ontology engineer: The point is that the kind of
feedback mentioned above is still far from giving the designer the necessary insight
into the models of his ontology. And, hence, I claim that formalisms and systems
are not really used appropriately in practice. Similar claims were made some time
ago by other researchers working on formal ontologies in informations systems (see,
e.g., [uschold03whereAre]).

This monograph is a contribution to filling the gap of missing quality feedbacks.
It gives theoretical results on possible models of formal specifications by exploiting
the mathematically well-founded idea of representation theorems, as used, e.g., in the
well-known representation theorem of Stone for Boolean algebras [stone36theory].
Informally, a valid representation theorem for a formal specification states that the
set of all models of a formal specification is representable by a subset of all models.
The models of this subset cover all relevant aspects required to describe all models
because for each model there is a structure preserving mapping from some model
of the representing subset. Moreover, the models in the representing subset are
constructed according to a simple principle. In the case of Stone’s theorem set
algebras are proved to represent the class of all Boolean algebras. (For a formal
statement please see Chapter 2.)

So, how do representation theorems help w.r.t. building “intended models”?
Though in many cases one cannot circumvent unintended models (as the above dis-
cussion on the existence of non-standard models showed), at least, one can “tame”
them, because, each model of a formal specification, be it intended or unintended,
will have a model representing it. There will be harmless unintended models in
the following sense: They were not expected (they are non-standard) but they do
not influence the reasoning services over the formal specifications. However, there
might as well be really unintended models which one wants to exclude as they influ-
ence the reasoning services. Representation theorems explicate a possible intended

CHAPTER 1. INTRODUCTION 9

Class%of%represen,ng%structures%%%%
fulfilling%some%property%%

Structure%preserving%
representa,on%mappings%fi%

Class%of%represented%structures%%%%

Class%of%structures%%

f1%

f2%

Figure 1.1: Components of a Representation Scenario

hidden structure of formal specifications (see also the comments at the end of the
next section). If the set of really unintended models is not empty, then one has
at least a means to characterize them also in terms of the instances of the hidden
structure—and thereby, possibly, a means to exclude them by adapting the hidden
structure.

The term “representation” (and, more specifically, the term “representation the-
orem”) is used with slightly different meanings in various fields—even within CS.
But any of the different readings cover the core meaning of “representation” as used
in natural language: There are two classes of objects, the first one standing for the
things to be represented (the representandum) and the second one for the objects
that represent (representans), and there are structure preserving mappings between
the representing and the represented objects. The mappings between a representing
structure and a represented structure may be different in each case, but for a given
representation theorem each adhere to some constraint that ensures the property of
being structure preserving.

In all of the examples considered in this monograph, the representing objects also
represent themselves, so I consider both the represented and the representing objects
as comprising a class of objects described as class of objects fulfilling some property
(say, being models fulfilling a theory). As stated above, in any of the representation
theorems the class of representing objects fulfills some form of homogeneity in the
sense that all representing objects can be described by some property or by some
construction principle. Figure 1.1 illustrates the general representation scenario.

CHAPTER 1. INTRODUCTION 10

The representation theorems proved in this monograph can be considered as a
contribution to a necessary development in (industrial) applications of CS, away
from blind trust in abstract semantics of formal specifications towards a better—
in fact: feedback supported—understanding of the concrete semantics of formal
specifications. This will give general (industrial) standardization aims regarding
representation structures the necessary justification.

In order to illustrate the point of the last paragraph, a simple DB design scenario
for building a university administration system might be helpful. The designer has
to model the fact that all professors are employees of a university. Also he has to
model the fact that each university is an employer of, amongst others, professors.
It is clear, that the relation of being an employee of a university is the inverse
of the relation of being an employer. The DB designer can use the machinery of
integrity constraints—provided by any database management system (DBMS)—in
order to express the inverse property. This will guarantee that in each concrete DB
implementation the following will be ensured: If there is an entry (a row) stating that
a professor is an employee of a university, then there will be also an entry stating that
the university is the employer of the professor. On each DB this integrity constraint
can be checked by the DBMS. But such an inverse constraint is extensional. It
actually means describing data structures that should hold in any concrete DB with
concretely named elements. The general idea that the relations employee-of and
employer-of are inverse is not represented intensionally. To give a more drastic
example: in the concrete world it might the case that all humans are exactly those
beings with an earlobe. But this constraint does not represent the real essence of a
human being, as one could think of humans without earlobes.

Ontologies mitigate the problem of a lacking means for intensional representa-
tions. In the university scenario, the ontology could be designed to contain an axiom
stating that the relation employee-of is the inverse of the relation employer-of. This
axiom constrains any model so that the following holds: If the pair (professor, uni-
versity) stands in employee-of relation, then the inverse pair (university, professor)
stands in employer-of relation. And this holds also for pairs of objects that are not
even named by some pair of constants within the model. Having the ability to talk
about objects that are not named means a big and necessary step upwards in ex-
pressivity. Because there might be things, say abstract things, that are not named
but which should be assumed to exist in order to explain some or other observa-

CHAPTER 1. INTRODUCTION 11

tion within the concrete application domain. (Compare this with the discussion on
finding hidden structures below).

But how does the designer control those entities which are not named? How
can he be sure that the logical constructs of the ontology (the inverse operator,
the logical constructors, the signature he has chosen) are sufficient to constrain the
models? How does he tame also the non-named objects, the concepts and relations
in which they may participate? There are ontology reasoners which do the analog of
integrity checking provided by DB management systems, namely, checking for the
consistency of an ontology, i.e., checking whether there is a model at all. But due to
the intensional flavor of the axioms, which allow for expressing constraints also on
non-named objects, the space of possible models appears to be quite more diverse:
The kinds of possible constellations between the entities are affine to, sometimes,
surprising (alias non-standard) constellations. Hence, one needs more than the ser-
vice of consistency checking. One needs a guide on how to explore the space of
possible models. Searching for representation theorems is an appropriate method-
ology. (For a different methodology that was developed in a software-engineering
context please see the Alloy language and the Alloy-based support tools described
in [Jackson06software].)

1.3 Contribution: Representation Theorems

This monograph develops representation results similar to that of Stone’s represen-
tation theorem within three different fields, the field of qualitative spatial reasoning,
the field of belief revision, and the field of stream reasoning. Moreover, this mono-
graph presents further results that are related to representational aspects, namely
rewritability results in the context of the paradigm of ontology-based data access
(OBDA). I am going to sketch the results in more detail in the following paragraphs.

Most of the results presented here were published within the last five years
[oezcep15representation, oezcepGruetterMoeller12NearnessAccepted, oezcepGruetterMoeller12DynamicAcc,
oezcepMoeller12CombiningDL2012, oezcepMoeller12computationally, oezcepMoeller12scalableISWC,
oezcep15stream-query, oezcep14RW2014, oezcep14streamKI, oezcep12KnowledgeBase,
oezcep17BeliefRevision] and were presented in various venues and to various
research communities from AI, Description Logics and Semantic Web, GIS and
Databases. All papers contributed to current research topics but already contained,

CHAPTER 1. INTRODUCTION 12

though rather latently, aspects of representation. This monographs presents the
contents of the papers from the perspective of representation and gives full proofs,
which, due to page restrictions, were either sketched only or not given at all in the
papers. Completely new (unpublished) material is contained in Chapter 5 which de-
scribes representation theorems for stream processing in an abstract word-function
based framework. The hot-topics of the last five years touched with the papers men-
tioned above might be considered outdated in the future, but the general aspects
of representation underlying them are so fundamental that I expect them to have a
long-term effect.

The first representation result described in this monograph is developed in the
broader context of qualitative spatial reasoning (QSR). The focus of the result lies
on binary relations of spatial relatedness—measuring the distance of two sets over a
given set X. So, the underlying signature σQSR is mainly that of set theory together
with a binary symbol δ, expressing spatial relatedness, and the structures are of
the form A = (pow(X), δA).6 I consider a set of axioms Ax over the signature
σQSR which describes some desirable properties for the relation δ. As domains of
the considered structures are of the special form pow(X), the structure preserving
condition is actually that of identity. So the representation theorem boils down to
the following: For a given set of axioms Ax find a class of σQSR structures YAx such
that for any σQSR structure A = (pow(X), δA) fulfilling the axioms one can find a
structure A′ = (pow(X), δA′) ∈ YAx such that δA = δA

′ .
Of course this form of representation becomes interesting only if the set YAx

consists of “similar” structures which have the same construction principle (as they
result from instantiating a set of parameters, say) or which can be characterized by
a common property. Indeed, in case of Stone’s representation theorem the common
property of the class of sets of fields is that they share a specific domain (the power
domain) and that the operators are concrete operators on sets. So, in this case, the
common property is circumscribed by a set of axioms of set theory which allows for
defining the notion of a power set.

The main result w.r.t. binary relations of spatial relatedness is the axiomatic
characterization of a special class of binary relations for spatial relatedness. In this
class the type of an object determines the scaling context under which to measure

6Please note that I have left out all set-theoretic relations, functions and constants as these are
assumed to have a fixed interpretation according to set theoretical axioms.

CHAPTER 1. INTRODUCTION 13

spatial relatedness. For example, deciding spatial relatedness w.r.t. a district has
to be conducted in a different scaling context than for deciding spatial relatedness
w.r.t. a city or w.r.t. a country.

The second thematic area for which this monograph gives a representation re-
sult is that of stream processing and stream reasoning. Streams are potentially
infinite sequences of elements. Streams of different types appear in various appli-
cations of CS such as sensor networks, data-stream management systems, complex
event processing, or autonomous systems (agents) which—in addition to streams of
percepts—have to process high-level data such as actions, goals, beliefs etc. The
main challenging aspect of stream processing is the task of continuously processing
data without storing every bit of them (because there is potentially too much to be
stored) and without falling behind.

In case of stream reasoning the logical objects of the representation study are
functions with streams as input and output. In this monograph, I describe repre-
sentation results for stream functions based on the work of [gurevich07theory],
which considers streams from the infinite-word perspective. The main observation of
[gurevich07theory] can be stated as a representation result: Every stream function
that is prefix-determined can be represented as a function that is constructed as an
iterative application of a sliding window over the stream. In this monograph I gen-
eralize this observation in order to characterize stream functions based on different
types of window functions with factorization properties. An especially interesting
class of windows regarding feasibility are memory-bounded windows, i.e., window
functions that require only constant space.7 I give a purely functional description
of this class using a set of initial functions and the principle of recursion.

The most natural type of stream data are one-dimensional temporal data, i.e.,
data with a tag for a time point. But also many-dimensional temporal data and, even
more general, also non-temporal data can be processed in stream-wise manner—as
long as a procedure for sequentializing the data exists. Hence, stream processing
is also relevant for the area of qualitative spatial reasoning. For example, if one is
interested in answering queries over 2-dimensional rectangular regions, then one can
access these regions in a stream-wise manner by applying a small squared window
function that is slit over the regions from, say, left to right and from top to bottom.

As a third area for a representation result in the style of Stone I consider belief

7“Windows” in the sense of this monograph are allowed to be unbound to the left.

CHAPTER 1. INTRODUCTION 14

revision. Here the technical objects of interests are structures consisting of a set-
theoretic domain and a binary operator. Belief revision deals with the dynamics of
declaratively specified repositories (say DBs or knowledge bases) where the change
is triggered by new incoming information that has to be inserted into the repository
(revision) or which has to be deleted from the repository (contraction). So belief
revision considers binary change operators which, for a given pair of a repository
and information, output a new repository. The main representation result of this
monograph within the context of belief revision is the characterization of a specific
class of revision operators that are meant to dissolve ambiguities. Sometimes the
inconsistency between the trigger and the knowledge base is not due to previously
obtained false information in the knowledge base but due to different uses of the
same terms by the holder of the knowledge base and the sender of the trigger. For
example, the trigger sender may have a more strict understanding of “article” (an
article must be published in a journal) than the holder of the knowledge base (an
article can be published either in the proceeding of a conference or in a journal).
The ambiguity is dissolved by reinterpreting the use of “article” in the knowledge
base in favor of the reading according to the trigger.

If one has identified a representing system of objects for a given class of objects,
one has already everything at hand that characterizes this class. Nonetheless, it may
be the case that there is not only one construction principle and hence not only one
class of representing objects but more than one. It is quite instructive to consider
different representation systems for a class of objects as one may have further prop-
erties not shared by the other system—say, one of them might be more feasible than
the other, or might be better suited for implementation etc. Applying this idea to
belief revision, one can think of the existence of more than one construction principle
for the same revision operator: the concrete operators have the same input-output
behavior but are constructed according to different principles. An example in case
of belief revision is the identity of the skeptical operators of Delgrande and Schaub
[delgrande03consistency], which use bridging axioms, and the revision operator
of Satoh [satoh88nonmonotonic], which uses a minimal distance approach. I dis-
cuss this identity in Chapter 7. In that chapter I even push the idea further: I do
not search for representing belief revision operators for a given set of operators of an
axiom system, but, rather, I try to show how to simulate belief revision operators
adhering to some construction principle with belief revision operators adhering to

CHAPTER 1. INTRODUCTION 15

the construction principle of reinterpretation.
In all three representation results mentioned above the representation aspect is

clearly identifiable. As mentioned above, in this monograph I also present results
in the area of OBDA for which the representational aspect is not that obvious but
clearly existent. Because it is rather unusual to consider OBDA and in particular its
core technique of query rewriting from the perspective of representation, I am going
to sketch the representation aspects in the following in more detail, anticipating the
technical terminology introduced in Chapter 2.

In OBDA, data stored in databases are accessed via an ontology. An ontology
represents terminological knowledge. Using the distinction of descriptions logics, an
ontology in the narrow sense is referred to as tbox (for terminological box). And
the data are represented as facts in a so-called abox (assertional box). The user
can query the data via a query language that uses the vocabulary of the ontology.
Query answering, as stated in the beginning for applications on knowledge bases, is
difficult, as usually answering the queries requires to take into account the implicitly
derivable knowledge of the ontology.

For example, assume that the ontology models the administrative structure of
a university and has, amongst others, an axiom stating that all PhD students are
students. If in the database Peter is recorded as a PhD student, then together
with this axiom the implicit assertion that Peter is a student can be derived. In
particular, this means that set of answers to a query asking for all students has
to contain also Peter, though there is no explicit mentioning of Peter as a student
within the database. This example illustrates the so-called certain semantics for
query answering: Infer all and only those knowledge that is certain w.r.t. the tbox
and the abox. Using the notion of models this amounts to: Find the answers that
hold in all possible models of the tbox and the abox.

In OBDA in the classical, stricter sense (sOBDA) the task of computing certain
answers is done via rewriting: The reasoning service of query answering w.r.t. a
tbox is reduced to answering a rewritten query (expressed in FOL) over a database
associated with the given abox. So, instead of using a reasoning system which
deduces the answers to the query, the query answering service is reduced to the
comparatively simple8 service of query evaluation on a database. But query rewriting

8Here “comparatively simple” means simple w.r.t. the complexity class hierarchy: Answering
FOL queries on DBs is in AC0 w.r.t. data complexity (see below).

CHAPTER 1. INTRODUCTION 16

is not always possible. In order to guarantee it, quite strict expressivity constraints
have to be obeyed by the ontology language as well as the query language. Finding
the right balance of these languages is quite challenging.

The results in Chapters 4 and 6 are FOL rewriting results in the sense ex-
plained above. I show FOL rewritability for a specific logic in the realm of QSR
and, secondly, for a logic within the realm of stream processing. But how is FOL
rewritability related to the notion of representation? One way of showing that
rewritability is possible is via a specific model of the tbox and the abox, namely a
universal model. Universal models are an important construction in OBDA but also
in other areas such as database theory or data exchange [fagin03dataExchange,
arenas14foundations]. The most general definition of the property of universal-
ity can be given within the abstract framework of category theory (see any book
on category theory, such as [goldblatt1984topoi]). But for the purposes of this
monograph it is sufficient to stick to the concrete notion of a universal structure in
terms of model theory. It says that a model is universal if and only if for any model
of the theory (tbox plus abox) there is a structure preserving mapping, technically:
a homomorphism, from the universal model into it. And this is exactly the scenario
of representation where the class of structures to be represented is the set of models
of the tbox and the abox and where the representing class consists of the chosen
universal model. Rewriting a query amounts to finding a new query by which the
universal model is captured.

As mentioned above, the main aim of this monograph is to fill the quality feed-
back gap for application and system designers by helping them getting a deeper
understanding of the properties of their formal specifications. This approach has
also the nice side-effect of mitigating a tendency in current practice of ontology en-
gineering as explained in the following. In the early days of description logics (DLs),
the tbox (terminological box) was defined to consist of axioms of a very simple kind,
namely explicit definitions. A DL explicit definition is an equivalence axiom stating
that a concept to be defined, the definiendum, is equivalent to a concept with which
one defines, the definiens. The motivation for relying on such restricted forms of
axioms is the observation on a natural distinction of expressions: Firstly, there are
primitive expressions for which one does not stipulate any definition at all as these
are considered to be atomic or basic. And secondly, there are non-atomic, namely
defined expressions which are constructed explicitly via primitive expressions. Ex-

CHAPTER 1. INTRODUCTION 17

plicit definitions fix the meaning of the definiendum uniquely in any model—given
the denotations of the primitive symbols.

In the current practice of ontology engineering with DLs, instead of explicit
definitions, arbitrary axioms, so-called general inclusion axioms (GCI), are used.
These still might lead to implicit definitions in the following sense: It might be the
case that in any model of the GCIs the extension of the non-primitive concepts are
already uniquely determined by the primitive concepts. But this is not guaranteed9,
and hence even the distinction of primitive and non-primitive concepts is not part
of the current ontology engineering practice. With the representation theorems the
ontology designer gets back this distinction in a different disguise: He stipulates some
axioms with expressions that he thinks denote the relevant entities of his domain. If
a representation theorem holds, then the representing models provide the primitive
entities that are considered to be relevant for the application domain.

The search for representation theorems can also be seen as search for hidden
structures. The general idea of hidden structures is that there are features that can
be observed and others for which one does not have observations but which are useful
in order to explain or to generate the observed features. This conception of hidden
structures is known to most computer scientist from the area of machine learning
but is inherent also to the representation idea explained above. For example, in
order to describe some properties of a system the designer sets up a theory using
a vocabulary consisting of such constants, relations and functions that are required
to denote the entities of the domain. In order to represent all models, the designer
has to search for the hidden structures that generate (or represent) the models. The
hidden structures may rely on a completely different vocabulary not mentioned in
the vocabulary for specifying the theory. To illustrate this point: In case of spatial
relatedness discussed in Chapter 3 the models to be captured are binary relations
fulfilling a specific set of properties. The hidden structure generating such relations
are hierarchical nestings of sets (called partition chains, see below). In case of
operators on streams (as discussed in Chapter 5), the hidden structures are window
functions. In case of belief revision (as discussed in Chapter 7) a possible hidden
structure is the set of bridging axioms of a specific kind.

9See [tenCate13beth] for a discussion of this point w.r.t. expressive description logics.

CHAPTER 1. INTRODUCTION 18

1.4 Overview of Chapters

Chapter 2 provides necessary terminology and knowledge that is used throughout
this monograph. In particular, it introduces necessary notions for working with
logics, their syntax and semantics, gives an overview of description logics (amongst
others the family of lightweight logics DL-Lite), and introduces relevant notions for
the paradigm of ontology-based data access (OBDA). Based on these, the notion of
representation as used in this monograph is stated more formally. Also, this chapter
contains a short introduction to the region connection calculus (RCC), which is
considered in Chapter 3 and in Chapter 4.

Chapter 3 discusses my main representation result in the area of QSR. The ob-
jects of interest are binary relations of spatial relatedness (nearness) which capture
the frequently observable fact that nearness is determined by a scaling context. This
scaling context can be modelled by a tree-like structure called a nested partitioned
chain where the root describes the roughest scale and the leaves describe the finest
scale. In the first part of the chapter I consider the arguments of the spatial re-
latedness to be (ordinary) sets over a given finite set. In the later parts I discuss
two extensions: 1. How to deal with spatial relatedness when the arguments of spa-
tial relatedness are not ordinary sets but regions according to the region connection
calculus. 2. How to track the changes in spatial relatedness when the underlying
partition chain changes.

Chapter 4 is also a contribution in the realm of QSR. The chapter discusses
ontology and query languages that are meant to provide access to spatio-thematic
objects. Because in most geo-processing scenarios one has to cope with large data
volumes, I explore combinations of description logics with qualitative spatial cal-
culi that could be potential candidates for an OBDA approach. In particular, I
show that a weak combination of DL-Lite [calvanese09ontologies] with the most
expressive region connection calculus RCC8 [Randell92aspatial] allows for FOL
rewriting whereas for stronger combinations of DL-Lite even with less expressive
calculi such as RCC3 and RCC5 lead to non-FOL rewritability.

Chapter 5 and Chapter 6 are contributions to stream reasoning, Chapter 5 having
a more foundational character and being relevant for any type of stream reasoning,
and Chapter 6 considering a concrete, practically relevant instance of a stream
function in the realm of OBDA.

CHAPTER 1. INTRODUCTION 19

Chapter 5 introduces a general framework of stream processing in which streams
are modelled as (possibly) infinite words over (possibly) infinite alphabets. Fol-
lowing the framework of [gurevich07theory], window functions are identified as
the hidden structures for incrementally processing streams. I reformulate the main
result of [gurevich07theory] as a representation result, develop a corresponding
representation result for the case where the streams are excluded to be finite, and
give further representation results when the windows have additional properties. A
constructive, functional characterization of memory-bounded window functions via
recursion closes this chapter.

In Chapter 6 the focus is on high-level declarative stream processing within the
STARQL query language framework (Streaming and Temporal ontology Access with
a Reasoning-based Query Language). STARQL provides access to temporal and
streaming data w.r.t. huge static data and an ontology—either with a very expressive
ontology language or with light-weight description logics as required for sOBDA.
After a short introduction to the syntax and semantics of STARQL, the chapter
discusses the use of STARQL for sOBDA and provides an FOL rewritability result.
Also it relates STARQL w.r.t. expressiveness to other ontology-based languages
meant to provide access to temporal and streaming data.

Chapter 7, the last chapter before the overall conclusion, describes a representa-
tion result for reinterpretation operators, a special class of belief revision operators
meant to be used for dissolving ambiguities. Additionally, I argue that the con-
cept of reinterpretation (the hidden structure) is general enough to capture different
forms of classical belief revision.

For the purpose of readability, most proofs as well as those technical results that
are used only within proofs are moved to an appendix.

Chapter 2

Preliminaries

This chapter provides necessary terminology and knowledge that is used throughout
this monograph. In particular, it gives an overview of relevant bits of first-order logic,
propositional logic, and of description logics. In the context of the introduction to
description logics a technical overview of the paradigm of OBDA and the most
prominent logic for OBDA, DL-Lite, is presented. Having this logical machinery,
the notion of representation as used in this monograph is stated more formally. The
preliminaries are concluded by a short introduction to the region connection calculus
(RCC), which is considered in Chapter 3 and Chapter 4.

2.1 Logics

Usually, four components have to be specified for a logic: the syntax, the semantics,
model theoretical notions, and proof procedures/calculi. In this monograph, I deal
mainly with the first three aspects with the focus on first-order logic (FOL) and two
of its fragments, propositional logic as well the family of description logics.

2.1.1 First-order Logic

First-order logic is a sufficiently expressive logic for modeling any kind of structure,
be it mathematical structures or dynamic structures such as those that frequently
appear in CS, e.g., transactional databases, processes, streams. FOL is the reference
logic for all other formal-specification languages and the other logics that are in the
focus of this monograph.

20

CHAPTER 2. PRELIMINARIES 21

Syntax. An FOL non-logical vocabulary or signature σ consists of (individual) con-
stant symbols, usually denoted by lower-case letters a, b, c, a1, etc., relation symbols,
usually denoted by uppercase symbols R,P etc., and function symbols, usually de-
noted by f, g etc. Each relation and function symbol has an associated arity—which
is usually not explicitly written out as it is determined by the context in which the
symbol is used. The non-logical symbols are intended to model arbitrary entities,
and their semantics is fixed by structures as explicated below. In contrast to them,
there are logical symbols with a fixed meaning. Variables, usually denoted by x, y
etc., have a mixed status. As a convention, I refer to them as non-logical symbols.
For each non-logical vocabulary two types of logical expression can be formulated,
terms and formulae.

A term t is either a variable or a constant or it is of the form f(t1, . . . , tn), where
t1, . . . , tn are terms, n ∈ N, and f is an n-ary function symbol.

Formulae are either atomic or non-atomic. An atomic formula α is either of
the form ⊥ (representing a contradiction), > (representing a tautology), ti = tj (“ti
is equal to tj”) or of the form R(t1, . . . , tn) where ti are terms and R is an n-ary
relation symbol. If α and β are (atomic or non-atomic) formula, then the Boolean
combinations are (non-atomic) formulae as well: (α ∧ β) (“α and β”); (α ∨ β) (“α
or β”); (α→ β) (“If α then β”); (α↔ β) (“α iff β”). Also ∀x α (“For all x it holds
that α”) and ∃x α (“There is an x s.t. α”) are (non-atomic) formula. Formulae that
are either atomic or that are negations of an atomic formulae are called literals.

Quantifiers ∀,∃ bind their associated variables. As usual one can define the
occurrences of variables that are not bound, i.e., that are free in a formula. For
example, in the formula R(x, y) ∧ ∀xP (x) the (only) occurrence of y and the first
occurrence of x is free, whereas the second occurrence of x is not free. A formula
α with free occurrences of variables among {x1, . . . , xn} is denoted α(x1, . . . , xn) or,
even shorter,m α(~x) with the vector notation ~x = x1, . . . , xn.

FOL formulae can be used for defining queries (see the semantical definition
below). One important subclass of FOL, which has been extensively investigated in
database systems and in OBDA, are conjunctive queries, for short: CQs. These have
the form ∃y1, . . . ,∃ym.ρ(y1, . . . , ym, x1, . . . , xn) consisting of a prefix of existential
quantifiers ∃ and a conjunction ρ of atomic formula of the form Ri(~w, ~z) where
zi, wi stand either for variables contained in the set {y1, . . . , ym, x1, . . . , xn} or for
constants. The yi are bound by the existential quantifiers, the free variables xi are

CHAPTER 2. PRELIMINARIES 22

the output slots of the query. If the set of free variables is empty, the query is called
Boolean.

A union of CQs (UCQ) is a disjunction of CQs αi each with the same set of free
variables. For a vector of constants ~a of length n and a formula α with free variables
~x of the same length, α(~a) is the Boolean query resulting from substituting ai for xi,
i ∈ [n]. Here and in the following I use the convenient abbreviation [n] = {1, . . . , n}.

A formula without free variables is also called a sentence. The set of formulae for
a given non-logical vocabulary σ is denoted fml(σ), the set of sentences is denoted
sent(σ). An arbitrary set of sentences is sometimes called an axiom set or set of
axioms or a theory. In the context of belief revision a finite set of sentences is
sometimes called a belief base and sometimes knowledge base. If Ψ is a finite set
of sentences α1, . . . , αn, then ∧Ψ denotes the conjunction (. . . (α1 ∧ α2) ∧ α3) ∧
. . . αn) . . .) of all formulae in Ψ.

For any formula α, symb(α) is the set of non-logical symbols in α. For any set
of sentences Ψ, symb(Ψ) = ⋃

α∈Ψ symb(α).

Semantics. The main semantical entity of FOL and other logics with a truth-
conditional semantics is that of a structure. A σ-structure A for a non-logical vo-
cabulary σ is a pair A = (A, ·A) where A is the domain, also denoted dom(A), and
where (·)A is a function, sometimes called the denotation, that maps every symbol
s ∈ σ to an entity of the correct type and arity: If s is a constant c, then cA is
an element of A. If s is an n-ary relation symbols R, then RA is an n-ary relation
RA ⊆ An = A× · · · × A︸ ︷︷ ︸

n−times

. If s is an n-ary function symbol f , then fA is an n-ary

function fA ∈ AA
n = {g | g : An −→ A}. The set of all σ-structures is denoted

struct(σ).
Following the usual convention, I also sometimes describe a structure by explicitly

enumerating the individuals, relations, and functions as in the following expression:
A = (A, c1

A, . . . , cm
A, R1

A, . . . , Rk
A, f1

A, . . . , fl
A).

If a signature σ is made up of relation symbols only, then it is called a relational
signature. In this case all σ-structures are also called relational. If the signature σ
contains no relation symbols, i.e., it consists only of constants and function symbols,
then it is called algebraic. In this case, a σ-structure is called an algebra.

Due to the ambivalent role of variables, the semantics of FOL requires adding
also denotations for variables, that is functions that map a variable to an element

CHAPTER 2. PRELIMINARIES 23

of the domain. The denotation function for variables is also called an assignment.
An FOL σ interpretation is a pair (A, ν) of a σ-structure A and an assignment ν
which has as domain the set of variables mentioned in σ and which has as range the
set dom(A). The set of all σ interpretations is denoted Int(σ). The x-variant of an
interpretation I is denoted I[x/d]. It is the same as I, except that I[x/d] maps x to
the element d ∈ dom(A).

The semantics of terms is given recursively as follows: I(c) = cI = cA, I(x) =
xI = ν(x) and I(f(t1, . . . , tn)) = (f(t1, . . . , tn))I = fA(I(t1), . . . ,I(tn)).

Based on interpretations one can define recursively the satisfaction relation |=
between interpretations and formulae. For atoms the satisfaction relation is defined
as follows: Not I |= ⊥; I |= >; I |= t1 = t2 iff I(t1) = I(t2); and I |= R(t1, . . . , tn)
iff (I(t1), . . . ,I(tn)) ∈ RA. For non-atomic formulae the following recursive rules
hold: I |= ¬α iff not I |= α; I |= (α∧β) iff I |= α and I |= β; I |= (α∨β) iff I |= α

or I |= β; I |= (α→ β) iff: If I |= α then I |= β; I |= (α↔ β) iff: I |= α iff I |= β;
I |= ∀x α iff: For all d ∈ A: I[x/d] |= α; and I |= ∃x α iff: There is d ∈ A such that
I[x/d] |= α. If it is the case that I |= α, then one of the following natural language
wordings can be used: I fulfills α, I satisfies α, I models α, I is a model of/for α,
I makes α true. If not I |= α, which is also written as I 6|= α, then one can also
say that I makes α false. When α has no free variables, then for the specification
of its models it is enough to consider only the underlying structure—ignoring the
assignment. An interpretation is a model of a set of formula Ψ iff it is a model of
each formula contained in Ψ. The set of models is denoted JΨK.

A well known result is that the satisfaction relation for an interpretation with
assignment ν only depends on the values for the open variables occurring in the
formula. Hence, in order to determine whether an interpretation I models a formula
α(~x) with open variables ~x = x1, . . . , xn, it is enough to consider partial assignments
ν on ~x. This motivates the alternative notation for satisfaction as A |= α[~x/ν].

FOL formulae can be used to define queries over a signature σ. In a very general
sense, queries Q are just functions of the form

Q : struct(σ) −→ struct(τ)

Here I define the notion of a query induced by an FOL formula. For this let α(~x) be
an FOL formula with open variables ~x = x1, . . . , xn. Let τ = ({ans}) be the special

CHAPTER 2. PRELIMINARIES 24

target signature τ consisting of the n-ary answer predicate ans and consider the
set of structures structH(τ) over τ where the domain of each structure consists of
exactly the constants σind of the source signature σ. Then, the FOL query induced
by the FOL formula α(~x) is defined as the function

Qα(~x) : struct(σ) −→ structH(τ)

A 7→ (σconst , {(a1, . . . , an) ∈ (σind)n | A |= α(~a)})

A more suggestive and widely used equivalent notation is that of the set of answers
α(~x) of a formula over a structure A defined as follows:

ans(α(~x),A) = {~a = (a1, . . . , an) ∈ (σind)n | A |= α(~a)}

The reason why I consider not bindings of the variables ~x over the tuples of elements
from the domains of the source structures but bindings over the tuples of individual
constants over σind is that I will consider query answering mainly in the context of
OBDA where the approach with constants is more convenient (see below).1

I will follow the usual practice of referring also to the formulae that define a query
by the term “query”—as already done above when discussing conjunctive queries.
To distinguish both readings I sometimes talk about “query formulae” and of “query
functions”.

Model Theoretical Notions. A formula is valid if it is true for all interpreta-
tions. It is contradictory, if it is false for all interpretations. For arbitrary sets of
sentences Ψ and sentences α one says that Ψ entails α or that α follows from Ψ, for
short Ψ |= α, iff every model of Ψ is a model of α, i.e., iff JΨK ⊆ JαK.

Two sets of sentences Ψ1 and Ψ2 are said to be equivalent iff they have the same
models. In this case one uses the short notation Ψ1 ≡ Ψ2.

The entailment relation induces a consequence operator Cn(·) for sets of sentences
Ψ defined by Cn(Ψ) = {α ∈ sent(σ) | Ψ |= α}. Sometimes one considers only
consequences w.r.t. a sub-signature σ′: Cnσ′(Ψ) = {α ∈ sent(σ′) | Ψ |= α} =
Cn(Ψ)∩ sent(σ′). A consequence operator according to Tarski fulfills for any set (of

1A very general notion of an FOL query, where next to an arbitrary target signature τ the use
of products of σ structures is allowed (similar to the approach of interpretability in model theory)
can be found in [immerman99descriptive])

CHAPTER 2. PRELIMINARIES 25

formulae) X, Y the following properties: 1. X ⊆ Cn(X) (reflexivity) 2. If X ⊆ Y ,
then Cn(X) ⊆ Cn(Y) (monotonicity) and 3. Cn(Cn(X)) = Cn(X) (idempotence).

Relations between structures can be captured by various notions. The ones that
are used in this monograph are given below.

A simple relation between two σ structures A, B is that of one being the sub-
structure of the other: A is a substructure of B iff dom(A) ⊆ dom(B), for all
constants c ∈ σ cA = cB, for all function symbols f and all elements d1, . . . , dn ∈
dom(A): fA(d1, . . . , dn) ∈ dom(A) and fA = fB � (dom(A))n and for all relation
symbols R: RA = RB ∩ (dom(A))n.

Two structures A,B over the same signature σ are said to be isomorphic iff there
is a bijective function π : dom(A)→ dom(B) such that the following holds:

1. For all constants c: π(cA) = cB

(c is denoted by the corresponding objects)

2. For all n-ary function symbols R and n-tuples (a1, . . . , an): π(fA(a1, . . . , an) =
(fB(π(a1), . . . , π(an)).

3. For all n-ary predicate symbols R and n-tuples (a1, . . . , an): RA(a1, . . . , an) iff
RB(π(a1), . . . , π(an))

If two structures A,B are isomorphic then this is denoted by A ' B. In the case
of algebras only the first two conditions are relevant.

A weaker notion of structure preservation is that of a homomorphism. A function
h : dom(A) −→ dom(B) between two structures A,B over the same signature σ is
called a homomorphism iff all of the following conditions hold:

• for any constant c: h(cA) = cB

• for any n-ary relationR and elements a1, . . . , an from dom(A): IfRA(a1, . . . , an),
then also RB(h(a1), . . . , h(an))

• for any n-ary function symbol f and elements a1, . . . , an from dom(A):
fA(a1, . . . , an) = fB(h(a1), . . . , h(an)).

In this case the short notation h : A hom−→ B is used.
An important proposition, that is relevant for strict OBDA, states that UCQs

are preserved under homomorphisms.

CHAPTER 2. PRELIMINARIES 26

Proposition 2.1. Let h : A hom−→ B be a homomorphism and Q be a UCQ. Then:
For all tuples ~a from the domain of A: If ~a ∈ Q(A), then h(~a) ∈ Q(B)

A function h : dom(A) −→ dom(B) between two structures A,B over the same
signature σ is called a strong homomorphism iff it is a homomorphism and addition-
ally the following conditions hold:

• for any b1, . . . , bn ∈ dom(B) with RB(b1, . . . , bn) there are a1, . . . , an ∈ dom(A)
with h(ai) = bi (for all i ∈ {1, . . . , n}) and RA(a1, . . . , an).

• for any b1, . . . , bn, bn+1 ∈ dom(B) with fB(b1, . . . , bn) = bn+1 there are a1, . . . , an,

an+1 ∈ dom(A) with h(ai) = bi (for all i ∈ {1, . . . , n+1}) and fA(a1, . . . , an) =
an+1.

2.1.2 Propositional Logic

If an FOL signature σ is chosen to contain only relation symbols of arity 0 (but no
constants and function symbols) and if further the logical vocabulary is restricted to
the Boolean connectors ¬,∨,∧,→,↔, the outcome is a propositional-logic signature.
On the basis of such a signature the syntax and semantics of propositional logic
is exactly the semantics and syntax for FOL presented in the previous section.
For the convenience of the reader, I redefine the syntax and semantics, using the
simplifications that result from the restriction to a propositional logic signature.

Syntax The only syntactical category in propositional logic is that of a sentence.
The 0-ary relational symbols are also called propositional symbols. A signature con-
sisting only of propositional symbols will be denoted by P instead of σ. Furthermore,
instead of the convention applied for FOL, propositional symbols will be denoted
with lowercase letters such as p, q, r etc. The set of sentences sent(P) is already
defined by the FOL rules for formulae that do not mention the quantifier. That is,
the set of sentences is given by the following context free grammar:

α::=p | ¬α | (α ∧ α) | (α ∨ α) | (α→ α) | (α↔ α) | ⊥ | >

A clause is a disjunction of literals. Sometimes clauses are written in set-wise
manner, e.g., p1 ∨¬p2 ∨ p3 is also represented as the set {p1,¬p2, p3}. With respect

CHAPTER 2. PRELIMINARIES 27

to this representation a clause is a subclause of another clause iff it is a subset of
this clause. A conjunction of literals is called a dual clause. A propositional formula
is in conjunctive normal form (CNF) iff it is a conjunction of clauses. A disjunction
of conjunctions of literals is a formula in disjunctive normal form (DNF). Given a
formula α ∈ sent(P) and a subset S ⊆ P of symbols, the clausal closure of α w.r.t.
S is the set clauseS(α) of clauses that have only symbols from S and that follow
from α.

Semantics. As propositional variables are 0-ary relation symbols, there is only
one possible interpretation for them: either the empty relation ∅ or the singleton set
{()} containing the 0-ary tuple (). In this context, usually, the empty set is denoted
by the Boolean value 0 (standing for false) and the singleton with the 0-ary tuple by
the Boolean value 1. In propositional logic one does not have to specify the domain
of a structure nor an assignment for variables (as there are no variables.) So the
notion of an FOL interpretation in the case of proposition logic is a function that
assigns truth values 0, 1 to propositional symbols in P . Preserving the terminology
introduced for FOL, the set of interpretations over the propositional variables P is
denoted Int(P). Instead of I |= β, in propositional logic I prefer the alternative
specification with Boolean truth values: I(α) = 1 iff I |= α and I(α) = 0 iff I 6|= α.
I[p/v] for v ∈ {0, 1} denotes the variant of I that assigns to the propositional variable
p the value v.

In the chapter on belief revision (Chapter 7), an alternative representation of
propositional-logic interpretations is going to be used: Interpretations will be iden-
tified with the set of propositional symbols which are assigned the value 1. For
example, let I be an interpretation over P = {p, q, r} with I(p) = 1, I(q) = 0,
I(r) = 1, then I is identified with the set {p, r}.

The truth value of a formula α depends only on the symbols occurring in it.
Hence, in order to determine the truth value of α it is sufficient to consider Int(S)
instead of Int(P), where S ⊆ P is a set of symbols with symb(α) ⊆ S.

Consequences Relative to a Symbol Set. Sometimes one is interested in ax-
iomatizing all the consequences of a formula w.r.t. a given set of propositional vari-
ables. This is the case, e.g., for the reinterpretation operators considered in this
monograph. I define two operators ΘS and Θ′S that, given a formula α and a set S

CHAPTER 2. PRELIMINARIES 28

of symbols S ⊆ P , compute a formula axiomatizing all consequences of α that do
not contain symbols in S. For Θ′S, the argument α has to be transformed in DNF
while ΘS does not presuppose such a transformation. These operators will be used
as technical aids for calculating belief-revision results based on reinterpretation (see
Chapter 7).

Let α be a formula, dnf(α) a formula equivalent to α represented as a set of
clauses and S ⊆ P . Furthermore, I assume that dnf(α) is reduced in the formula
that it does not contain a contradictory dual clause. Θ′S(α) results from dnf(α) by
substituting all literals over S in dnf(α) by the logical constant >: or equivalently:
delete all literals in dnf(α) that contain a symbol of S. The empty dual clause is
interpreted as >.

ΘS is based on substituting symbols in S by truth value assignments. Let I ∈
Int(S) be given, then the formula αI is defined as follows: Substitute all occurrences
of p ∈ S in α where pI = I(p) = 1 by >, else ⊥ is substituted for p. For example,
let α = (p ∧ q) ∨ (r ∧ s) and S = {p, r} and I ∈ Int(S) with I : p 7→ 1 , I : r 7→ 0,
then αI = (> ∧ q) ∨ (⊥ ∧ s). Now ΘS is defined as follows: Let S ⊆ symb(α).
Then ΘS : α 7→ ∨

I∈Int(S) αI. For arbitrary S ⊆ P let ΘS(α) = Θsymb(α)∩S(α). The
following facts concerning Θ′S and ΘS can be easily proved.

Proposition 2.2. α |= Θ′S(α) and α |= ΘS(α)

Proof. See page 176.

Proposition 2.3. Let S ⊆ P. For all formulae α over P and θS ∈ {Θ′S,ΘS}:
CnP\S(α) = CnP\S(θS(α))

Proof. See p. 176.

As a corollary to Proposition 2.2 and 2.3 the logical equivalence of Θ′S(α) and
ΘS(α) follows.

Corollary 2.4. Θ′S(α) ≡ ΘS(α).

Proof. As α |= Θ′S(α) and CnP\S(α) = CnP\S(ΘS(α)), ΘS(α) |= Θ′S(α). Similarly
α |= ΘS(α) and CnP\S(α) = CnP\S(Θ′S(α)) entail the fact that Θ′S(α) |= ΘS(α). So,
Θ′S(α) ≡ ΘS(α).

CHAPTER 2. PRELIMINARIES 29

2.1.3 Description Logics

Description Logics (DLs) are logics for use in knowledge representation with special
attention on a good balance of expressibility and feasibility of reasoning services.
The expressivity of most DLs lies between that of FOL, which is expressive but
for which important problems such as validity are not even decidable, and that
of propositional logic, which is moderately expressive but for which most relevant
algorithmic problems are decidable.

DLs are mainly used as representation means for ontologies which are the back-
bone of the paradigm of ontology based data access (OBDA) as well as of the
semantic web architecture. Due to this role, the syntax of description logics is
meant to provided convenient means to model concept descriptions. Formally, con-
cept descriptions correspond to FOL formulae that have one open variable and that
are tree shaped with this open variable as root.

Restricting a FOL signature to constant symbols (also called individual con-
stants), unary relation symbols (called atomic concepts or concept symbols or con-
cept names, and binary symbols (called atomic roles or role symbols or role names)
results in a DL signature. Based on a DL signature, four categories of DL expres-
sions can be defined, concept descriptions concepts(σ), role descriptions roles(σ),
abox axioms abox-axioms(σ) and tbox axioms tbox-axioms(σ). Depending on the
kinds of reasoning services in which a DL is used and depending on the required
expressivity/feasibility relation, different DLs can be defined. The various DLs differ
regarding the allowed set of concept and role constructors, the (non-)use of concrete
domains and data types, and on the set of constraints for building axioms from
concepts, roles and constants.

In DL speak, an ontology (in the wider sense) is a triple O = 〈σ,A, T 〉 with a DL
signature σ, a finite set of abox-axioms(σ) axioms A (set of assertional axioms), and
a finite set of tbox-axioms(σ) tbox axioms T (set of terminological axioms). When
the signature is clear from the context, then also T ∪A is called the ontology. Note
that sometimes only the T is referred to as ontology.

The semantics of DLs is based on structures as defined for FOL, the only differ-
ence being that denotations for a DL signature are specified, where constants are
denoted by individuals of a domain, concept symbols are denoted by subsets of the
domain, and roles are denoted by binary relations over the domain.

CHAPTER 2. PRELIMINARIES 30

In this monograph, I deal mainly with a family of DLs that is a family of
lightweight DLs tailored towards strict OBDA, namely the DL-Lite family [calvanese09ontologies].
In the following I describe the syntax and semantics for one member of this family,
the logic DL-LiteuF ,R.

Definition 2.5 (DL-LiteuF ,R). Let σ be a DL signature σ = σRN ∪σCN ∪σind where
σRN is a set of role symbols and P ∈ σRN , σCN is a set of concept symbols and
A ∈ σCN , and where σind is a set of individual constants and a, b ∈ σind .
Syntax.

roles(σ): R −→ P | P−

concepts(σ): B −→ A | ∃R Cl −→ B | Cl uB Cr −→ B | ¬B
tbox-axioms(σ): Cl v Cr, (funct R), R1 v R2

abox-axioms(σ): A(a), R(a, b)
Constraint: If R occurs in a functionality axiom, then R and R− do not

occur as R2 in a role inclusion axiom R1 v R2.
Semantics.
Let I be a σ interpretation I = (∆I, ·I), where the denotation function ·I specifies
AI ⊆ ∆I for all A ∈ σCN , cI ∈ ∆I for all c ∈ σind and cI1 = cI2 iff c1 = c2 (unique
name assumption), and RI ⊆ ∆I ×∆I for all R ∈ σRN .

The semantics of concepts descriptions w.r.t. I is as follows: (C uD)I = CI ∩DI;
¬B = ∆I \ BI; and (∃R)I = {d ∈ ∆I | there is e ∈ ∆I s.t. (d, e) ∈ rI}. The
semantics for tbox axioms is as follows: I |= C v D iff CI ⊆ DI; I |= R1 v R2

iff RI
1 ⊆ RI

2 ; and I |= (funct R) iff RI is functional in its first argument. The
semantics for abox axioms is as follows: I |= A(b) iff aI ∈ AI; and I |= R(a, b) iff
(aI, bI) ∈ RI.

2.2 Ontology-based Data Access

One of the most important standard reasoning services considered in OBDA are
satisfiability checking of an ontology and query answering. Satisfiability checking
means checking whether there is an interpretation modelling an ontology T ∪ A.

The usual semantics for query answering w.r.t. an ontology is based on the
entailment relation. Given an FOL query α(~x) with open variables ~x = x1, . . . , xn

the set of certain answers w.r.t. an ontology is the set of all bindings for ~x such that

CHAPTER 2. PRELIMINARIES 31

the formula α[~x/~a] follows from the ontology:

cert(α(~x),A ∪ T) = cert(α(~x), (σ,A, T)) = {~a ∈ (σind)n | T ∪ A |= α[~x/~a]}

If α is a Boolean query, then the only outcomes are {()} which is interpreted as
truth value 1 or ∅ which is interpreted as the truth value 0.

In strict OBDA, the aim is to reduce query answering over an ontology to model
checking on the abox. This is realized by rewriting the given query w.r.t. the tbox
to a new query that is evaluated over the associated minimal model of an abox. The
same holds for satisfiability checking: Checking the satisfiability of the union of the
tbox and abox is reduced to model checking a (Boolean) query over the minimal
model of the abox.

The associated minimal model abox A mentioned above is constructed as the
minimal Herbrand model and is denoted DB(A). More concretely, the minimal
Herbrand model DB(A) = (∆, ·I) for an abox A is defined as follows:

• ∆ = set of constants occurring in A

• cI = c for all constants;

• AI = {c | A(c) ∈ A};

• rI = {(c, d) | R(c, d) ∈ A}

I define the notion of FOL rewritability in a quite general way, making use of different
languages. A further generalization, which also covers rewritability over temporal
and streaming domains, is going to be discussed in Chapter 5.

Definition 2.6. Let QL1 and QL2 be query languages over the same signature and
OL be an ontology language. QL1 allows for QL2-rewriting of query answering w.r.t.
OL iff for all queries α in QL1 and tboxes T in OL there exists a query αT in QL2

such that for all aboxes A it holds that:

cert(α,A ∪ T) = ans(αT ,DB(A))

A particularly interesting case is QL2 = first-order logic (FOL) queries. A well-
known fact [calvanese09ontologies] is: UCQs are FOL rewritable w.r.t. DL-Lite
ontologies.

CHAPTER 2. PRELIMINARIES 32

Actually, FOL rewriting in this sense can be divided into two steps. In the first
step only the elimination of the tbox T is required, i.e., certain answering w.r.t. the
union of tbox and abox is reduced to certain answering over the abox only. The
second step then requires reducing certain answering w.r.t. the abox to answering
over the associated minimal DB of the abox. Formally, the first step is expressed by
the following equation:

cert(α, T ∪ A) = cert(αT ,A)

If there is no other constraint on the target query language than the constraint
that it consists of an FOL formula, then this form of rewriting can be accomplished
always: Rewrite the tbox T equivalently into a finite FOL formula β and consider
αT = β → α. Because I do not have further constraints on the target query
language, I consider in the following only rewriting to the associated minimal model
of an abox.

The proofs for FOL rewritability use the idea of constructing a model that is uni-
versal. A well-known construction principle for building universal models is the chase
construction, which is extensively used in OBDA but originally goes back to data
base theory and is also extensively used in Data Exchange [fagin03dataExchange,
arenas14foundations].

Definition 2.7. A model of a theory is called a universal model iff it can be em-
bedded homomorphically into any other model of the theory.

This property of universal models makes them interesting for answering UCQs.
Together with the preservation property according to Proposition 2.1 it follows that
universal models capture all answers to a UCQ that are contained in all sets of
answers of the query for each model of the theory. Actually this means that universal
models capture the certain answers of a UCQ w.r.t. a theory (an ontology).

Proposition 2.8. For any universal model I |= T ∪ A (if it exists) and any UCQ
q it holds that:

ans(q, I) = cert(q, T ∪ A)

The lightweight description logic DL-LiteuF ,R defined above is tailored towards
FOL rewritability as verified by the following theorem.

CHAPTER 2. PRELIMINARIES 33

Theorem 2.9 (Mainly [calvanese09ontologies]). DL-LiteuF ,R is FOL-rewritable
w.r.t. satisfiability as well as w.r.t. answering UCQs.

In the following, the chase construction for DL-LiteuF ,R is described in more
detail as it will be used in an adapted fashion for the proof of FOL rewritability for
a spatial extension of DL-LiteuF ,R introduced in Chapter 4. The idea of the chase
construction is to repair the abox with respect to the constraints formulated in the
tbox. If, e.g., the tbox contains the axiom A1 v A2 and the abox contains A1(a)
but not A2(a), then it is enriched by the atom A2(a). This procedure is applied
stepwise to yield a sequence of aboxes Si starting with the original abox A as S0.
The resulting set of abox axioms ⋃Si may be infinite but induces a canonical model
can(O) for the abox and the tbox axioms being used in the chasing process. I sketch
the chase construction for DL-LiteuF ,R.

Let T be a DL-Lite tbox, let Tp be the subset of positive inclusion (PI) axioms
in T , i.e, those GCIs that contain no negation and let A be an abox and O = T ∪A.
Chasing will be carried out with respect to PIs only. Let S0 = A. Let Si be the
set of abox axioms constructed so far and α be a PI axiom in Tp. Let α be of
the form A1 v A2 and let β ∈ Si (resp. β ⊆ Si) be an abox axiom (resp. set of
abox axioms). The PI axiom α is called applicable to β if β is of the form A1(a)
and A2(a) is not in Si. The applicability of other PI axioms of the form B v C

is defined similarly [calvanese09ontologies]. If the left-hand side of the PI is a
conjunction of base concepts, e.g., if the PI is of the form A1 u · · · u An v A0, and
if β is {A1(a), . . . , An(a)} and A0(a) is not in Si, then PI is applicable to β.

As there may be many possible applications of PI axioms to atoms and sets of
atoms, one has to impose an order on the tbox axioms and the (finite) subsets of the
abox. So I assume that all strings over the signature σ of the ontology O and some
countably infinite set of new constants Cch are well ordered. Such a well ordering
exists and has the order type of the natural numbers N. This ordering is different
from the one of [calvanese09ontologies], but it can also be used also for infinite
aboxes and it can handle concept conjunction. If there is a PI axiom α applicable
to an atom β in Si, one takes the minimal pair (α, β) with respect to the ordering
and produces the next level Si+1 = Si ∪ {βnew}. Here βnew is the atom that results
from applying the chase rule for (α, β) as listed in Def. 2.10. The primed constants
(in particular the a′ in Def. 2.10) are the chasing constants from Cch.

CHAPTER 2. PRELIMINARIES 34

Definition 2.10 (Chasing rules for DL-LiteuF ,R).

If α = A1 v A2 and β = A1(a) then βnew = A2(a)

If α = A1 v ∃R and β = A1(a) then βnew = R(a, a′)

If α = ∃R v A and β = R(a, b) then βnew = A(a)

If α = ∃R1 v ∃R2 and β = R1(a, b) then βnew = R2(a, a′)

If α = R1 v R2 and β = R1(a, b) then βnew = R2(a, b)

If α = A1 u · · · u An v A0 and β = {A1(a), . . . , An(a)} then βnew = A2(a)
(and similarly for other PIs of the form B1 u · · · uBn v C)

The chase is defined by chase(O) = chase(Tp ∪ A) = ⋃
i∈N Si. The canonical

model can(O) is the minimal Herbrand model of chase(O). The canonical model
can(O) is a universal model of Tp ∪ A with respect to homomorphisms. In partic-
ular this entails that answering a UCQ w.r.t. Tp ∪ A can be reduced to answering
Qcan(O) w.r.t. DB(A). More concretely, (some finite closure cln(T) of) the negative
inclusions axioms and the functionality axioms are only relevant for checking the
satisfiability of cln(T). The details for the construction of cln(T) can be found in
the appendix on p. 175.

A convenient method for proving non-FOL rewritability uses well-known facts
from descriptive complexity [immerman99descriptive], which investigates cor-
respondences between computational resource required to solve problems and the
logics to represent the problems. Usually, in descriptive complexity one is inter-
ested in the problem of answering queries over finite structures (which correspond
to databases). In many practical cases the size of the query is much smaller than the
size of the structure, hence one defines the notion of data complexity which measures
(time and space) resources only w.r.t. the size of the structure but not the size of
the query.

The relevant complexity class for FOL rewritability is AC0. Intuitively, this class
consists of problems solvable in parallel constant time on polynomially many pro-
cessors. Formally, AC0 is defined in the computation model of Boolean circuits: It is
the set of problems solvable by families of circuits with constant depth, polynomial
size and using NOT gates, unlimited-fanin AND gates and OR gates.

CHAPTER 2. PRELIMINARIES 35

Now, the descriptive complexity correspondence most relevant for OBDA can
be stated as follows:

Proposition 2.11. The data complexity for FOL query answering is AC0. In the
other direction: any query problem in AC0 can be encoded as answering an FOL
query.

Together, the two assertions of the proposition state that FOL captures AC0.
The following relations between AC0 and other more well-known complexity

classes hold:

AC0 (TC0 ⊆ LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ {NP, coNP} ⊆ PH

⊆ PSPACE...

In this monograph I will mainly use the facts that AC0 (LOGSPACE ⊆ NP .
Strict OBDA is intended to be used for accessing data stored in a database,

called X in the following paragraph. Therefore, to apply the idea of rewriting,
the data in the database have to be represented as an abox. This is accomplished
by a set of mappings M consisting of rules which determine how rows in a table
are translated to abox axioms. The details of the mappings do not matter for
this monograph. Assume that the abox defined on X and for the mappings M is
denoted A(M, X). The abox for which query answering is conducted is just this
A(M, X). But this abox is actually not materialized, i.e., not really generated in
strict OBDA. Rather, answering a query α on A(M, X) requires another rewriting
step termed unfolding: Given the mappings M, the query α is unfolded to a DB
query which can be executed on X. Now the point is that the query language
of the database (usually SQL) has some properties that relevant constraints for
performant unfolding. This is indeed the case for most that relational database
and stream management systems equipped with SQL like query languages. These
have the property of domain independence: A query α is domain independent iff
for all interpretations I, J such that I is a substructure of J: ans(α, I) = ans(α, J)
[avron08constructibility].

CHAPTER 2. PRELIMINARIES 36

2.3 Notion of Representation

The notion of representation used in this paragraph is oriented at the notion of repre-
sentation as used in the well-known result of Stone for Boolean algebras [stone36theory].
Hence, before giving my definition of representation I recapitulate the theorem of
Stone.

A Boolean algebra is defined as a special algebra, i.e., a structure which consists
of a domain A and constants as well as functions over A. As usual, 0-ary functions
can be identified with constant elements of A.

Definition 2.12 (Boolean Algebra). A structure A = (AA,+A, ·A,−A, 0A, 1A) =
(A,+, ·,−, 0, 1) with two binary functions +, ·, a unary function − and two constants
0, 1 is called a Boolean algebra iff it fulfills the following constraints:

x+ y = y + x x · y = y · x
x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z
x+ 0 = x x · 1 = x

x+ (−x) = 1 x · (−x) = 0
x+ (y · z) = (x+ y) · (x+ z) x · (y + z) = (x · y) + (x · z)

Set algebras are special Boolean algebras of the form A = (pow(A),∪,∩, , ∅, A)
where the domain of the structure consists of the powerset of a given set A, + is
instantiated by the union operator, · is instantiated by the intersection operator,
is the complement of a set, 0 stands for the empty set ∅, and 1 stands for the whole
set A.

Theorem 2.13. Every Boolean algebra is isomorphic to a set algebra.

The theorem says that all set algebras are indeed Boolean algebras (which can
be verified easily using naive set theory) and that for any Boolean algebra one can
construct a set algebra that has the same structure. Hence, set algebras represent
the whole set of Boolean algebras, they can be called canonical because the set-
theoretical algebraic functions are general enough to capture any Boolean algebra.
The proof of the theorem is a nice exercise in universal algebra (or model theory)
which constructs semantical objects (ultrafilters) considering maximality conditions
on syntactical objects (the axioms defining Boolean algebras).

CHAPTER 2. PRELIMINARIES 37

I give a (semi-)formal definition of a representation theorem on which all the
results of this paper are based on.

Definition 2.14. Let σ be a signature and Rns ⊆ Rnd ⊆ struct(σ) be sets of σ-
structures, Rns standing for the representing structures and Rnd for the structures
to be represented. For any σ-structure A ∈ Rnd and B ∈ Rns let maps(A,B) =
dom(B)dom(A) be the set of all possible functions from the domain of A to the domain
of B and let mapsAll(X, Y) := ⋃

A∈X,B∈Y maps(A,B). A representation theorem
then has the following components:

1. A simple construction principle for Rns and

2. a function F : dom(Rnd) −→ mapsAll(Rns,Rnd) such that for all B ∈ Rnd:
F (B) ∈ maps(A,B) for some A ∈ Rns.

3. and a structure-preservation property that any function F (B) for all B ∈ Rnd
must fulfill.

The semi-formality of the definition comes from the non-formalized notions of a
“simple construction” principle and that of a structure-preserving property.

Within the course of the monograph the instantiations for the application-specific
construction principles and the structure-preserving properties will become clear.
Here, I illustrate the definition in case of Stone’s representation theorem:

1. σ = {+, ·,−, 0, 1} = signature of Boolean algebras

2. Rnd = Boolean algebras

3. Rns = set algebras

4. Rns constructed with power sets

5. function F given by ultra-filter of maximally consistent sets.

6. structure preserving property: isomorphism.

As mentioned in the introduction, also FOL rewritability theorems are related
to representation theorems. FOL rewritability of a query amounts to finding for any
T and query α an FOL query αT such that cert(α, T ∪A) = ans(αT ,DB(A)) for all
aboxes A. The main tool for showing the existence of αT is to show the existence

CHAPTER 2. PRELIMINARIES 38

of a universal model, using, e.g., the chase construction. The query αT captures
exactly the information stored in the universal model which represents the common
positive information of all models of the theory.

So the components for a representation theorem in the context of FOL rewritabil-
ity are the following:

1. σ = a DL signature of an ontology (σ, T ,A)

2. Rnd = JT ∪ AK

3. Rns = {Iu} with an arbitrary universal model Iu of T ∪ A

4. function F giving for any model I ∈ Rnd a homomorphism from Iu into it.

5. structure preserving property: homomorphism.

As the reader might have foreseen, it is possible to define other relevant represen-
tation notions by changing the type of mapping between the representing structures
and the represented structures. I mention here only the notion of a prime model
(see any text book on model theory such as [chang90model]) where the mapping
is that of an embedding, i.e. an injective strong homomorphism.

2.4 The Region Connection Calculi (RCC)

The region connection calculus (RCC) is a calculus for qualitative spatial reasoning
with regions. Actually, behind this term there is a whole family of calculi RCCi
with different expressiveness. The basic theory according to [Randell92aspatial]
assumes a primitive binary relation C(x, y), read as “x connects with y”, which in
turn is defined on regions and not on points. The relation C(x, y) is reflexive and
symmetric.

∀x.C(x, x) and ∀x, y[C(x, y)→ C(y, x)]

The family of calculi RCCi (for i ∈ {1, 2, 3, 5, 8}) are characterized by sets BRCCi of i
base relations BRCCi = {r1, . . . , ri} which are defined on the base of C(x, y) and which
have the JEPD-property: they are jointly exhaustive and pairwise disjoint. Formally
this means that for all x, y the fact ri(x, y) holds exactly for one ri. relations. The

CHAPTER 2. PRELIMINARIES 39

DC(x, y)↔ ¬C(x, y) (disconnected from)
P(x, y)↔ ∀z(C(z, x)→ C(z, y)) (part of)

PP(x, y)↔ P(x, y) ∧ ¬P(y, x) (proper part of)
EQ(x, y)↔ P(x, y) ∧ P(y, x) (equal to)

O(x, y)↔ ∃z(P(z, x) ∧ P(z, y)) (overlaps)
PO(x, y)↔ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (partially overlaps)
DR(x, y)↔ ¬O(x, y) (discrete from)
EC(x, y)↔ C(x, y) ∧ ¬O(x, y) (externally connected to)

TPP(x, y)↔ PP(x, y) ∧ ∃z(EC(z, x) ∧ EC(z, y)) (tangential proper part of)
NTPP(x, y)↔ PP(x, y) ∧ ¬∃z(EC(z, x) ∧ EC(z, y)) (nontangential proper part of)

Pi(x, y)↔ P(y, x) (inverse of P)
PPi(x, y)↔ PP(y, x) (inverse of PP)

TPPi(x, y)↔ TPP(y, x) (inverse of TPP)
NTPPi(x, y)↔ NTPP(y, x) (inverse of NTPP)

Figure 2.1: Definitions of RCC relations according to [Randell92aspatial]

most expressive calculus RCC8 is based upon the set of base relations BRCC8 defined
as follows:

BRCC8 = {DC,EC,PO,EQ,TPP,NTPP,TPPi,NTPPi}

The definitions of the base relations of BRCC8 and other relations that I use in
this monograph are given as predicate logical sentences in the Figure 2.1.

For the convenience of the reader Figure 2.2 illustrates the base relations.
Note that for two regions x, y, EQ(x, y) means that x, y cover the same area in

space. RCC8 allows for models in which EQ(x, y) may hold even if x 6= y, that

a :

b :

dc(a, b)
disjoint

ec(a, b)
externally
connected

po(a, b)
partial overlap

eq(a, b)
equal

tppi(b, a)
covers

tpp(a, b)
tangential
proper part

ntppi(b, a)
contains

ntpp(a, b)
non-tangential
proper part

Figure 2.2: RCC8 Base relations

CHAPTER 2. PRELIMINARIES 40

is even if x, y denote different objects. These models are called non-strict models
in [stell00boolean]. This distinction is useful for a fine-grained representation of
administrative regions (see 3.7). For example, a municipality is not just a spatially
extended object but some “abstract" entity with specific legal obligations, functions
etc.

Beside the definitions of base relations the axiom system of Randell and col-
leagues [Randell92aspatial] contains the axiom of non-atomicity. It states that
every region has a non-tangential proper part—which immediately leads to an infi-
nite set of regions.

∀x∃y.NTPP(y, x)

Randell and colleagues [Randell92aspatial] also define binary functions for regions.
One of these is the sum function for regions x, y which results in the union z of x, y.
It is defined by the following axiom:

∀x, y, z[sum(x, y) = z ↔ ∀w(C(w, z)↔ (C(w, x) ∨ C(w, y)))]

That means, z is the sum of x and y if and only if the following holds: any region w
connects with the sum if and only if it connects with one of the summands. Instead
of sum(x, y) I also use the set theoretic notation x ∪ y and assume that the sum
function is extended to any finite number of arguments (using the associativity of
sum) so that also ⋃i∈I xi for any finite index set I is defined. The other Boolean
functions are complement, intersection and difference. Complementation is defined
by:

∀x, y. compl(x) = y ↔ ∀z[(C(z, y)↔ ¬NTPP(z, x)) ∧ (O(z, y)↔ ¬P(z, x))]

The intersection or product prod(x, y) (also denoted set theoretically by x ∩ y) is
defined by the following axiom:

prod(x, y) = z ↔ ∀u[C(u, z)↔ ∃v(P(v, x) ∧ P(v, y) ∧ C(u, v))]

And the difference diff(x, y) (also denoted set theoretically by x \ y) is defined as

CHAPTER 2. PRELIMINARIES 41

follows:

diff(x, y) = w ↔ ∀z[C(z, w)↔ C(z, prod(x, compl(y)))]

I call the set consisting exactly of the axioms in this section the axiom set for the
Boolean region connection calculus and denote it by AxBRCC . I decided to work with
the axiom set AxBRCC and not a specific RCC model upon because I wanted to keep
the model as general as possible and make the deduction of nearness properties in
the propositions comprehensible by referring to the axioms. Nonetheless, the reader
may think of a specific model of AxBRCC when following the proofs for Sect. 3.7, for
example, the model that results from interpreting regions as regular closed subsets
of R2 equipped with the usual topology. In this model, regular closed sets x, y are
connected iff they share a common point, i.e., C(x, y) iff x ∩ y 6= ∅. Intuitively, the
regularity restriction means that the regions do not have cuts or pointed holes.

For qualitative spatial reasoning with RCC, [cohn97qualitative] introduced
so-called composition tables. The composition ◦ of two relations r1 and r2 is defined
as r1 ◦ r2 = {(x, y) | ∃z.r1(x, z) ∧ r2(z, y)}. Given the relations r1(x, y) and r2(y, z)
from a set of relations {r1, r2, . . . , ri}, a composition table enables one to look up
the possible relations that can hold between x and z. So with the composition of
two base relations, in most cases, only indefinite knowledge of spatial configurations
follows. The spatial configuration r1(x, z) ∨ · · · ∨ rn(x, z) for base relations rj in
BRCCi is also written as {r1, . . . , rn}(x, z), and the set {r1, . . . , rn} is called a general
RCCi relation. Let RelRCCi be the set of all 2i general RCCi relations. An RCCi
(constraint) network consists of assertions of the form {r1, . . . , rn}(x, y).

As an example of a composition table entry in RCC8, which is relevant for
the engineering bureau scenario in Chapter 4, I mention the table entry for the
pair (tpp, tppi): tpp; tppi = {dc, ec, po, tpp, tppi, eq} which is described in AxRCC8 by
∀x, y, z.tpp(x, y) ∧ tppi(y, z)→ {dc, ec, po, tpp, tppi, eq}(x, z).

For the convenience of the reader, I show in Table 2.1 the composition table for
RCC8. The set of 8 base relations in RCC8 is denoted by BRCC8. Note that any
pair (r1, r2) with entry r1

3, . . . , r
k
3 corresponds to a theorem of the form

∀x, y, z[(r1(x, y) ∧ r2(y, z))→ r1
3(x, z) ∨ · · · ∨ rk3(x, z)]

CHAPTER 2. PRELIMINARIES 42

◦ DC EC PO TPP NTPP TPPi NTPPi EQ

DC BRCC8
DR,

PO, PP
DR,

PO, PP
DR,

PO, PP
DR,

PO, PP DC DC DC

EC
DR,
PO,
PPi

DR,
PO,

TPP,
TPi

DR,
PO, PP

EC,
PO, PP PO, PP DR DC EC

PO
DR,
PO,
PPi

DR,
PO,
PPi

BRCC8 PO, PP PO, PP
DR,
PO,
PPi

DR,
PO,
PPi

PO

TPP DC DR DR,
PO, PP PP NTPP

DR,
PO,

TPP,
TPi

DR,
PO,
PPi

TPP

NTPP DC DC DR,
PO, PP NTPP NTPP DR,

PO, PP BRCC8 NTPP

TPPi
DR,
PO,
PPi

EC,
PO,
PPi

PO,
PPi

PO,
TPP,
TPi

PO, PP PPi NTPPi TPPi

NTPPi
DR,
PO,
PPi

PO,
PPi

PO,
PPi

PO,
PPi O NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

Table 2.1: Composition table for RCC8(TPi stands for {TPPi,EQ})

I also mention here the composition table for the low resolution logics RCC2
and RCC3 as I am going to refer to them in later chapters. Their base rela-
tions are given by the sets BRCC3 = {DR,EQ,ONE} and BRCC2 = {DR,O}, and
their weak compositions are defined as shown in Fig. 2.3. The discreteness rela-
tion DR is the same as {DC,EC}, the overlapping-but-not-equal relation ONE is
equal to {PO,NTPP,TPP,NTPPi,TPPi} and the overlapping relation O is given by
{ONE,EQ}. Note that in the definitions of the base relations (of RCC3 and RCC2)
I followed the author of [wessel02onSpatial] and not [grigni95topological]. But
the composition tables for both definitions are identical.

In Chapter 4 I am not going to refer to the connect relation C nor to the summa-
tion operator. Rather I am going to consider simpler axiomatizations of the RCC
calculus.

Definition 2.15 (Axiom system schema AxRCCi). For all i ∈ {2, 3, 5, 8} the axiom
set AxRCCi contains the following axioms:

; DR O
DR BRCC2 BRCC2
O BRCC2 BRCC2

; DR ONE EQ
DR BRCC3 {DR,ONE} DR

ONE {DR,ONE} BRCC3 ONE
EQ DR ONE EQ

Figure 2.3: Composition tables for RCC2 and RCC3

CHAPTER 2. PRELIMINARIES 43

{∀x, y.∨r∈BRCCi r(x, y)} ∪ (joint exhaustivity)

{∀x, y.∧r1,r2∈BRCCi,r1 6=r2 r1(x, y)→ ¬r2(x, y)} ∪ (pairwise disjointness)

{∀x, y, z.r1(x, y) ∧ r2(y, z)→ r1
3(x, z) ∨ · · · ∨ rk3(x, z) | r1; r2 = {r1

3, . . . , r
k
3}}

(weak composition axioms)

For i ∈ {3, 5, 8} additionally the axiom ∀xEQ(x, x) (reflexivity of EQ) is contained.
For i = 2 the axiom ∀xO(x, x) (reflexivity of O) is contained.

In particular, the axioms state the JEPD-property of the base relations (each
pair of regions x, y is related over exactly one base relation) and describe the (weak)
composition of two base relations (denoted by ;) according to the composition table
for RCCi.

A practically relevant question for which composition tables are used is whether
a network is satisfiable with respect to the RCC8-axioms. For example, the network
{tpp(a, b), tpp(b, c), tpp(a, c)} is satisfiable whereas {tpp(a, b), ntpp(b, c), tpp(a, c)} is
not satisfiable. Testing the satisfiability of networks can be carried out by path
consistency algorithms [mackworth77consistency].

By a translation into the modal logic S4 it can be shown that the satisfiability
test for RCC8-networks is in NPTIME [bennett96modal]. By showing that the
decidability problem 3SAT—i.e., the problem of deciding whether a propositional
formula in CNF with clauses that contain at most 3 literals has a model (alias:
is satisfiable)—is reducible to the satisfiability of RCC8-networks, the NPTIME-
hardness follows [renz99complexity]. Consequently, testing the satisfiability of
arbitrary RCC8-networks is NPTIME-complete and therefore a computationally in-
tensive task. Tractability of the satisfiability of RCC8-networks can be gained by
restricting the labels to a specific subclass of all RCC8-relations RelRCC8. A maxi-
mally tractable subset of RCC8-relations in the sense that the satisfiability test is in
PTIME is defined by [renz99complexity]. If one constrains the RCC8-networks
to so-called conjunctive RCC8-networks [grigni95topological], i.e. networks that
contain only a base relation from BRCC8 or the whole set BRCC8 as label, then the
complexity of the satisfiability test can be more specifically described as lying in NC
[nebel95computational]. Intuitively, NC (Nick’s Class) is the class of problems
that are decidable in polylogarithmic time on a parallel computer with a polyno-

CHAPTER 2. PRELIMINARIES 44

mial number of processors.2 This can be made precise by Boolean circuit complexity.
NC is the class of all problems that can be decided by a uniform system of Boolean
circuits with a polylogarithmic depth and polynomial size (polynomial number of
gates.)

2Though it is known that NC ⊆ P , it is not known whether NC (P .

Chapter 3

Representing Spatial Relatedness

Spatial relations have been investigated in various inter-related areas such as qualita-
tive spatial reasoning [worboys01nearness], geographic information science [Yao:2005],
general topology [naimpally70proximity], and others. Most of the results achieved
are specific constructions of spatial relations that fulfill some desired properties—
which may vary according to the application/modeling context. Although the ax-
iomatic method is a well-proven approach for the description of entities, results on
setting up axioms that capture the desired properties of spatial relations are rare.
And results that characterize spatial relations in the sense that they state a repre-
sentation theorem are missing.

Following the general representation methodology of this monograph, this chap-
ter describes how to fill this gap with a semantic analysis of a specific class of
spatial relations: Not only does it set up an axiom set that the intended spatial
relation should fulfill but it takes a deeper look into the structure of the models
for the axioms. This is the general idea underlying proofs for representation the-
orems, namely that of systematically characterizing the models by grouping them
into disjoint, mathematically well-defined classes. A particularly interesting case is
the one in which the set of models is described by exactly one class of models built
according to some construction principle. In this case, the axioms really charac-
terize the intended concepts, providing a canonical representation according to the
construction principle of the class. As stated in the introduction of this monograph,
a nice side-product of a representation theorem is that unintended models, which
could result from an incomplete axiomatization, are excluded.

The spatial relations for which this paper gives a representation theorem are de-

45

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 46

fined on the basis of a special structure, a hierarchical structure of nested partitions
[gruetter10vague, oezcepGruetterMoeller12NearnessAccepted, oezcepGruetterMoeller12DynamicAcc].
Typical examples of such total orders of nested partitions are made up of adminis-
trative units where the administrative units in a rougher granularity (e.g., districts)
are the unions of administrative units of the lower level (e.g., municipalities). For
example, think of two partitions of Switzerland, where the first partition consists of
municipalities and where the second consists of districts. All districts are munici-
palities or are unions of two or more municipalities.

The interest in such types of spatial relations stems from observations regarding
the context-dependency of spatial relatedness: The criterion for deciding whether a
is considered spatially related to b depends on the type of the object that has b as
its spatial extension. If b is a natural object such as a mountain, then the spatial
criteria (be it geometric, topological, or metric) for identifying objects as spatially
related or not may depend on scaling contexts of (big) natural borders such as those
of forests or rivers etc. But if the object with spatial extension b is a non-natural
artifact such as a house, then different criteria have to be taken account: say borders
made up by cadastral data.

The situation, as the house example demonstrates, may even be more compli-
cated: it may be the case that the same spatial area b (house area) is the spatial
extension of two different objects: the house considered as the pure geometrical
object or the house considered as a legal object which has to adhere to planning
laws. Depending on which objects are relevant for the use case different criteria are
relevant in order to decide whether an object is spatially related to a house: In the
first case, a purely metric criterion is in order, in the second case the district or even
the country in which the house is situated is in order.

In this chapter, only objects of the same type are considered. With respect to
the example above this means that either houses are considered as pure geometrical
objects only or that houses are considered as legal objects only. Hence, for spatial
relatedness there is one context criterion fixed according to which two objects are
considered to be related or not. This criterion is formalized by nested partitions of
a spatial domain X. A partition provides a granularity or scale w.r.t. which spatial
relatedness of two regions is fixed. The main idea is to consider one of the arguments
(here the second one) as the one determining the scaling context, i.e., the level on
the ground of which two regions are defined to be spatially related or not. The

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 47

results of this paper can be easily generalized to the case of regions with different
types by considering collections of nested partition chains.

With this model in mind, the representation theorem now reads as follows: There
is a finite set of axioms such that any binary relation fulfilling these can be repre-
sented as a spatial relation based on a nested partition chain. To fit this representa-
tion theorem into the pattern of a representation theorem as described in Chapter
2, the instantiations of the template definition are given bellow:

1. The class of structures to be represented Rnd is the class of structures of the
form A = (pow(X), δA) where X is an arbitrary but finite set, pow(X) is the
powerset of X and where δ is a binary function on pow(X).

2. The class of representing structures Rns is the class of structures of the form
A = (pow(X), srpc) where srpc is a binary relation based on a nested strict
partition chain (see below).

3. The underlying construction principle for the representing structures is that
of building nested partition chains which present a class of trees with nodes
from pow(X).

4. The structure-preserving mapping is that of identity (in particular Rns =
Rnd).

The rest of the chapter is structured as follows. Section 3.1 gives the definitions
of partition chains and spatial relatedness. Section 3.2 gives a comparison of spatial
relatedness with proximity. Section 3.3 defines the upshift operator used in the
axioms. Section 3.4 contains the main axioms for the representation theorem, which,
in turn, is proved in Section 3.5. The last two sections before the sections on related
work and the résumé are further extensions of the spatial-relatedness framework.
Section 3.6 deals with the question of how to track changes in spatial relatedness
when the underlying partition chain changes. In Section 3.7, the kind of spatial
relatedness considered is not that between arbitrary subsets of a set X, but between
regions according to the region connection calculus [cohn97qualitative].

The content of this chapter is based on papers [oezcep15representation, oezcepGruetterMoeller12NearnessAccepted,
oezcepGruetterMoeller12DynamicAcc].

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 48

3.1 Partitions and Spatial Relatedness

The binary relations of spatial relatedness for which a representation theorem is
going to be developed has as arguments arbitrary subsets of a finite set X. The
restriction to finite sets X is relevant for the construction used in the proof of the
representation theorem but otherwise the definition and most of the other properties
transfer to infinite sets X. A similar assumption of finiteness can be found in the
areas of discrete/digital topology [duentsch07region, smyth07discrete].

The main technical concept used in the representation theorem is that of a
partition and that of a normal partition chain. The usual partition concept of
set theory will be called set partition. That is, given X and a family of sets {ai}i∈I
where the ais are pairwise disjoint is a set partition iff X is the union of all the ais,
formally X = ⊎

i∈I ai.

Definition 3.1 (partition). A partition of a set X on level i ∈ N is a family of pairs
(i, aj)j∈J such that (aj)j∈J is a set partition of X. A pair c = (i, aj) is called a cell
of level i. Its underlying set aj, which is the the second argument of the cell, is
denoted us(c) and its level is denoted l(c) = i.

Partition chains are partitions of X that are nested.

Definition 3.2 (partition chain). Consider a collection of n+ 1 different partitions
of X where all partitions have only finitely many cells. This set of partitions is
called a partition chain pc iff

1. all cells (i + 1, aj) of level i + 1 (for i ∈ {0, . . . , n − 1}) are unions of i-level
cells, i.e., there exist (i, bk), k ∈ K, such that aj = ⊎

k∈K bk;

2. and the last partition (level n) is made up by (X).

Every cell has a unique upper cell. For a cell (i, aj) (with 1 ≤ i ≤ n − 1) let
(i, aj)↑,pc = (i+ 1, ak) be the unique cell of the upper level in this partition chain pc
such that aj ⊆ ak. For the cell of level n set (n,X)↑,pc = (n,X). The cell (i, aj)↑,pc is
called the upper cell of (i, aj). If the partition chain is clear from the context, then
(i, aj)↑ stands for (i, aj)↑,pc.

A partition chain is normal iff all set partitions underlying the partitions are
pairwise distinct. A partition chain is strict iff for every level i, i > 0 and every cell
(i, aj) there is no cell (i− 1, aj) on the level below with the same underlying set.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 49

Example 3.3. An example of a (strict) partition chain with three levels is illustrated
in Figure 3.1, where I give a region oriented presentation (left) and the tree structure
(right) with the associated levels. In order to make the example fully concrete I
assume that us(X) = {1, 2, 3, 4, 5, 6} and ci = (0, {i}), for i ∈ us(X).

!"#!$#

!%#

!&#

!'#

!(#

)#

*$#

*"#

*'#

X"

b3"b2"b1"

c1" c2" c3" c4" c5" c6"

Level"n"

2"

1"

0"

Figure 3.1: A strict partition chain (ci)i∈{1,2,3,4,5,6} ≤ (bi)i∈{1,2,3} ≤ (X)

For arbitrary subsets b 6= ∅ of X let b̃pc denote the cell (i, aj) such that b ⊆ aj

and i is minimal. The integer i = lpc(b) is called the level of b in pc. If the partition
chain pc is unique in the used context, it is not mentioned in the subscripts. As a
shorthand for (b̃pc)↑,pc one may write b⇑,pc.

Example 3.4. Consider again Figure 3.1. For the set {5, 6} = us(c5) ∪ us(c6) it
follows that {̃5, 6} = b3 and so {5, 6}⇑,pc = X. For the set {3, 6} = us(c3) ∪ us(c6)
already {̃3, 6} = X holds, and so again {3, 6}⇑,pc = X.

Definition 3.5 (spatial relatedness sr). For a normal partition chain pc over X
spatial relatedness srpc is defined by:

srpc(a, b) iff b 6= ∅ and a ∩ us(b⇑,pc) 6= ∅

So the main idea underlying this definition is that the second argument (here b)
determines the partition level w.r.t. which the first argument (here a) is considered
to be related. If b is a cell, then one checks whether the intersection of a with the
upper cell of b is non-empty. If the intersection is non-empty, then a is spatially
related to b, otherwise a is not spatially related to b. If b is not the underlying set
of a cell, then one looks for the smallest upper cell whose underlying set contains b
and then proceeds as before.

Example 3.6. Consider the partition chain in Figure 3.2. It is similar to that
of Figure 3.1, but here let X = {1, 2, . . . , 7, 8}, ci = (0, i) for i ∈ {1, 2, 3, 4} and

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 50

c5 = (0, {5, 7}), c6 = (0, {6, 8}). Moreover, there is a set z = {7, 8} which overlaps
with the cells c5 and c6 and a set w = {6} contained in the cell c6. It holds that z̃ = b3

= (1, {5, 6, 7, 8}) and hence z⇑,pc = X. So every set b ⊆ us(X) is spatially related to
z, i.e., srpc(b, z). In contrast, consider the set w. Here one has w̃ = c6 = (0, {6, 8})
and hence w⇑,pc = b3 = (1, {5, 6, 7, 8}). So only sets intersecting with {5, 6, 7, 8} are
spatially related to w.

c2#c1#

c4#

c6#

c3#

c5#

X#

b1#

b2#

b3#
z#

w#

Figure 3.2: Partition chain with non-cells for illustrating spatial relatedness

Example 3.7. This example illustrates the difference between (metrical) nearness
and spatial relatedness. Assume that there are cadastral data covering two different
nations and that houses are seen as legal objects adhering to planning laws. Two
houses a and b are sited on different sides of the border line of two nations that have
two completely different planning laws. Then, the legal object a would not stand in
srpc relation to the legal object b w.r.t. the partition pc made of the cadastral data
though the areas a and b are clearly metrically near.

3.2 Spatial Relatedness vs. Proximity

A prominent example of qualitative spatial relatedness results from the neighbor-
hood concept of topological spaces. An even more fine-grained mathematical ap-
proach to nearness is provided by proximity spaces. These date back to ideas of Riesz
presented in a congress talk in 1908 [riesz08stetigkeitsbegriff]. Proximity spaces
were rediscovered in the fifties by the mathematician Efremovič [efremovic51infinitesimal,
efremovic52geometry]. He gave the axiomatic definition of a proximity space to
become the basis for all following work on proximity spaces. I will not delve into
the further development of research on proximity spaces but note that proximity
spaces also became an important topic in the area of qualitative spatial reasoning

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 51

[vakarelov02proximity, dimov06ContactI, dimov06ContactII, duentsch07region].
For a historical overview on proximity spaces (until 1970) the reader may have a
look at the introductory chapter of the classic monograph by Naimpally and Warrack
[naimpally70proximity].

In the following, I will not give the definition of proximity spaces according to
Efremovič (see [naimpally70proximity]) but rather use the weaker notion of a
minimal proximity relation given in [duentsch07region]. The reason is that the
spatial relatedness as considered in this monograph is inherently not symmetrical
and the total order of partitions is finite, hence induces a discrete approach to
nearness which is in the same spirit as the approach of [duentsch07region].

Structures (X, δ) with domain X and a binary relation δ over X are called min-
imal proximity structures [duentsch07region] iff the following axioms are fulfilled
for all sets a, b, c ⊆ X:

(P1) If δ(a, b), then a and b are non-empty.

(P2*) δ(a, b) or δ(a, c) iff δ(a, (b ∪ c)).

(P3) δ(a, c) or δ(b, c) iff δ((a ∪ b), c).

Proximity spaces are structures that have strong connections to topological
spaces. In fact, for a proximity space (X, δ) a canonical topological space (X, τ(δ))
can be defined by

τ(δ) = {A ⊆ X | A is closed according to (3.1)}

and

A ⊆ X is closed under δ iff for all x ∈ X: If δ({x}, A), then x ∈ A. (3.1)

Indeed, (X, τ(δ)) is a topology in the sense that the following conditions are fulfilled:
{X, ∅} ⊆ τ(δ); if A,B ∈ τ(δ), then A ∪ B ∈ τ ; and if (Ai)i∈I is a (possibly infinite)
family of sets in τ(δ), Ai ∈ τ(δ), then ⋂i∈I Ai ∈ τ(δ). But, as said before, prox-
imity spaces are finer structures than topological spaces in so far as two different
proximities δ1, δ2 may induce the same topology τ(δ1) = τ(δ2).

It can be easily verified that srpc fulfills (P1) and (P3), but only the following
weakening of (P2*):

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 52

(P2) If δ(a, b) or δ(a, c), then δ(a, (b ∪ c))

A counterexample for (P2*) is discussed later in Example 3.22. Moreover one can
show that srpc fulfills the following two properties:

(P4) If a ∩ b 6= ∅, then δ(a, b) and δ(b, a).

(P5) For all a (X with a 6= ∅: δ(a, (X \ a)) or δ((X \ a), a).

The following proposition summarizes these results.

Proposition 3.8. All srpc for normal partition chains pc fulfill the axioms (P1),
(P2), (P3), (P4), and (P5).

Proof. See p. 177.

As the following example shows, this set of axioms is incomplete in the following
sense: There are still models where δ is interpreted by a binary relation that cannot
be represented as srpc for an appropriate partition chain pc. In other words, these
axioms do not completely characterize the relations of the type srpc.

Example 3.9. Assume X = {1, 2, 3, 4} and the following δ-relations are given:

• None of the following holds: δ({4}, {2}),
δ({4}, {1}), δ({1}, {3}), δ({1}, {4})

• for all other a, b ⊆ X with a, b 6= ∅ it
holds that δ(a, b).

!"

#$%"

#&%" #'%"

#(%"

#&)$%" #')(%"

It can be easily checked that δ fulfills (P1)–(P5), but that it is not representable
as srpc for a normal partition chain.

The last assertion is proved as follows: Take the assertion δ(3, 2). Assume that
there is a normal pc such that δ = srpc. Consider the following cases:

1. c := {̃2} = (0, {2}). As δ({1}, {2}) and δ({3}, {2}) it must be the case that
{1, 2, 3} ⊆ us(c↑). As not δ({4}, {2}), us(c↑) = {1, 2, 3}. That means that on
level 1 one can have only the sets {1, 2, 3} and {4} as underlying cells. But
this means that {̃4} = (0, {4}) and 4⇑ = (1, {4}). But this contradicts the fact
that δ({2}, {4}) holds while one would have to have not srpc(2, 4).

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 53

2. In the other cases c := {̃2} = (0, a) for a set a with {2} (a. But then
c↑ = (1, b) for a set b which must again be b = {1, 2, 3} for the same reasons
as in the former case. But then one gets a contradiction again.

3.3 The Upshift Operator

The main idea for the representation theorem is to reconstruct the levels by referring
only to δ. A first step towards this end is to define the upshift operator ·⇑δ for δ, an
abstract analogue of the level-shifting operator ·⇑,pc. I refer to this abstract operator
also under the term δ-upshift. The upshift operator is going to be defined below as
a unique function based on δ. In all axioms where ·⇑δ occurs it can be unfolded to
its defining formula to get rid of the new symbol.

Given δ, the equivalence relation •∼ is defined as follows:

a •∼ b iff {c ⊆ X | δ(c, a)} = {c ⊆ X | δ(c, b)} (3.2)

This equivalence relation can be formulated for any relation δ, independently of the
specific properties of δ. As usual, for any equivalence relation ∼, [a]∼ denotes the
equivalence class of a w.r.t. ∼. A simple observation is the following:

Proposition 3.10. For partition chains pc and a, b ⊆ X s.t. ã = (i, a), b̃ = (i, b),
and a⇑,pc = b⇑,pc it holds that a •∼ b.

Definition 3.11. Given a binary relation δ, the upshift operator ·⇑δ for δ is defined
for any non-empty set b ⊆ X as follows:

b⇑δ =
⋃

[b]•∼

So, the set b⇑δ is just the union of all sets a that have the same set of sets that
are δ-related to them as b. If a partition chain pc over X is given, then one has two
different shift operators, the level-shift operator ·⇑,pc, which calculates the upper cell
w.r.t. pc, and the upshift operator ·⇑srpc w.r.t. srpc. But, as the following proposition
shows, the δ-upshift operator is nothing else than the level-shift operator in case of
δ = srpc.

Proposition 3.12. Let pc be a partition chain over X. Then for any non-empty
b ⊆ X the following equality holds: b⇑,pc = b⇑srpc .

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 54

3.4 Main Axioms

In the following subsections the main axioms that lead to the representation theorem
are introduced and discussed.

3.4.1 Spatial Relatedness is Grounded

The following axiom states a necessary and sufficient condition for the spatial re-
latedness of two sets with reference to the upshift operator ·⇑δ . It says that a is
δ-related to b if and only if a has a non-empty intersection with the upshift of b.

(Pgrel) For all a, b ⊆ X: δ(a, b) iff a ∩ b⇑δ 6= ∅.

The axiom expresses a principle on the connection between the abstract δ rela-
tion and the set-theoretic element-of relation ∈: Namely that δ is grounded in the
element relation (hence the acronym grel).

Unfolding (Pgrel) w.r.t. the definition of ·⇑δ results in the axiom (Pgel’):

(Pgrel’) For all a, b ⊆ X: δ(a, b) iff there is some c such that c •∼ b and a∩ c 6= ∅.

Further, the relation symbol •∼ can be eliminated—leading to (Pgrel”) which refers
only to δ (and some set operations).

(Pgrel”) For all a, b ⊆ X: δ(a, b) iff there is some c such that for all z: δ(z, c) iff
δ(z, b), and a ∩ c 6= ∅.

Intuitively speaking, (Pgrel”) says that a is δ-related to b iff it has a non-empty
intersection with a set c that is similar (•∼ equivalent) to b. Looking at the unfolding,
it is no surprise that (Pgrel) on its own is not expressive enough to characterize srpc
and hence is far away from being a definition of srpc. This is demonstrated by
Example 3.13.

Example 3.13. Let X = {1, 2, 3} and δ be as follows:

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 55

• for all a ⊆ X: δ(a, {1})

• ¬δ(1, 2)

• ¬δ(1, 3)

One calculates 2⇑δ = 3⇑δ = {2, 3} and {2, 3}⇑δ = X

and shows that (Pgrel) is fulfilled. Nonetheless this δ
is not representable as srpc for some normal pc.

{2,3}&

2& 3&

X=&{2,3,1}&

1&

1&

The reason for non-representability in the above example is that there is no
appropriate level notion. All of the sets {1}, {2}, and {3} would have to be of level
0. Applying ·⇑δ to {2} and {3} gives {2, 3}, but the application to {1} already gives
X. Hence {1} would have to appear on two levels (serving also as a cell on the level
of {2, 3}), but this would mean that the only set δ-related to {1} is X—which is
not the case.

Nonetheless, (Pgrel) has some consequences for the other axioms. In order to
give a more detailed view, (Pgrel) is divided into two sub-axioms.

(Pgreln) For all a, b ⊆ X: If δ(a, b), then a ∩ b⇑δ 6= ∅.

The added “n” stands for “necessary condition” because a necessary condition is
specified for δ.

(Pgrels) For all a, b ⊆ X: If a ∩ b⇑δ 6= ∅, then δ(a, b).

The “s” stands for sufficient condition.

Proposition 3.14. The following entailment relations hold:

1. (Pgreln), (Pgrels) � (P3)

2. (Pgrels) � (P4)

Proof. See p. 177.

So, with (Pgreln) and (Pgrels) the axiom (P3) becomes redundant, and (Pgrels)
already entails (P4). (Pgrels) is already entailed by (P4). And hence (Pgrels) and
(P4) are equivalent.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 56

Proposition 3.15. (P4) � (Pgrels)

Proof. See p. 177.

A simple consequence of axioms (Pgreln), (P2), (P4) is the monotonicity of the
upshift operator.

Proposition 3.16. If the axioms (Pgreln), (P2), (P4) hold, then monotonicity
holds: For all a ⊆ b one has a⇑δ ⊆ b⇑δ .

Proof. See p. 178.

So, the upshift operator ·⇑δ fulfills one of the conditions of a closure opera-
tor in a topological sense. But ·⇑δ is not a closure operator, not even a pre-
closure/Cech-operator, i.e., it does not fulfill the following conditions for an operator
f : pow(X) −→ pow(X): (i) f(∅) = ∅; (ii) a ⊆ f(a); (iii) f(a ∪ b) = f(a) ∪ f(b).
Here, as in the whole monograph, pow(X) stands for the power set of X. Condition
(i) is not fulfilled as it is not defined for empty sets—but this could be remedied.
Condition (ii) is fulfilled (under (P4)), but Condition (iii) states distributivity w.r.t.
the union of sets.

3.4.2 Alignment of Upshift Close-ups

The upshift operator is intended to produce cells only. One aspect of this property
is captured by the following nestedness condition.

(Pnested) For a, b ⊆ X: Either a⇑δ ⊆ b⇑δ or b⇑δ ⊆ a⇑δ or a⇑δ ∩ b⇑δ = ∅.

As mentioned above, ·⇑δ is not a closure operator. Nonetheless, one can state
the following axioms characterizing the behavior of the double application of the
operator—replacing idempotence—and characterizing the outcome of applying it to
a union of sets—replacing distributivity over unions of sets.

Axiom (Pdoubleshift) states that if the upshift of a is properly contained in a
cell (the upshift of b), then another upshift application will keep it in this cell.

(Pdoubleshift) If a⇑δ (b⇑δ , then a⇑δ⇑δ ⊆ b⇑δ .

Axiom (Punionshift) determines the upshift of the union of two sets a and b

under the condition that double applications lead to the same set and that the
outcomes of single applications are not comparable: In this case, the upshift of the
union is the same as applying the upshift three times to a or b.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 57

(Punionshift) If a⇑δ⇑δ = b⇑δ
⇑δ and a⇑δ * b⇑δ and b⇑δ * a⇑δ , then

(a ∪ b)⇑δ = a⇑δ
⇑δ⇑δ = b⇑δ

⇑δ⇑δ .

Proposition 3.17. All srpc over a normal partition chain pc fulfill (Pdoubleshift)
and (Punionshift).

Proof. See p. 178.

The axioms above do not capture the effect of the ·̃ operator, which makes spatial
relatedness being determined by its underlying cells. The main observation here is
given by the following axiom. Intuitively, it says that subsets of two sets which are
not upshift comparable lead to the same upshift.

(Pcelldet) If a⇑δ * b⇑δ and b⇑δ * a⇑δ , then for all a′ ⊆ a and b′ ⊆ b (with a′, b′ 6= ∅)
it follows that (a′ ∪ b′)⇑δ = (a ∪ b)⇑δ .

Proposition 3.18. All srpc over a normal partition chain pc fulfill (Pcelldet).

Proof. See p. 178.

3.4.3 Isolated Points

An interesting point regarding ·⇑δ is that it may contain fixed points or isolated
points—as they are denoted in the following. In fact, for normal partition chains in
which you may have sets a that occur on more than one level, lets call them pc-fixed
points, it holds that a⇑srpc = a: a = a⇑,pc

(Prop. 3.12)= a⇑srpc .

Definition 3.19 (upshift-isolated). A set a ⊆ X is upshift isolated, uiso(a), iff
a⇑δ = a.

Now let us look again at points a in a normal partition pc that are pc-fixed points.
Another property these sets have is the following: If srpc(x, a), then a∩x 6= ∅. Hence
one may define the following equivalent notion of isolation:

Definition 3.20 (set-isolated). A set a ⊆ X is set-isolated, for short: siso(a), iff:
For all x ⊆ X: If δ(x, a), then x ∩ a 6= ∅.

A simple observation is that these notions are the same if (Pgreln) and (P4) are
fulfilled.

Proposition 3.21. (Pgreln), (P4) � ∀a.uiso(a)↔ siso(a).

Proof. See p. 179.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 58

b"

a"

B"c"

d"

Figure 3.3: Counterexample to right additivity

3.4.4 Splittings

In general, srpc relations do not fulfill the other direction in axiom (P2*) which states
that if a is δ-related to b ∪ c, then a is δ-related to b or c. The reason is that b ∪ c
gives a coarser scaling context spatial relatedness than does any of its parts b or
c. This is in the very nature of scaled proximity and is illustrated in the following
example.

Example 3.22. Let be given a partition as in Fig. 3.3. In Fig. 3.3 the smallest
rectangles represent the finest partition, two of them being b, c. The next upper
level consists cells represented as with grey border lined rectangles, in particular d
is one. The region B (dashed border line) is a cell of the third level. As one can
see, a is spatially related to b ∪ c, i.e., srpc(a, b ∪ c), because a has a non-empty
intersection with B = (b ∪ c)⇑,pc. But a is not spatially related to any of the six
cells (in particular not to b or c) that make up d, because a does not intersect with
d = (b)⇑,pc = (c)⇑,pc.

Following [oezcepGruetterMoeller12DynamicAcc], I call the pair (b, c) with
b ∩ c = ∅ an irregular split of b ∪ c w.r.t. a. The main observation is that for any a
there can be at most one irregular split.

Proposition 3.23. For srpc, every set a has at most one irregular split.

Proof. See p. 179.

This property will now be formulated as an axiom over δ:

(PirrSplit) For δ, every a has at most one irregular split.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 59

Any relation δ fulfilling (P2) and (PirrSplit) has a partition of X into cells which
can serve as the cells of level 0. The crucial concept is the following.

Definition 3.24 (cell-equivalence). For all x, y ∈ X let the relation of cell-equivalence,
∼0 for short, be defined by

x ∼0 y iff {x} •∼ {x, y} and {y} •∼ {x, y}

The cell-equivalence relation is indeed an equivalence relation:

Proposition 3.25. Assume δ fulfills (P2) and (PirrSplit). Then the relation ∼0 is
an equivalence relation, i.e., it is symmetric, transitive, and reflexive.

Proof. See p. 179.

Actually, using the same proof idea, it is possible to prove the following theorem,
which generalizes the result of the proposition.

Theorem 3.26. For all subsets b1, b2 ⊆ [x]∼0: b1
•∼ b2.

Proof. See p. 179.

So, this result gives the base on which to build the partition chain, namely the
zero-level partition consisting of cells [x]∼0 .

3.5 Representation Theorem for Spatial Related-
ness

This section gives the proof for the representation theorem for those spatial relations
that are based on strict partition chains. A problem on building further cells upon
cells [x]∼0 are isolated sets. Hence, isolated sets are explicitly excluded.

(Pnoiso) For every a (X one has: a 6= a⇑δ .

The main problem in representing spatial relatedness is to capture the fact that
all paths from the root to the leaves in the pc have the same length. So consider
the following notion of rank for any binary relation δ on X.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 60

Definition 3.27 (rank). For any a ∈ pow(X) \ {∅} define by induction on n ∈ N:
a0 = a and an+1 = (an)⇑δ . Then the rank of a is:

r(a) =

m s.t. there is m′ with am′ = X and

m is the minimal one from the m′

∞ else

The second case comes into play when there are isolated sets.1 Now one can
formulate the following axiom which says that every pair of singleton sets {x}, {y}
over the domain X have the same rank

(Psamerank) For all x, y ∈ X: r({x}) = r({y}).

Due to the definition of a strict partition chain the following holds.

Proposition 3.28. srpc over a strict partition chain pc fulfills (Psamerank).

With these additional axioms, the representation theorem for spatial relations
generated by strict partition chains can be proved.

Theorem 3.29. If δ fulfills (P1), (P2), (Pgreln), (Pgrels), (Pnoiso), (PirrSplit),
(Psamerank), (Pcelldet), (Pdoubleshift), and (Punionshift), then there is a strict pc,
such that δ = srpc.

Proof. See p. 180.

Together with the propositions proved before one gets the following corollary.

Corollary 3.30. A binary relation δ fulfills (P1), (P2), (Pgreln), (Pgrels), (Pnoiso),
(PirrSplit), (Psamerank), (Pcelldet), (Pdoubleshift), and (Punionshift) if and only
if there is a strict partition chain pc, such that δ = srpc.

3.6 Dynamics of Partition Chains

Until now I assumed that the partition chain pc underlying the spatial relatedness
relation srpc is fixed, i.e., does not change (in time). This does not reflect in full the

1Though axiom (Pnoiso) excludes isolated sets, the definition of rank accounts for them. This
is motivated by the aim of keeping all axioms, in particular (Pnoiso) and (Psamerank), independent
of each other.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 61

reality concerning cadastral data. Hence, in this short section, I consider change
operators on partition chains and investigate the question how this change effects
the induced spatial relatedness. More concretely, assume that a partition chain pc1

is changed to a new partition chain pc2. What can be said about the change from
the induced spatial relatedness srpc1 to the induced spatial relatedness srpc2? In
particular, one can ask what kind of change transitions pc1 ; pc2 do not change the
spatial relatedness, srpc1 = srpc2 , or between what sets on what level does a change
of the total orderings affect the nearness in between them. Similar problems have
been tackled by [jiang09event-based] and especially [stell11relations], which
considers the global dynamics of tree-like spatial configurations.

The change transition ; between total orders are not allowed to be arbitrary
transitions but some intuitive changes which have corresponding real world counter-
parts. In particular, the kind of changes that are worth being investigated are the
merger of regions, the switch of levels, the additions of partitions etc.

Investigations into this kind of relation are necessary for a formal theory of
dynamics of nearness. In particular such a theory provides a formal grounding for
optimizations within a cognitive agent that bases its notion of spatial relatedness
on partition chains; rather than re-calculating the spatial relatedness between all
regions in case the agent moves around (local change) or a partition chain is updated
(global change) it directly uses the knowledge on regions between which spatial
relatedness is expected to have changed. This section describes the first ideas on a
foundation for such a theory.

In their study of regional changes of municipalities in Finland, Kauppinen and
colleagues [Kauppinen08Creating] found seven kinds of type changes which are
as follows: 1. A region is established. 2. Two or more regions are merged into one.
3. A region is split into two or more regions. 4. The name of a region is changed.
5. A region is annexed to a different country. 6. A region is annexed from a different
country. 7. A region is moved to another city or municipality. I am interested in
changes that concern changes of cells for partitions in a given partition chain. Hence
I adapt a subset of the types of changes to my setting by explicitly formalizing the
type of change.

Clearly the most interesting changes are that of merging two regions to a new
region and its counterpart, the split of regions into two regions. These types of
changes are low frequent-changes (in contrast to the local dynamics case where an

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 62

agent updates the nearness relations when moving around). For example, Kauppinen
and colleagues [Kauppinen08Creating] recognized 144 merges and 94 splits of
municipalities in Finland between 1865 and 2007. But nonetheless, the effects of
merges and splits on spatial relatedness are worth to be investigated.

Here, I restrict my attention to different forms of merging. I have to explain
what it means that two cells (of a partition) are merged, and whether such a merge
is possible such that the result is again a (normal) partition chain.

!"# !$# !%# !&# !'#!(# !)# !*# !+# !",#

-"# -(# -$# -)# -%#

."# .(# .$# .)#

/#

Figure 3.4: Illustration of example configuration for merge

Let pc be a normal partition chain over X having levels 0 to n. I will look
at merging two cells on the same level into a new cell. In order to get a first
rough picture on the effects of merging, I look at the special case where the cells
are members of the next-to-last level n − 1. In this case, both cells to be merged
have always the same upper cell, namely X. For illustration of the possible merge
operations have a look at the partition chain in Fig. 3.4, which I have arranged such
that one can see the tree structure of the the partition chain, with X being its root.
The cells labelled with the letter c make up the cells of the next-to-last level 2. The
different forms of changes within a partition chain can be seen as different forms of
updating a tree.

Merging the cells (2, c2) and (2, c3) into a new cell means that the underlying set
of the merging result has to have the union of c2 and c3 as the underlying set. But
there are in principle two ways to conduct this merge that depend on specifying the
level of the merge result.

The first option is to modify the next-to-last level, so that the whole number of
levels is untouched. In case of the example illustrated in Fig. 3.4 this would mean
that the partition of c-cells is substituted by the new partition of c-cells that consists
of the cells (2, c1), (2, c2 ∪ c3) and (2, c4) (see Fig. 3.5). I term this type of merge

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 63

level modifying merge—lm merge for short. If a normal partition chain pc2 results
from another normal partition chain pc1 by an lm merge, then I write pc1 ;lm pc2.

!"# !$# !%# !&# !'#!(# !)# !*# !+# !",#

-"# -(# -$# -)# -%#

."# .(#!!.$# .)#

/#

Figure 3.5: Illustration of merge by modifying

The other option is to make the union of the sets to be part of a new level. Hence,
in addition to the original partition made up by (2, c1), (2, c2), (2, c3) and (2, c4),
one adds the partition (3, c1), (3, c2 ∪ c3) and (3, c4) and raises the level of X by one
to (4, X) (see Fig. 3.6). I term this type of change level adding merge—la merge for
short. If a normal partition chain pc2 results from another normal partition chain
pc1 by an la merge, then I write pc1 ;la pc2.

!"# !$# !%# !&# !'#!(# !)# !*# !+# !",#

-"# -(# -$# -)# -%#

."# .(# .$# .)#

/#

."# .(#!!.$# .)#

Figure 3.6: Illustration of merge by adding

In some cases, neither form of merge may be possible without violating the
normality condition. For example, if the next-to-last level consists only of two cells
(n− 1, x1) and (n− 1, x2), then the union of x1 and x2 is the whole domain X.

What can one say about the change of spatial relatedness induced by level mod-
ifying merges on the next-to-last level? First, note that the level of a set in pc1 is
identical to the level in pc2 if the former is below or equal to n − 1. If its level in
pc1 is n, then its level in pc2 may be n or n− 1.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 64

The change of pc1 into pc2 affects only the next-to-last partition, e.g., by merging
cells (n − 1, c1) and (n − 1, c2). Hence, spatial relatedness is affected only locally.
So, if the second argument b has level at most n − 3, then one can say that a is
spatially related to b in pc2 if and only if it is spatially related in pc1.

Proposition 3.31. Let pc1, pc2 be two normal partition chains over X such that
pc1 ;lm pc2 w.r.t. cells (n − 1, c1) and (n − 1, c2) on the next-to-last level n − 1.
Then the following assertions hold:

1. For all sets a ⊆ X and all sets b ⊆ X with level lpc2(b) ≤ n − 3 one has :
srpc1(a, b) iff srpc2(a, b).

2. For all sets a, b ⊆ X: If srpc1(a, b), then srpc2(a, b).

Proof. See p. 182.

The consequence of this proposition for a cognitive agent using sr as his concept
of spatial relatedness is that it has to update his sr graph only locally when the
partition chain is updated by a level modifying change.

Due to the level addition, the situation for la merges is a little bit different. For
example, considering our example partition chain illustrated in Fig. 3.4 one can
have a ⊆ X such that srpc1(a, c2) but not srpc2(a, c2), because the upper level cell of
(n−1, c2) in pc1 is the biggest cell (n,X), but in pc2 the upper cell is (n−1, c2∪ c3).
So, choosing, e.g., a = a1 and b = c2 one has srpc1(a, b) but not srpc2(a, b). But still
it can be shown as above that sets with level below n − 3 have the same spatial
relations.

Proposition 3.32. Let pc1, pc2 be two normal partition chains over X such that
pc1 ;la pc2 w.r.t. cells (n−1, c1) and (n−1, c2) on the next-to-last level n−1. Then
for all sets a ⊆ X and all sets b ⊆ X with level lpc2(b) ≤ n− 3 one has : srpc1(a, b)
iff srpc2(a, b).

3.7 Spatial Relatedness for Region Based Calculi

The general idea of spatial relatedness can be extended from pure (finite sets) to
regions defined according to axioms in a qualitative spatial calculus. Here I demon-

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 65

! "

!""#$#%&'()*++)*,('$#%&)+-./0)1.!""#$#%&'()*++)*,('$#%&)+-./0)1.

2(,)3'4,5)6-74'8,)/9-7*2(,4

:,;(<)'"",")+%=>%4#$#%&)?2(,5!

!!
"
!!!#"

#
$
#!"!$
!!%

"
!!!#"

#
$
#!"!$
!!&!!!#&

'
$
'!"!(
!!)

%!#!
"
&!&$!#!%

"
'!&!"#(&!#!$%##!

"
&!)$!#!

$%##%
"
&!)$!

$!#$
&'
#%
"
&!!

"
$)

Figure 3.7: Administrative regions spatially related to Dietlikon

strate the extension for the region connection calculus [Randell92aspatial] de-
scribed also in Chapter 2 of this monograph.

Example 3.33. As mentioned before, natural examples of nested partitions are
cadastral data. Figure 3.7 shows part of a map of Switzerland with cadastral data
with three levels of administrative regions: the most fine-grained level o municipali-
ties, the upper level of districts and the roughest level of cantons. Of course, one has
to generalize the notion of partition in order to incorporate the borders of regions.
But the generalization is straight-forward when using the summation notion based on
the RCC8 calculus (see [oezcepGruetterMoeller12NearnessAccepted]): The
regions in a partition level have to cover the whole space and are allowed to touch
each other.

Now, if one starts a geographical query search on regions that are spatially re-
lated to the municipality Dietlikon, i.e., one asks for a such that srpc(a, dietlikon)
then according to the definition of srpc one has to consider the upper administrative
region of Dietlikon, which is Bülach: Then every region having a non-empty inter-
section with Bülach (also those touching it) are considered to be spatially related to
Dietlikon. In particular all named administrative regions in Figure 3.7 are spatially
related to Dietlikon: For example Opfikon is spatially related because it is strictly
contained in Bülach, and also Rümlang because it touches Bülach.

The generalization of the notion of a partition chain is straight forward: Given a
region X, an RCC partition (ai)i∈I over X is a family of RCC-regions ai such that:

1. ⋃i∈I ai = X, where ⋃i is the more convenient notation for the RCC summation

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 66

of regions, and

2. if i 6= j then ai{DC,EC}aj, that is, the ai are pairwise discrete.

The ai are called cells. Note that here I do not explicitly state the level of the
cell. The partition is called finite if the index set I is finite.

The notion of an RCC partition chain is then again that of a total ordering
of nested RCC partitions where the last (roughest) RCC partition is the region
X. In the sections before I already used this notion of RCC partition chains when
visualizing them as regions in the two dimensional area. In fact, the partition chain
example of Figure 3.1 is equally (or more properly) an example for an RCC partition
chain.

The RCC partition chain of Fig. 3.1 is symbolically represented as a set of asser-
tional axioms as follows (where X, c1, . . . , c6, b1, b2, b3 denote constants and cell is a
unary predicate symbol denoting regions appearing as cells in a partition chain.).

X = b1 ∪ b2 ∪ b3 ∧ b1{ec}b2 ∧ b1{dc}b3 ∧ b2{ec}b3

b1 = c1 ∪ c2 ∧ b2 = c3 ∪ c4 ∧ b3 = c5 ∪ c6

c1{ec}c2 ∧ c1{ec}c4 ∧ c3{ec}c4 ∧ c3{ec}c6 ∧ c6{ec}c5

c2{dc}c3 ∧ c2{dc}c4 ∧ c2{dc}c5

c2{dc}c6 ∧ c1{dc}c3 ∧ c1{dc}c5

c1{dc}c6 ∧ c4{dc}c5 ∧ c4{dc}c6 ∧ c3{dc}c5

∀x[cell(x)↔ (x = X ∨ x = b1 ∨ x = b2 ∨ x = b3

∨x = c1 ∨ · · · ∨ x = c6)]

For every partition chain pc, Apc or even shorter A denotes the set of axioms repre-
senting the partition chain with the sorted predicate logic used for BRCC.

Again, as before one may restrict the notions of partition chains to those that
are normal and even more to those that are strict.

In a real-world applications partitions can be safely assumed to be normal as
otherwise a distinction between the administrative units would not be introduced.
But, as in the case of normal partition chains, it may be the case that the same
region has two different administrative functions.

Example 3.34. I give an example of a normal but non-strict RCC partition chain

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 67

!"

#$"#%"#&"'()*"+&""

+&" +$" +," +-" +."

Figure 3.8: Normal partition chain with cells b1, c1 having same local extension

in Figure 3.8. Here the regions b1 and c1 are objects with the same local extension,
but with different levels (c1 being the lowest level and b1 being on the next upper
level). Nonetheless, the partition is normal, because all partitions on the three levels
are different.

Note that a given partition (a) with i different cells induces a set of normal
partition chains, more specifically, a lattice where the partitions are partially ordered
by the degree of granularity.

For the definition of RCC spatial relatedness I follow the three-step approach
given in [oezcepGruetterMoeller12NearnessAccepted] which in turn extended
the two-step approach of [gruetter10vague]. In all of the following definitions let
(a) = (ai)i∈I denote a finite partition of the normal partition chain. In the first step,
spatial relatedness is defined between regions xa, ya on the same level (i.e. from
the same partition (a) as denoted by the subscripts), resulting in a priori spatial
relatedness. In the second step, a priori spatial relatedness is used to define spatial
relatedness between any region z as first argument and a cell as second argument.
Last, in the third step the definition is extended to any pair of regions.

One reason for a three-step construction is, firstly, that of a better comprehen-
sion of the definitions. But there are two other reasons: The first is to enable talking
about differences between spatial relatedness to objects having the same spatial ex-
tension. For example, it may be the case that one is interested in spatial relatedness
to Hamburg as a city (on the one hand) or as a Bundesland (federal state) on the
other hand. According to the approach in the section before it would be possible
to talk only about spatial relatedness w.r.t. the city Hamburg which is on the finer
level than the federal state of Hamburg. Rather than defining spatial relatedness
for the spatial extension (the underlying set) of a cell one would have to incorporate
its level. This is implicitly done for the definition of a-priori spatially relatedness
where the level of partition is explicitly given.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 68

The third reason for using a multi-step approach, which is actually related to
the first one, comes from the idea of training an agent to extend his knowledge on
spatial relatedness between regions: First he learns only spatial relatedness between
regions on the same level and then extends this knowledge to regions of different
levels. A detailed explanation of this idea is out of the scope of this monograph as
it would have to discuss in detail an epistemic logic to formalize the knowledge of
agents.

A priori relatedness between two regions xa, ya of the same level is defined to
hold iff they are part of the same upper cell b:

∀xa ∈ (a) ∀ya ∈ (a) [rcc-srap(ya, xa) iff ∃b ∈ (a)↑[P(xa, b) ∧ P(ya, b)]] (3.3)

Example 3.35. Consider the partition chain of Fig. 3.1. The only cells xa that
are a priori spatially related to region c2, formally: rcc-srap(xa, c2), are xa = c1 and
xa = c2, as these are the only regions contained in the same cell b1 as c2.

Spatial relatedness between regions z, which are not necessarily cells, and cell xa
is defined by the following condition saying that there is a region ya (on the same
level as xa) a priori spatially related to xa such that z and ya are connected. Again,
the second argument determines the scaling context (the level) w.r.t. which spatial
relatedness is calculated.

∀xa ∈ (a) ∀z [rcc-sr(z, xa) iff ∃ya ∈ (a)[rcc-srap(ya, xa)) ∧ C(z, ya)]] (3.4)

Expanding (3.4) with the definition for rcc-srap in (3.3) leads to the following con-
dition:

∀xa ∈ (a)∀z[rcc-sr(z, xa) iff ∃b ∈ (a)↑∃ya ∈ (a)[P(xa, b) ∧ P(ya, b) ∧ C(z, ya)]]

The expression on the right hand side can be reduced according to the defini-
tion of P in Section 2.4 from ∃b ∈ (a)↑∃ya ∈ (a)[P(xa, b) ∧ P(ya, b) ∧ C(z, ya)] to
∃b[P(xa, b) ∧ C(z, b). This is proved as follows: Let be given ∃ya ∈ (a)[P(xa, b) ∧
P(ya, b)∧C(z, ya)]. As C(z, ya) and P(ya, b) hold, one also has C(z, b). For the other
direction one can choose for ya just region xa.

The basic spatial relatedness relation rcc-sr between an arbitrary region z and a

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 69

cell xa from a partition chain pc containing partition (a) is defined as follows:

∀x ∈ (a)∀z[rcc-sr(z, xa) iff there is b ∈ (a)↑[P(xa, b) ∧ C(z, b)]] (3.5)

This definition can be easily extended to for arbitrary regions as the second ar-
gument and leads to the official definition of RCC spatial relatedness rcc-sr given by
the condition below, which is a straight forward adaptation of the original definition.

Definition 3.36. The RCC spatial relatedness relation rcc-sr between an arbitrary
regions z and x w.r.t. a partition chain pc containing partition (a) is defined as
follows:

rcc-sr(z, x) iff for x̃ = cell on lowest level s.t. P(x, x̃)

there is b ∈ (a)↑[P(x̃, b) ∧ C(z, b)] (3.6)

So, a region z is RCC spatially related to a region x iff z is spatially connected
to the upper cell b of the smallest cell x̃ containing x. In other words, z may stand
in one of the seven basic RCC8 relations different from dc to b.

A special case of RCC spatial relatedness is the one where z and x both are cells
(not necessarily from the same level), as this excludes the basic relation po between
z and b (due to the disjointness conditions for cells in a partition chain). So, using
the fact that P = {eq, tpp, ntpp}, the following simple observation can be made.

Proposition 3.37. For all cells z and cell xa from partition (a) in partition chain
pc, the following equivalence holds:

rcc-sr(z, xa) iff ∃b ∈ (a)↑[P(xa, b) ∧ (P(b, z) ∨ P(z, b) ∨ ec(z, b))]]

As a consequence, in order to determine spatial relatedness of two cells—without
the need of complex reformulations—it is enough that the data provide containment
relations (partOf relations P) and neighborhood relations (externally connected re-
lations ec) between cells. And indeed, in general, most of the geographical linked
open data provide these basic relations up to some degree of completeness (recall)
and correctness (precision) as shown in [gruetter17evaluating].

Example 3.38. Consider again the partition chain of Fig. 3.1. The only ld-regions
xa that are spatially related to region c2, formally: rcc-sr(xa, c2), are xa = c1, xa = c2,

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 70

xa = c4, xa = b1 and xa = b2.

Let pc be a normal partition chain andA = Apc be its representation by predicate
logical axioms. Moreover, let KB = A ∪ AxBRCC ∪ {(3.5)} be the knowledge base
representing the partition chain plus the axioms for the boolean region connection
calculus plus the definition of basic spatial relatedness (3.5). The investigations
of the logical properties of the nearness relations are done with respect to this
knowledge base KB.

Proposition 3.39. For all cells xa ∈ (ai)i∈I , KB |= rcc-sr(xa, xa).

The relation rcc-sr is not symmetric and not transitive in the general case. This
can be explained by the fact that it is the second argument which determines the
comparison context. However, if xa, ya are neighboring regions of the same partition
(a), then symmetry (but not transitivity) holds. Accordingly, rcc-sr is called a
“weakly asymmetrical” relation in [gruetter10vague].

Proposition 3.40. For all xa, ya ∈ (a), if KB |= EC(ya, xa), then KB |= rcc-sr(ya, xa)
and KB |= rcc-sr(xa, ya).

Proof. See p. 182.

The question which RCC8 base relations r are sufficient for spatial relatedness,
i.e., for which r ∈ BRCC8 does r(z, x) entail rcc-sr(z, x), is answered in Proposition
3.41.

Proposition 3.41. For all z, xa:
If KB |= z{EC,PO,EQ,TPP,NTPP,TPPi,NTPPi}xa, then KB |= rcc-sr(z, xa).

This follows directly from (3.5) for b = xa. As a corollary of this proposition
and the definition of rcc-sr one can see that all cells are in rcc-sr-relation to cells (of
upper levels) of which they are a part. Similarly, all cells are in rcc-sr-relation to
cells (of lower levels) which they contain.

rcc-sr(z, xa) is independent of all base relations of RCC8 in the following sense:
One can find for any base relation r ∈ BRCC8 regions z and xa such that KB |=
rcc-sr(z, xa)∧r(z, xa). Hence, if one knows that z is spatially related to xa one cannot
infer anything about the RCC8 base relation holding between them. Particularly,
one cannot infer that z and xa must be connected.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 71

Regarding the properties related to proximities similar observations as that for
non-RCC spatial relatedness can be proved.

Note again that now the proximity definitions are adapted to the RCC scenario
where ∪ stands for summation and non-empty intersection between regions a and b
amounts to saying that not DC(a, b) (or equivalently: C(a, b)).

Proposition 3.42. Let (a) = (ai)i∈I be a partition consisting of cells. For all regions
A ⊆ X and all B ∈ (a)↑ with B = b1 ∪ . . . ∪ bn for bj ∈ (a) and j ∈ {1, . . . , n} the
following entailment holds: If KB |= rcc-sr(A, b1) or . . . or KB |= rcc-sr(A, bn), then
KB |= rcc-sr(A,B).

Proof. See p. 183.

That the other direction does not hold can be illustrated with the previous
Example 3.3 on p. 58.

Of course for the left component the additivity condition holds as verified by the
following proposition:

Proposition 3.43. For all A, B, C ⊆ X, KB |= rcc-sr(A ∪ B,C) iff KB |=
rcc-sr(A,C) or KB |= rcc-sr(B,C).

Proof. See p. 183.

Adapting the notion of irregular split to the RCC scenario, in the end the fol-
lowing proposition results:

Proposition 3.44. rcc-sr is a regular right-scaled proximity relation.

Proof. See p. 183.

Moreover one can show: The relation rcc-sr based on a normal partition chain
fulfills the connecting property, i.e., every region is near its complement or vice
versa.

Proposition 3.45. Let be given a nearness relation rcc-sr based on a normal par-
tition chain pc according to the definition in 3.5. Then for all A ⊆ X it holds that
rcc-sr(A,X \ A) or rcc-sr(X \ A,A).

Proof. See p. 184.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 72

The conditions stated in a right-scaled proximity space are not strong enough
to define a canonical topological space as is done for proximity spaces (see above).
But, nonetheless, spatial relatedness can be seen as an interleaving of level-fixed
relations. This will be explicated in the following. Let be given a total ordering
of partitions (aji)i∈Ij over X, 1 ≤ j ≤ n. For every partition level j, define spatial
relatedness r̃cc-srj between arbitrary regions z1, z2 ⊆ X as follows:

rcc-srj(z1, z2) iff there is a y of level j s.t. rcc-sr(z1, y) and rcc-sr(z2, y).

These relations are symmetric and are ordered with respect to inclusion and fulfill
the conditions of a minimal proximity space.

Proposition 3.46. The level-fixed nearness relations rcc-srj fulfill the following
conditions:

1. Every rcc-srj is a (symmetric) proximity relation.

2. If i ≤ j, then rcc-sri ⊆ rcc-srj.

3. If rcc-sr(z1, z2) and z2 is of level j, then rcc-srj(z1, z2).

Proof. See p. 184.

As a résumé it can be stated that though rcc-sr is not a (minimal) proximity
relation each of its levels induces a proximity relation rcc-srj extending rcc-sr.

An open problem is a representation theorem for RCC-based spatial relatedness.
Prima facie, it is not possible to adapt the proof of the representation theorem for
non-RCC based spatial relatedness as there I used the finiteness of X and argued
with singletons {x} ⊆ X.

3.8 Related Work

The general idea of a scaling context for spatial relations (more specifically: nearness
relations) goes back to the work of [worboys01nearness]. But in contrast to the
work of this chapter, the approaches outlined in [worboys01nearness] as well as
in the following work [Brennan:2012, Mata:2007, Yao:2005] do not deal with
axiomatic characterizations.

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 73

The definition of spatial relatedness in this monograph follows a general “infor-
mation processing” strategy that can be found in different areas of computer science.
For example, belief revision [agm1985] (see also Chapter 7) is concerned with the
general task of integrating a new piece of information a into a knowledge base b. If
a is not compatible (associate: spatially related) to b, then one weakens b to a set
b′ with b � b′ and b′ ∪ {a} 6� ⊥ by throwing out elements from b. The KB b′ is less
strict and thus less informative than b. This can be understood as making b′ more
similar to X.

A similar situation appears in the sub-area of knowledge-based reasoning called
abduction where one has to find explanations for observations [kowalski11computational,
moeller15abductive]. In most cases, observations cannot be deduced from the the-
ory or facts at hand, but have to be found within a space of possible explanations.
The idea is to keep the creativity effort needed as low as possible—going only a
minimal step upwards in the explanation space.

The underlying structure of srpc are partition chains, which are special trees.
The work of [stell11relations] and [jiang09event-based] focus on the dynamics
of such tree structures, called adjacency trees. In contrast, this monograph uses
these tree structures as a basis for a spatial relatedness definition and gives a full
axiomatic characterization.

3.9 Résumé

This chapter gave a fine-grained semantical analysis of spatial relatedness based on
partition chains—resulting in a representation theorem for the special case where
the partition chain is strict and where the arguments are subsets of a finite set X.
Users of information systems such as agents that move, act and plan in an environ-
ment according to some internal qualitative spatial map or semantic web systems
[berners01semanticWeb] relying on spatio-temporal ontologies may benefit from
the representation result given in Section 3.5 because it completely characterizes the
spatial relations at hand.

More concretely, if an agent or a query answering system would rely only on
axiomatic characterizations of a spatial relatedness relation, then it would have to
incorporate a deduction engine in order to do planning or query answering: Because
only by considering all entailments of the axioms for spatial relatedness relations, the

CHAPTER 3. REPRESENTING SPATIAL RELATEDNESS 74

agent will guarantee that he will reach all possible plan configurations or all possible
answers, respectively. On the other hand, knowing that the axioms for spatial
relatedness have exactly one model (modulo renaming of the domain elements),
the agent/the system may directly work with the model and apply, e.g., model
checking—which is usually more feasible regarding complexity than calculating the
deductive closure of a set of axioms.

A glimpse of how the dynamics of partition chains affect spatial relatedness
was given in Section 3.6. The work described in that section gives rise to further
interesting research questions and tasks. The simplest one is the task of investigating
the effects of merging for levels below the next-to-last level. In this case one will
have to distinguish between merging regions with the same upper level cells vs.
merging regions with different upper level cells. Additionally one has to define how
to propagate the merge effect to the higher levels (as the merger on level i may
affect also cells on levels above i + 1.) Moreover, next to the merge operation
adaptations of other change operations mentioned by [Kauppinen08Creating] to
the partition-chain framework could be investigated.

Regarding the coverage of applications, the spatial-relatedness framework ap-
plies only to constellations with a total order of nested partitions. In order to cover
other applications, one would have to give up the condition on nestedness—thereby
making the induced spatial relations more interesting but even harder to character-
ize. Typical examples for non-nested regions are so-called micro functional regions
[gruetter2011rewriting].

Chapter 4

Scalable Spatio-thematic Query
Answering

There is a need for reasoning over geographical data in almost any area in which
geographical information systems (GIS systems for short) are used, e.g., damage
classification for flooding scenarios, development of eco systems in forestry, or anal-
ysis of sociological and demoscopic aspects in urban areas—to mention just a few.
But providing reasoning services over geographical data is a demanding task because
of at least two reasons explained in the following on the basis of the TIGER/Line R©

GIS data of the US Census Bureau1.
The first main problem is to specify the concepts and relations of the geographical

domain over which one wants to reason. The intended meanings are not given in
a formal or logical language with a precise semantics but in most cases with some
feature codes and explanations of the codes in natural language. This holds also
for the TIGER/Line R© GIS data which specify features like parks, rivers, hospitals
with the MAF/TIGER Feature Class Code and describe the intended meanings in
the manual [tigerdata2009]. Only basic subsumption relations, e.g. “All parks
are governmental area” are directly modelled in the data. If one wanted to provide
a consistency test that checks whether the intended semantics of the feature codes
are indeed in accordance with the data, one would have to do the hard of work
translating the natural language specifications in some formal language and then
apply a theorem or tableau prover over the resulting set of axioms.

But even if one had success in translating the natural language descriptions

1http://www.census.gov/geo/www/tiger/

75

http://www.census.gov/geo/www/tiger/

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 76

into some formal language, it would not be guaranteed that the formal language—
which would have to be expressive enough in order to capture the natural language
descriptions2—is computationally feasible.

And here enters the second main problem for reasoning over GIS-data: The
huge amount of geographical data which are usually stored persistently in secondary
memory and maintained with sophisticated indexing mechanisms restricts the pos-
sibilities for expressive declarative knowledge representation and reasoning. It is
common sense knowledge that higher representation capabilities lead to more com-
plex reasoning services over the representation in terms of time and space resources.
As mentioned in the introductory chapter, query answering over a knowledge base
is by far more difficult than query answering over a pure database. The reason
for the increased difficulty is that an ontology may have many different models,
hence ontology-based query answering has to compute the answers w.r.t. all models
according to the certain-answer semantics as explicated in Section 2.2. The need
for efficient answering w.r.t. the certain-answer semantics is more than obvious in
case of GIS knowledge bases where geographical data already consume space re-
sources before any reasoning has started. For example, loading the TIGER/Line R©

shapefiles for the state New York in the relational database management system like
SQLServer 2008 results in a database of roughly 7 GB.

Nonetheless, for some reasoning scenarios over GIS data it is possible to define
sufficiently expressive logics that are computationally feasible. The idea of providing
a conceptualization over the data is to filter unintended models of the data. The
more expressive the logic is the more unintended models can be filtered. But for
some GIS scenarios it is not necessary to give such a complete conceptualization,
it suffices to filter out some smaller set of the unintended models. And so the idea
is to make the logic for representing the knowledge only as much expressible as is
necessary to exclude this smaller set.

I rely on the main idea of strict OBDA (see Section 2.2) of reducing reasoning
services (here: satisfiability checking and query answering) over an ontology to model
checking an FOL query over the data. As mentioned in the introductory chapter,
lightweight logics such as DL-Lite are tailored towards rewriting, so these are the
starting logics for the envisioned spatio-thematic logic. Though the rewritten queries

2For example take the explanation of Lake/Pond in the manual [tigerdata2009] that reads
“A standing body of water that is surrounded by land”

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 77

may become exponentially bigger than the original ones, there exist optimizations
based on semantic indexes which encode entailed knowledge of the terminological
part of the ontology [rodriguez11semantic]. So, FOL rewritability can mean a
benefit—under optimizations. But it should be clear that these optimizations also
need information regarding the abox. Hence, though the rewritings are independent
of the abox, the optimizations are not.

DL-Lite per se [calvanese09ontologies] is not sufficient for use in scenarios of
geographic information processing, as geographic scenarios require, among others,
the representation of and deduction over spatial concepts. Hence, the work presented
in this chapter investigates combinations of logics in the DL-Lite family with different
members of the RCC family [Randell92aspatial] (see Section 2.4 for the necessary
notions) and answers the question whether FOL rewritability of DL-Lite is preserved
in the combined logic.

FOL rewritability is quite a non-robust property: Adding apparently harmless
constructors to logics known to allow FOL rewriting can immediately lead to non-
rewritability. This holds also for the combination of DL-Lite with the RCC calculi.
In general, there are two apparent possibilities for preserving FOL rewritability in
case one extends a logic (such as DL-Lite) that allows for FOL rewritability: 1.
Choosing a weakly expressive RCC calculus (RCC2 or RCC3) or 2. choosing a weak
combination of DL-Lite with a possibly expressive RCC calculus such as RCC8.
Regarding the second possibility, the weakness of the combination means that in
the combined logic the construction of arbitrary RCC8 constraint networks in the
intensional part (tbox) of the ontology is prohibited.

In this chapter, the following main positive and negative results w.r.t. FOL
rewritability along the two combination strategies are presented: A weak combina-
tion of DL-LiteuF ,R with RCC8 allows for FOL rewriting w.r.t. the query language
GCQ+. The query language GCQ+ extends UCQs with the possibility to refer to
RCC networks. This can be proved by a perfect-rewriting algorithm and an adapted
chase procedure. Furthermore, considering strong combinations of DL-Lite with the
weaker RCC fragments RCC3 and RCC2, it can be proved that DL-Liteu,+F ,R(RCC3)
does not allow for FOL rewriting of satisfiability checking whereas the weaker
DL-Liteu,+F ,R(RCC2) does [oezcepMoeller12CombiningDL2012].

This chapter is structured as follows. Weak combinations of DL-Lite with the
region connection calculus are described in Section 4.1. Section 4.2 gives an ex-

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 78

tended example for formalizing an ontology in DL-LiteuF ,R(RCC8) and a query and
illustrates the adapted perfect-rewriting algorithm. In Section 4.3, the last section
before the Sections on related work and the résumé, I consider strong combinations
of DL-Lite with weaker fragments of the region connection calculus.

The content of this chapter was published in the papers [oezcepMoeller12CombiningDL2012,
oezcepMoeller12computationally, oezcepMoeller12scalableISWC].

4.1 Weak Combinations of DL-Lite with RCC

In this section, I describe a weak coupling of DL-Lite with the most expressive region
connection calculus fragment RCC8 [oezcepMoeller12computationally]. In the
next section I am going to explain its use(fulness) with an example GIS scenario.
Presenting the example will give me the opportunity to introduce further concepts
that are necessary to understand the discussions on stronger couplings of DL-Lite
with the weaker region connection calculi RCC2 and RCC3.

The combination paradigm follows that of Lutz and Miličič [lutz07tableau]
who combine ALC with the RCC8 and, more generally, with ω-admissible concrete
domains [lutz07tableau]. The combined logic ALC(RCC8) of [lutz07tableau] is
well behaved in so far as testing concept subsumption is decidable. As I aim at
FOL rewritability I have to be even more careful in choosing the right combination
method. The main aim is to construct spatio-thematic description logics in which
the combinations between the thematic abstract domain and the spatial domain are
maintained by constructors available in the logic ALC(RCC8) of [lutz07tableau].
The approach presented here diverges from the one of [lutz07tableau] in the point
that I do not presuppose an ω-admissible domain but some finite set of FOL-
sentences that express corresponding properties of ω-admissible domains. So, I
explicitly represent the axioms of the domain rather than making calls to an oracle.
The main reason for this shift from a concrete domain to a theory is the fact that it
is simpler to use known techniques for query answering (e.g. the chase construction)
with respect to some axioms than with respect to a concrete domain.

Formally, let Rel be a finite set of binary relation symbols, Const be a set of
constants and Tω be a finite set of sentences with respect to a signature containing
Rel and Const. A network N is a set of sentences over Rel ∪ Const of the form
r1(a∗, b∗) ∨ · · · ∨ rk(a∗, b∗) for r1, . . . , rk ∈ Rel and a∗, b∗ ∈ Const. The network N

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 79

is called complete if it contains only atomic sentences r(a∗, b∗) and if, additionally,
for all constants a∗, b∗ in N there is a r ∈ Rel such that r(a∗, b∗) ∈ N . For two
complete finite networks N ,M let IN ,M denote the atoms r(a∗, b∗) ∈ N such that
a∗, b∗ occur in both N and M. The restriction NConst′ of a network to the set of
constants Const ′ is the subset of N restricted to those sentences containing only
constants from Const ′.

Tω is an ω-admissible theory iff it fulfills the following conditions:

1. Satisfiability: Tω is satisfiable.

2. JEPD property: Tω entails the JEPD property (jointly exhaustive and pairwise
disjoint) for relations in Rel.

3. Decidability: Testing whether a finite complete syntactic network N is satisfi-
able with respect to Tω, i.e., testing whether Tω∪N is satisfiable, is decidable.

4. Patchwork property: If N ,M are finite complete networks that are satisfiable
relative to Tω, respectively, and if IN ,M = IM,N , then N ∪M is satisfiable
relative to Tω, too.

5. Compactness: A complete network N is satisfiable relative to Tω iff for every
finite set of constantsX occurring inN the restrictionNX is satisfiable relative
to Tω.
(This property is trivially fulfilled by all FOL-theories because FOL has the
compactness property.)

The ω-admissible theories that are considered in this chapter are the axiom sets
AxRCCi for various RCC calculi RCCi (see Section 2.4).

I recapitulate the syntax and the semantics of the constructors of [lutz07tableau]
that are used for the coupling of the thematic and the spatial domain. As this logic
works with concrete domains (i.e., a fixed structure which is referred to), the DL
signature σ, as discussed in Section 2.1.3, is extended with attributes. An attribute
is a binary relation with first argument over the domain of interpretations and the
second argument over the elements of the concrete domain. Moreover, in the logic of
[lutz07tableau], one is allowed to build complex attributes, called paths, by build-
ing a chain of roles ending with an attribute. Here, I consider only paths of length
at most 2.

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 80

A path U (of length at most 2) is defined as l for a fixed attribute l (“has
location”) or as R ◦ l, the composition of the role symbol R with l. In this paper
R ◦ l is abbreviated as R̃. The usual notion of an interpretation I in this combined
logic is slightly modified by using two separate domains ∆I and (∆∗)I. All symbols
of the theory Tω are interpreted relative to (∆∗)I. Let r be an RCC-relation of
some RCC-fragment. That is, let be given a set of base relations BRCCi and r =
{r1, . . . rn} ≡ r1 ∨ · · · ∨ rn for ri ∈ BRCCi. Then the interpretation function I is
constrained as follows:

• lI ⊆ ∆I × (∆∗)I

• rI = rI1 ∪ · · · ∪ rIn

• (R ◦ l)I ={(d, e∗) ∈ ∆I × (∆∗)I | there is an e s.t. (d, e) ∈ RI

and (e, e∗) ∈ lI}

• (∃U1, U2.r)I ={d ∈ ∆I | there exist e∗1, e∗2 s.t. (d, e∗1) ∈ UI
1 , (d, e∗2) ∈ UI

2

and (e∗1, e∗2) ∈ rI}

• (∀U1, U2.r)I ={d ∈ ∆I | for all e∗1, e∗2 s.t. (d, e∗1) ∈ UI
1 , (d, e∗2) ∈ UI

2

it holds that (e∗1, e∗2) ∈ rI}

Now I can define the following combined spatio-thematic logic, where a∗, b∗ stand
for constants intended to be interpreted by regions:

Definition 4.1 (DL-LiteuF ,R(RCC8)). Let r ∈ RelRCC8 and Tω = AxRCC8.
roles(σ): R −→ P | P−

paths(σ) U −→ R | R̃
concepts(σ): B −→ A | ∃R | ∃l (basic concepts)

Cl −→ B | Cl uB (concepts on lhs)
Cr −→ B | ¬B | ∃U1, U2.r (concepts on rhs)

tbox-axioms(σ): Cl v Cr, (funct l), (funct R), R1 v R2

abox-axioms(σ): A(a), R(a, b), l(a, a∗), r(a∗, b∗)
Constraint: If (functR) ∈ T , then R and R− do not occur on rhs of a

role inclusion axiom or in a concept of the form ∃U1, U2.r

As satisfiability checking of RCC8 constraint networks is NPTIME-complete,
there is only a chance to reach FOL rewritability if the constraint network in the

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 81

abox is consistent and complete, i.e., if the constraint network has exactly one
solution and if, in addition, it is a clique with base relations as labels. In this case
the abox is called spatially complete. For cadastral maps or maps containing areas
of administration one can assume pretty safely (almost) spatial completeness. The
coupling with RCC8 is so weak that FOL rewritability of satisfiability follows.

Proposition 4.2. Checking satisfiability of DL-LiteuF ,R(RCC8) ontologies that have
a spatially complete abox is FOL rewritable.

Proof. See page 185.

Testing whether FOL rewritability holds for satisfiability tests is necessary for
tests whether FOL rewritability is provable for query answering w.r.t. a sufficiently
expressive query language. The query language which I consider is derived from
grounded conjunctive queries and is denoted by GCQ+. This query language is
explicitly constructed for use with DL-LiteuF ,R(RCCi) and DL-Liteu,+F ,R(RCCi) (for
i ∈ {2, 3, 5, 8}) and so provides only means for qualitative spatial queries. But it
could be extended to allow also for quantitative spatial queries.

Definition 4.3. Let Li ∈ {DL-LiteuF ,R(RCCi),DL-Liteu,+F ,R(RCCi) |∈ {2, 3, 5, 8}}.
A GCQ+ atom w.r.t. Li is a formula of one of the following forms:

• C(x), where C is a Li concept without the negation symbol and x is a variable
or a constant.

• (∃R1 . . . Rn.C)(x) for role symbols or their inverses Ri, a DL-LiteuF ,R (RCCi)
concept C without the negation symbol, and a variable or a constant x

• R(x, y) for a role symbol R or an inverse thereof

• l(x, y∗), where x is a variable or constant and y∗ is a variable or constant
intended to denote elements of models AxRCCi

• r(x∗, y∗), where r ∈ RelRCCi and x∗, y∗ are variables or constants intended to
denote elements of models AxRCCi

A GCQ+ query w.r.t. Li is a query ∃̃~y~z∗∧Ci(~x, ~w∗, ~y, ~z∗) where all Ci(~x, ~w∗, ~y, ~z∗)
are GCQ+ atoms and ∃̃~y~z∗ = ∃̃y1 . . . ∃̃yn∃̃z∗1 . . . ∃̃z∗m is a sequence of ∃-quantifiers
interpreted w.r.t. the active domain semantics.

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 82

The perfect-rewriting algorithm presented in the following is an adaptation of the
algorithm PerfectRef [calvanese09ontologies] for reformulating UCQs w.r.t. DL-
Lite ontologies to the spatio-thematic setting in which GCQ+-queries are asked over
Li ontologies.

Given a query GCQ+ φ(~x), I transform it to a special form. τ1(φ(~x)) is the
result of the transformation to a UCQ and τ2(φ(~x)) is the result of transforming
φ(~x) in a hybrid UCQ whose conjuncts are either classical predicate logical atoms
or GCQ+-atoms which are not further transformed. I use the notation “g = F” for
“g is of the form F”.

The original algorithm PerfectRef operates on the positive inclusion (PI) axioms
of a DL-Lite ontology by using them as rewriting aids for the atomic formulas in the
UCQ. Lines 5–12 and 28–34 of my adapted algorithm (Algorithm 1) make up the
original PerfectRef. Roughly, the PerfectRef algorithm acts in the inverse direction
with respect to the chasing process. For example, if the tbox contains the PI axiom
A1uA2 v A3, and the UCQ contains the atom A3(x) in a CQ, then the new rewritten
UCQ query contains a CQ in which A3(x) is substituted by A1(x) ∧ A2(x).

The applicability of a PI axiom to an atom is restricted in those cases where the
variables of an atom are either distinguished variables or also appear in another atom
of the CQ at hand. To handle these cases, PerfectRef—as well as also my adapted
version—uses anonymous variables _ to denote all non-distinguished variables in an
atom that do not occur in other atoms of the same CQ. The function anon (line
31 in Algorithm 1) implements the anonymization. The application conditions for
PI axioms α and atoms are as follows: α is applicable to A(x) if A occurs on the
right-hand side; and α is applicable to R(x1, x2), if x2 = _ and the right-hand side
of α is ∃R; or x1 = _ and the right-hand side of α is ∃R−; or α is a role inclusion
assertion and its right-hand side is either R or R−. The outcome gr(g, α) of applying
an applicable PI α to an atom g corresponds to the outcome of resolving α with
g. For example, if α is A v ∃R and g is R(x,_), the result of the application is
gr(g, α) = A(x). I leave out the details [calvanese09ontologies]. In PerfectRef,
atoms in a CQ are rewritten with the PI axioms (lines 6–11) and, if possible, merged
by the function reduce (line 31) which unifies the atoms with the most general unifier
(lines 28–34).

The modification of PerfectRef concerns the handling ofGCQ+-atoms of the form
∃U1, U2.r(x). These atoms may have additional implications that are accounted for

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 83

input : a hybrid query τ1(φ(~x)) ∪ τ2(φ(~x)), DL-Lite(RCC8) tbox T
output: a UCQ pr

1 pr := τ1(φ(~x)) ∪ τ2(φ(~x));
2 repeat
3 pr′ := pr;
4 foreach query q′ ∈ pr′ do
5 foreach atom g in q′ do
6 if g is a FOL-atom then
7 foreach PI α in T do
8 if α is applicable to g then
9 pr := pr ∪ {q′[g/gr(g, α)]};

10 end
11 end
12 else
13 if g = ∃R̃1, R̃2.r3(x) and r1; r2 ⊆ r3 then
14 X := q′[g/(∃R̃1, l.r1(x) ∧ ∃l, R̃2.r2(x))];
15 pr := pr ∪ {X} ∪ {τ2

(
X, {∃R̃1, l.r1(x),∃l, R̃2.r2(x)}

)
}

16 end
17 if g = ∃U1, U2.r1(x) and B v ∃U1, U2.r2(x) ∈ T for r2 ⊆ r1

then
18 pr := pr ∪ {q′[g/B(x)]};
19 end
20 if g = ∃U1, U2.r1(x) and B v ∃U1, U2.r2(x) ∈ T for r−1

2 ⊆ r1
then

21 pr := pr ∪ {q′[g/B(x)]};
22 end
23 if g = ∃R̃1, U1.r(x) (resp. ∃U1, R̃1.r(x)) and (R2 v R1 ∈ T or

R−1
2 v R−1

1 ∈ T) then
24 X := q′[g/(g[R1/R2])];
25 pr := pr ∪ {X} ∪ {τ2

(
X, {g[R1/R2]}

)
};

26 end
27 end
28 end
29 foreach pair of FOL-atoms g1, g2 in q′ do
30 if g1 and g2 unify then
31 pr := pr ∪ {anon(reduce(q′, g1, g2))};
32 end
33 end
34 end
35 until pr′ = pr;
36 return drop(pr)

Algorithm 1: Adapted PerfectRef

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 84

with four cases (lines 12–26 of the algorithm). At the end of the adapted algorithm
PerfectRef (Algorithm 1, line 35) these atoms are deleted by calling the function
drop. The algorithm returns a classical UCQ, which can be evaluated as an SQL
query on the database DB(A).

That the rewriting given in Algorithm 1 is indeed correct and complete follows
from Theorem 4.4.

Theorem 4.4. Answering GCQ+-queries w.r.t. DL-LiteuF ,R(RCC8) ontologies that
have a spatially complete abox is FOL-rewritable.

Proof. See p. 186

4.2 Example Scenario

In order to illustrate the spatio-thematic lightweight logics of this chapter, I describe
a simple application scenario in which an engineering bureau plans additional parks
in a city [oezcepMoeller12computationally]. Assume, the bureau has stored
geographical data in some database (DB) and declares relevant concepts in the
terminological part of his knowledge base, the tbox. The engineer gives necessary
conditions for a concept Park+Lake which is a park containing a lake that touches
it from within, i.e., using the terminology of the region connection calculus (RCC)
[Randell92aspatial], the lake is a tangential proper part of the park. Similarly, a
necessary condition for the concept Park4Playing is given which is a park containing
a playing ground (for children) that is a tangential proper part.

I assume that the data are mapped to an abox, the logical pendant of the DB. In
particular the data should generate the fact that there is an object a which is both a
park with a lake and with a playing area, that is Park+Lake(a) and Park4Playing(a)
are contained in the abox. But the location of a is not known. Think of a as an
object whose architectural design is determined but the place where a is going to be
localized is not determined yet.

Now, the engineering bureau asks for all parks with lakes and playing areas such
that the playing area is not contained as island in the lake. These kinds of parks can
be thought of as secure as the playing ground can be directly reached from the park
(without a bridge). All objects that fall into the answer set of this query w.r.t. the
tbox and the data can have one of the configurations A to C illustrated in Figure

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 85

4.1 (and many more) but are not allowed to have the configuration D. The object a
has to be in the answer set to the original query as the tbox together with the abox
and some deduction on the spatial configuration entails that a is an object which
excludes the island configuration D. Remember that a is “abstract” in so far as its
geographical location is not known. So in fact deduction is needed to see that a
does not have configuration D.

The knowledge in this scenario is captured in the following DL-LiteuF ,R (RCC8)
ontology: The tbox T of the engineering bureau contains the following DL-LiteuF ,R
(RCC8) axioms:

Park+Lake v Park

Park4Playing v Park

Park+Lake v ∃hasLake ◦ l, l.tpp

Park4Playing v ∃hasPlAr ◦ l, l.tpp

The abox A contains at least the following axioms

Park+Lake(a),Park4Playing(a)

!" #" $" %"

Figure 4.1: (Dis-)Allowed spatial configurations for query in engineering bureau
scenario

The query of the engineer, which asks for all parks with lakes and playing ar-
eas such that the playing area is not a tangential proper part of the lake, can be
formalized by the following GCQ+ query:

α0(x) = Park(x) ∧ ∃hasLake ◦ l, hasPlAr ◦ l.(BRCC8 \ {ntpp})(x)

The main step requiring spatial reasoning is that of incorporating the composi-

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 86

Figure 4.2: Illustration for composition entry tpp; tppi.

tion entry for tpp; tppi which is formally given by

tpp; tppi = {dc, ec, po, tpp, tppi, eq} ⊆ BRCC8 \ {ntpp}

Figure 4.2 illustrates the composition entry w.r.t. this scenario: Here x corresponds
to the lake, y to a park and z to a playing ground for children. Figure 4.3 describes
the interaction of the RCC component with the thematic component.

Using the composition entry for tpp; tppi, the reformulation algorithm introduced
above (lines 13–15) produces a UCQ that contains the following CQ:

α1(x) = (∃hasLake ◦ l, l.tpp)(x) ∧ (∃l, hasPlAr ◦ l.tppi)(x)

Rewriting ∃l, hasPlAr◦ l.tppi to ∃hasPlAr◦ l, l.tpp (lines 20–21) in combination with

!"#$%&"$'(

)"*&"$'()"*!+,#(

+-.(+-.(+-.(

/00(/00(

/001(

2(3.4('.4(0-4(/004(/0014('5(6(⊆((

!"#$(

!"#$7!+"819:(

Figure 4.3: Interpretation satisfying the original query and its rewritings

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 87

the rewriting rule for A1 v A2 (Def. 2.10) results in another CQ:

α2(x) = Park+Lake(x) ∧ Park4Playing(x)

The resulting rewritten query αrew(x) is

αrew(x) = α0(x) ∨ α1(x) ∨ α2(x)

It captures (as desired) the object a.

4.3 Strong Combinations of DL-Lite with RCC

Another way of reaching FOL rewritability for combinations of DL-Lite with RCC is
weakening the expressivity of the spatial component. Hence, one may ask whether
a combination of DL-Lite with the calculus RCC3 or RCC2 [wessel03qualitative],
both fragments with weak expressibility, allows for FOL rewritability w.r.t. satisfi-
ability checks (and query answering). Their potential use as logics for approximat-
ing [kaplunova10towards] ontologies in more expressible combined logics such as
ALC(RCC8) makes the investigation valuable (see also the résumé of this chapter).
The logics DL-Liteu,+F ,R(RCC2) and DL-Liteu,+F ,R(RCC3) are defined as follows (’+’
indicates the strong combination):

Definition 4.5 (DL-Liteu,+F ,R(RCC2) and DL-Liteu,+F ,R(RCC3)). Let Tω = AxRCC2

resp. Tω = AxRCC3 and r ∈ BRCC2 resp. r ∈ BRCC3

roles(σ): R −→ P | P−

paths(σ) U −→ l | R̃
concepts(σ): B −→ A | ∃R (basic concepts)

Cl −→ B | Cl uB (concepts on lhs)
Cr −→ B | ¬B | ∃U1, U2.r (concepts on rhs)

tbox-axioms(σ): Cl v Cr, (funct l, R), R1 v R2

abox-axioms(σ): A(a), R(a, b), l(a, a∗), r(a∗, b∗)
Constraint: If (functR) ∈ T , then R and R− do not occur on the rhs

of a role inclusion axiom

For RCC3, the strong combination with DL-LiteuF ,R leads to non-FOL rewrita-
bility. The reason lies in the fact that testing the satisfiability of RCC3 is not in the

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 88

complexity class AC0. This in turn is a consequence of the following lemma.

Lemma 4.6. Checking satisfiability of RCC3 networks is LOGSPACE hard.

Proof. See p. 189

This lemma immediately entails the fact that satisfiability checking for ontologies
over the logic DL-Liteu,+F ,R(RCC3) is not FOL rewritable. This problem does not
vanish if abox A is assumed to be spatially complete—as shown by the following
proposition.

Proposition 4.7. Satisfiability checking of ontologies in DL-Liteu,+F ,R(RCC3) with
spatially complete aboxes is not FOL rewritable.

Proof. See p. 190

As a corollary to this proposition it follows that strong combinations of DL-
Lite with RCC5 and RCC8—denoted DL-Liteu,+F ,R(RCC5) and DL-Liteu,+F ,R(RCC8),
respectively defined in the same manner as in Definition 4.5—do not allow for FOL
rewriting of satisfiability checking.

Corollary 4.8. DL-Liteu,+F ,R(RCC5) and DL-Liteu,+F ,R(RCC8) do not allow for FOL
rewriting of satisfiability checking.

The low resolution calculus RCC2 is quite more inexpressive than RCC3 due to
the fact that the composition table does not allow for the propagation of information:
All compositions of DR,O result in the maximally unspecified relation {DR,O}.
Hence, FOL rewritability of satisfiability testing follows easily considering the query
φ() = ∃x, y[O(x, y) ∧ DR(x, y)] ∨ ∃x[DR(x, x)].

Proposition 4.9. Testing the satisfiability of RCC2 networks is FOL rewritable.

But in combination with functionality axioms of the tbox one could have the
problem that the abox may lead to identifications of regions. The identified regions
are not allowed to have edges labelled O, DR, resp. Though this can be tested,
the problem arises when a chain of regions is identified by the tbox and the abox,
because the length of the chain is not known in advance. More formally: In addition
to RCC2 constraint-network assertions I allow identity assertions v = w for regions
v, w. As one can assume that all nodes in a RCC2 network are connected by an edge

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 89

labelled O, DR or BRCC2, I use a more intuitive formalism where, for every assertion
v = w, the label of the edge between v and w is marked with an =. For example,
an edge between v, w with label DR= stands for DR(v, w) ∧ v = w. I call such a
network an =-marked RCC2 network (a RCC=2 network for short). Let B = BRCC2

in the following.

Proposition 4.10. An RCC=2 constraint network N is unsatisfiable iff

1. N contains DR(v, v) or DR=(v, v) for some node v; or

2. N contains DR=(v, w); or

3. N contains a cycle in which there is DR(v, w) and in which there is a path
from v to w such that every label on the path is B= or O=; or

4. N contains a cycle in which there is DR(v, w) and in which there is a path
from v to w s.t. every label on the path is B= or O= except one which is O.

Proof. See p. 191.

Proposition 4.10 shows that adding identity assertions to an RCC2 network may
require checking the existence of identity chains of arbitrary length. Hence, in
principle it is possible that the functional roles used in DL-Liteu,+F ,R(RCC2) may lead
to identity chains. But as the following proposition shows, this cannot be the case:
The identity paths induced by functionalities in DL-Liteu,+F ,R(RCC2) can have only
a maximal length of one.

Proposition 4.11. Satisfiability checking of ontologies in DL-Liteu,+F ,R(RCC2) is
FOL rewritable.

Proof. See p. 192.

4.4 Related Work

As the logics discussed here are derived from the framework of [lutz07tableau], it
has to be mentioned as the most relevant for the work described in this chapter. The
main difference is that, here, I considered fragments of the logic of [lutz07tableau]
under FOL rewritability aspects and, further, that I worked with ω-admissible the-
ories and not ω-admissible concrete domains.

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 90

Other work combining descriptions logics and spatial calculi can be found in
[haarslev99descriptionlogic, wessel03qualitative]. But none of the logics de-
scribed there aim at FOL rewritability.

Whereas the idea in the papers mentioned above is to build combinations of logics
for spatio-thematic reasoning, early investigations on RCC aimed on finding appro-
priate logics that semantically found and enable RCC reasoning. Here one should
mention the translations of RCC into modal logic as given by [bennett96modal]
and later by [nutt99translation].

My own contribution [oezcep13spatial] (which is not discussed in this mono-
graph) combines DLs and spatial concepts in the sense that it considers convex
regions as potential extensions for concepts—thereby providing a spatial semantics
for DLs.

Also related to the work presented in this chapter is the work on constraint-based
spatial reasoning [renz07qualitative]. It offers a well-developed and well proven
theory for spatial domains, but it does not fill in the need for a system that combines
reasoning over a spatial and a non-spatial (thematic) domain. Though constraint
databases [kuper00constraint] are good candidate frameworks for reasoning over a
mixed domain of geo-thematic objects, the investigations on constraint databases so
far did not incorporate terminological reasoning in the paradigm of OBDA. Maybe,
when constraint databases become en vogue again, work on OBDA for constraint
DBs will become worth pursuing.

4.5 Résumé

Combining DL-Lite with expressive fragments of the region calculus like RCC8 into
logics that preserve the property of FOL rewritability is possible if the coupling is
weak: Constraints of the RCC8 network contained in the abox are not transported
over to the implicitly constructed constraint network resulting from the constructors
of the form ∃U1, U2.r. On the other hand, one may try to aim for stronger combina-
tions by using weaker calculi such as RCC2 or RCC3. As was shown by a reduction
proof, a strong combination with RCC3 destroys the FOL rewritability of satisfi-
ability checking. The reason is that checking the satisfiability of RCC3 networks
needs to test for reachability along EQ paths, which can be reproduced by the tbox.
For the low resolution calculus RCC2, FOL rewritability of satisfiability checking

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 91

is provable—though checking the satisfiability of RCC2 networks with additional
identity assertions is at least as hard as checking RCC3 networks.

The resulting combined spatio-thematic logics allowing for FOL rewriting, i.e.,
DL-Liteu,+F ,R(RCC2) and DL-LiteuF ,R(RCC8) are very weak in expressivity, and so
one might ask whether they can be used at all for interesting (GIS) applications.
In principle they can be considered as potential candidates for approximation. If
one represents the spatio-thematic knowledge in an expressive logic Lexpr(RCC8)
such as ALC(RCC8) and wants to apply query answering over geographical data,
then one possible way is to approximate the ontology with an ontology in a weaker
spatio-thematic logic. More concretely, assume that T ∪ A is some ontology in a
highly expressive spatio-thematic logic Lexpr(RCC8), say ALC(RCC8). One con-
siders a tbox T ′ in a weak spatio-thematic logic (such as DL-Liteu,+F ,R(RCC2)) that
approximates T . There are two different approximation methods: The approxima-
tion may be from below (as in [console13fromOWL]) which means that T |= T ′,
or it may be from above as in [kaplunova10towards], which means that T ′ |= T .

The consequences for the approximation from below is that the answers to a
query φ with respect to the approximating T ′ ∪ A is a subset of the answers with
respect to the approximated T ∪A, i.e., the set of answers is sound but not complete.
There is no further way to complete the answer set (other than running a full reasoner
over the original ontology) and hence the only useful action after approximation is
to inform the user about the tbox axioms that have been changed.

In case of the approximation from above the consequences are the following:
The approximation entails that all answers to the original query φ with respect to
T ∪ A is a subset of the answers with respect to T ′ ∪ A. Hence the approximation
leads to complete but not necessarily correct query answering. This in turn means
that the set of answers cert(φ, T ′ ∪A) has to be verified in a post-processing phase
with a full reasoner that can process ontologies in Lexpr(RCC8). Note that there
is no way around using a reasoner also in case of approximating from above but
the main difference is that one has a possibly small set of instance queries with
concretely named instances instead of the original retrieval query. In many cases,
this enables the use of optimizations (such as those based on abox modularization
[moeller13advances]).

Regarding the negative results proved in this paper, a natural question is whether
there are other ways to achieve spatio-thematic logics that can be used for strict

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 92

OBDA. The following list gives a tentative answer with pointers to further research
questions.

• First of all one might change the type of spatial calculus. In this chapter this
was done only locally, looking at different RCC calculi RCCi. But all of them
were RCC calculi. The main problem with these is the non-guarded use of
a binary connectedness relation—which does not fit to the concept-oriented
and hence tree-structured modeling methodology of description logics. An
interesting alternative is the theory of spatial relation based on partition chains
as developed in Chapter 3. Due to the underlying tree structured relation the
strong combinations of DL-Lite seem to be promising.

• The type of combining the thematic and the spatial component might be
different from the construction of [lutz07tableau] which was also used in this
chapter. Instead of new quantifiers with property paths, an alternative, more
homogeneous integration could be sought for: Instead of combining two logics
one searches for an integrated spatio-thematic logic.

• Another possibility is to use additional knowledge of the special properties
of the abox that one has in advance, i.e., before the rewriting. Some form
of knowledge along this line has already been used in this chapter when I
assumed that the abox is spatially complete. But of course further conditions
could be considered that are (usually) fulfilled by real-world databases and the
induced aboxes. This is similar to the approach of parameterized complexity
[flum06parameterized] where the idea is to identify parameters that are
responsible for the non-feasibility of given algorithmic problems. Knowing a
bound on these parameters makes the problems feasible. A typical example in
graph algorithms is the knowledge about the bounded tree-width of graphs.
For example, as shown in [bodirsky11rcc8], deciding the satisfiability of an
RCC8 constraint network with bounded tree-width can be done in polynomial
time.

Also the idea of combined rewriting as outlined by [LutzTomanWolter-IJCAI09]
can be considered as incorporating knowledge of the abox in advance. Here
one can use the abox to merge it with the tbox into some interpretation that
can be used as a universal model. This model is then used as the database on

CHAPTER 4. SCALABLE SPATIO-THEMATIC QUERY ANSWERING 93

which the rewritten queries answered. So in case of the combined rewriting
method, one has total knowledge on the abox before the rewriting step. In
this case, the restriction to DL-Lite is not necessary anymore so that one can
consider other light-weight DLs such as those from the EL family [baader05].

The use of integrity constraints for mappings developed in the thesis of [rodriguez10phd]
is another way to convey information from the abox.

• Another possibility is to constrain the source query language, i.e., the query
using the signature of the spatio-thematic ontology. Sometimes it is enough
to consider only tree-shaped or acyclic conjunctive queries.

• A last aspect concerns the target query language into which the source queries
are rewritten. Choosing a more expressive query language (such as datalog, or
FOL extended with counting quantifiers etc.) may allow for rewriting where
FOL does not. This possibility depends of course on the fact whether the
backend repository supports the language at all and whether it provides a
feasible means of answering queries formulated in that language.

Chapter 5

Representation Theorems for
Stream Processing

Stream processing has been and is still a highly relevant research topic in CS.
There are quite a few research paper titles hinting concisely to various important
aspects of stream processing, be it the ubiquity of streams due to the temporal-
ity of most data (“It’s a streaming world!”, [valle09its]), or its potential infin-
ity in contrast to data stored in a static database system (“Streams are forever”,
[Endrullis13streams]), or the importance of the order in which data are streamed
(“Order matters”, [valle13Order]).

These aspects are relevant for all levels of stream processing, in particular for
classical stream processing on the sensor-data level, e.g., within sensor networks or
for agent reasoning percepts, or on the relational data level, e.g., within stream data
management systems. Recent interest on high-level declarative stream processing
w.r.t. a terminological knowledge base (ontology) have lead to additional aspects
becoming relevant: The enduser accesses all possibly heterogeneous data sources
(static and streaming) via a declarative query language using the signature of the
ontology. Some recent projects, such as BOEMIE1 and CASAM2, demonstrated how
such a uniform ontology interface could be used to realize (abductive) interpretation
of multimedia streaming data, which combine video streams, audio streams, and text
streams with annotations [gries10probabilisticRR]. This kind of convenience and
flexibility for the end-user leads to challenging aspects for the streaming engine

1http://cordis.europa.eu/ist/kct/boemie_synopsis.htm
2http://cordis.europa.eu/project/rcn/85475_en.html

94

http://cordis.europa.eu/ist/kct/boemie_synopsis.htm
http://cordis.europa.eu/project/rcn/85475_en.html

CHAPTER 5. STREAM PROCESSING 95

which has to provide the homogeneous ontology view over the data and which has
to guarantee that all (and only) answers w.r.t. the ontology are captured.

Stream processing has strong connections to the processing of temporal data in
a temporal DB using temporal (logic) operators. Nonetheless, the scenarios, the
objects of interest, the theoretical and practical challenges are different from those
of temporal logics/ temporal DBs. While query answering on temporal DBs is a one-
step activity on static historical data, answering queries on streams is a reactive,
continuous activity (hence the notion of a continuous query).

The main challenging fact of stream processing is the potential infinity of the
data: It means that one cannot apply a one-shot query-answering procedure and,
moreover, that one should be able to process the data in one-pass style (consuming
small space) as one is not going to store all the data. On top of these theoreti-
cally fundamental challenges one has to deal in practice with a high-pace stream
data where the velocity at which the stream data arrive may not be even constant
(burstiness). Furthermore, in contrast to temporal DBs settings, in stream scenarios
usually more than one query is registered to the stream engine. The reason is, first,
that there are usually many stream sources corresponding, e.g., to different sensors
and control units, and, second, that there are many features to be monitored, e.g.,
various statistical and time-series features or various event patterns. The focus in
this chapter is on the potential infinity and the one-pass processing constraint. I also
consider the multiple-stream aspect (see Section 5.5), but rather from the theoretical
perspective of correct semantics, neglecting aspects of optimization.

In this chapter I outline a formal and foundational treatment of stream processing
from the (infinite) word perspective along the line of [gurevich07theory] in which
all the main aspects of streams mentioned above (potential infinity, ubiquity, and
ordering/recency) are taken into account. The main results of these considerations,
which are relevant for all levels of stream processing, are representation results of the
first category, namely axiomatic characterizations of various stream query classes. In
particular, the whole class of genuine stream queries is shown to be representable as
stream queries induced by window (alias kernel) functions—justifying formally that
many papers on stream processing deal with the window constructor as a means to
cope with the potential infinity of streams. Subclasses of these (with window range
and slide) can also be characterized with specific axioms expressing factorization
properties.

CHAPTER 5. STREAM PROCESSING 96

In the following chapter, the focus is on high-level data stream processing as
required, say, for high-level streams (belief of states, planned actions etc.) in rational
agents acting in a dynamic environment. As an example of a query language for high-
level declarative stream processing I describe the stream-temporal query framework
(STARQL), which was developed in the EU project Optique3.

The chapter is structured as follows: Section 5.1 gives the necessary terminology
for handling streams as finite or infinite words. The first representation result of
this chapter is contained in Section 5.2: prefix-determined stream queries can be
described by windows. Results on characterizing stream queries induced by constant-
width windows with factorization properties are given in Section 5.3, results on
adding time in the word model can be found in Section 5.4, and results on building
memory-bounded windows are developed in Section 5.5. The chapter closes with a
section on related work (Section 5.6) and a résumé (Section 5.7).

Contents of this chapter are published in [oezcep18towards] and [oezcep18bounded].

5.1 Preliminaries

Though there are various stream definitions over various research communities, and
even within researchers of the same community, a common aspect of all streams is
that they are constituted by a potentially infinite sequence of data elements from
some domain. The sequence is thought to be ordered-isomorphic to the natural
numbers, so that there is always a least element of a subset of the stream (and
additionally there is always a unique predecessor and successor of an element in the
stream). In this chapter it will be convenient to work with the following very basic
definition of streams based on words over an alphabet D.

Definition 5.1. A stream is a finite or infinite sequence of elements from a domain
D. Formally, the set of finite streams is the set of finite words D∗ over the alphabet
D. The set of infinite streams is the set of ω-words Dω over D. The set of (all)
streams is denoted D∞ = D∗ ∪Dω.

D≤n denotes the set of words over D with length less than or equal to n. For any
finite stream s the length of s is denoted by |s|. For infinite streams s let |s| =∞ for
some fixed object∞ /∈ N. For n ∈ N with 1 ≤ n ≤ |s|, let s=n be the n-th element in

3http://optique-project.eu/

http://optique-project.eu/

CHAPTER 5. STREAM PROCESSING 97

the stream s. For n = 0 let s=n = ε = the empty word. s≤n denotes the n-prefix of
s, s≥n is the suffix of s such that s≤n−1 ◦s≥n = s. For an interval [j, k] for 1 ≤ j ≤ k,
s[j,k] is the stream of elements of s such that s = s≤j−1 ◦ s[j,k] ◦ s≥k+1 = s. For the
special instance of the interval operator s[|s|−n,|s|] I also use the notation lastn(s) as
it denotes the word consisting of the last n symbols of s, i.e., the n-suffix, which is
defined for finite s only. For a finite stream w ∈ D∗ and a set of streams X, w◦X or
shorter wX is defined as the set {s ∈ D∞ | There is s′ ∈ X s.t. s = w ◦ s′}. That s
is a prefix of s′, for short: s v s′, means that there is a word y such that s′ = s ◦ y.
If s is a prefix of s′, then s′−v s is the word y such that s′ = s ◦ y. If all letters of s
occur in s′ in the ordering of s (but perhaps not directly next to each other) then s
is called a subsequence of s′. If s′ = usv for u ∈ D∗ and v ∈ D∞, then s is called a
subword of s′.

Sometimes I am going to write streams in the word notation, sometimes writing
out concatenation ◦ explicitly. In the next chapter I will follow the convention of
the RDF Stream processing Community4 and represent streams in set notation, it
being understood that there is an ordering isomorphic to the ordering of the natural
numbers. In this case I then use ≤ar to denote the ordering between the elements
of the streams. The acronym ar should remind the reader of the “arrival” ordering.

I should stress that with the above definition of “stream” I am abstracting from
the underlying stream engine that processes stepwise the arriving data elements of
the stream. The engine does not actually see the stream in the above sense but
only sees some initial part of it and expects a possibly new element to arrive. So,
the concept defined above under the term “stream” would be better termed “stream
trace”. But again, I follow the terminological practice in the stream community.

The basic definition of streams above is general enough to capture all of the
different forms of streams considered in this and the next chapter. Amongst these
is the important category of temporal streams. Though not restricted to, temporal
streams are one of the most common stream types to occur in applications. In this
case the domain D consists of pairs of objects (d, t) were d is an element of a set,
which is termed object domain and an element t from a time domain (T,≤T). Here,
≤T is a binary relation on the set T . Depending on the kind of application, T may
consist of time points, intervals or even multidimensional time entities. In many
cases ≤T obeys further constraints that justify the symbol ≤ for an order relation.

4https://www.w3.org/community/rsp/

https://www.w3.org/community/rsp/

CHAPTER 5. STREAM PROCESSING 98

In particular, I am going to consider so-called flows of time (T,≤T) where T is a set
of time points and ≤T is a linear, transitive, reflexive, and antisymmetric relation ≤
on T . And even more constrained, in the examples introduced below, I work with a
discrete time flow T , e.g., natural numbers with the usual ordering. But our model
introduced is also applicable to dense time domains such as the rational numbers Q
or even continuous time domains such as the real number R. The only additional
constraint is that for windows based on the flow of time (and not the number of
arriving elements) one has to ensure that there are no cumulation points. Together
with the synchronicity assumption (see below) this constraint says:

(No Cumulation) The sequence of time annotations ti in a stream is finite (if the
stream is finite) or is monotonically increasing without any cumulation points
(i.e., there is no t ∈ T such that for any ε infinitely many ti are in ε distance
from t, ε > 0).

According to the definition of a temporal stream, it may happen that two dif-
ferent objects d1 and d2 with the same timestamp t occur, and even many different
occurrences of the same time tagged tuple d〈t〉 may occur. Moreover, it may be
the case that there are timestamps which do not occur in the stream. The latter
is useful in particular for those situations where there is no information at some
time point from T—and hence this representation is also useful to model varying
frequencies of stream element occurrences.

In a synchronized stream setting, one demands that the timestamps in the arrival
ordering make up a monotonically increasing sequence, so that ≤T is conform with
≤ar. In an asynchronous stream setting, it may be the case that elements with earlier
timestamps arrive later than data with later timestamps. In particular, in this latter
case, the order needed for a stream to be isomorphic to the natural numbers does
not have to adhere to the order ≤T of the flow of time (T,≤T).

The distinction regarding synchronicity hints to possible layers of streams. For
example, in [kraemer09semantics], the authors distinguish between raw, physical,
and logical streams. Raw streams correspond to temporal streams according to our
definition and are intended to model the streams arriving at a data stream manage-
ment system (DSMS). Logical streams are abstractions of raw streams where the
order of the sequence is ignored, so they can be defined as multi-sets of timestamped

CHAPTER 5. STREAM PROCESSING 99

tuples.5 Physical streams allow not only for timestamps but also half-open intervals
[ts, te) as time annotations, the ordering of the stream being non-decreasing w.r.t.
ts.

Orthogonally to these layered distinction of stream types, streams are categorized
according to the type of the domains. In the context of OBDA for streams—as
discussed in the following chapter—at least two different domains D of streamed
objects have to be taken into consideration. The first domain consists of relational
tuples from some schema. In this case, I call the stream a relational stream. The
second domain is made up by data facts, either represented as abox assertions or as
RDF triples. In this case I just talk of a stream of abox assertions, RDF streams resp.
In case of relational streams all tuples adhere to the same schema, hence relational
streams are homogeneous, whilst in the case of streams of abox assertions/RDF
triples the used logical vocabulary is not restricted to a specific relation symbol. In
so far, these streams are inhomogeneous. Nonetheless, one may restrict the signature
of the assertions, thereby replacing the role of the relational schema in relational
streams by a signature.

5.2 Stream Queries in the Word Perspective

This and the following sections are on the foundations of streams, discussing the
paper by Gurevich and colleagues [gurevich07theory] and deriving on top of it
representation results. The main result of this section is that genuine stream queries
are window-based.

The main aim is to axiomatically characterize different classes of functions of
the form Q : D∞1 −→ D∞2 . So the focus is on total functions which map a finite or
infinite stream over a given domain D1 to a finite or infinite stream on a domain
D2. In this section I am going to assume without loss of generality the same domain
D = D1 = D2 for inputs and outputs. All functions of this form will be denoted
by Q or primed and indexed variants—and generally I use the term “stream query”
to denote these functions from streams to streams. This is analogous to the use
of “query” in finite model theory (see also Chapter 2). In the next chapter, I also

5Note that the original definition in [kraemer09semantics] would also consider uncountable
sets as streams, if one chooses R as time domain, so that the intuition of a stream as a set ordered
as the natural numbers cannot be applied here.

CHAPTER 5. STREAM PROCESSING 100

consider declarative stream query languages, in particular the stream query language
STARQL, which induces queries in the sense used in the current chapter.

By considering the union of finite and infinite streams as potential domains and
ranges of stream queries I am following the approach of [gurevich07theory]. Later
I also consider—thereby following [weihrauch00computable]—functions where
the domain (resp. the range) is either the set of finite streams D∗ only or the set of
infinite streams Dω only. The more general definition of a stream query according
to [gurevich07theory] allows to cover different scenarios that have found interest
in CS. In particular, allowing for finite streams as potential inputs of stream queries
allows to cover scenarios where a stream engine is allowed to be stopped after a finite
number of steps. It also covers the case where the engine gets informed about the fact
that the input stream is finite: You can stop processing because there is no element
to come anymore. A framework for implementing such “informed” stream processing
is developed under the term “punctuation semantics” in [tucker03exploting].

Allowing for finite streams in the output covers scenarios where one is interested
in recognizing (infinite) streams in the same way one recognizes, say, regular lan-
guages by finite automata: In the special case where the range of a stream query is
D = {0, 1}, one can define those input streams to be accepted that are mapped to
1, the others, i.e., those mapped to 0, to be not accepted.

So with this general definition one captures generally two categories of stream
applications, the local ones and the global ones. In the local approach (such as
monitoring) one is interested only in the initial part up to the current time point
and applies some local operation (such as averaging) on this initial part or even
some finite suffix of this initial part (see window operators below). In the global
approach some property of the whole stream is learned by processing successively
growing initial parts. Examples of the former kind will be dealt extensively in the
next section on STARQL. An example of the latter kind is given in formal learning
theory. In [oezcep10ontology], e.g., an ontology is learned from a sequence of
assertions.

In the framework of [gurevich07theory], multiple streams are handled by al-
lowing the domain elements to be tagged with provenance information, in particular
information on the stream source from which the data element originates. Us-
ing these tags it is possible to formulate queries such as INTERSECT which asks
whether there is a same element in two input stream up to some time n, in which

CHAPTER 5. STREAM PROCESSING 101

case it outputs a 1 and otherwise 0. So with this approach stream queries on inter-
leaved stream queries can be modelled. But there is no control on the interleaving
as in state-of-the art stream query languages following a pipeline architecture. For
this, the framework would have to be extended to handle functions of the form
Q : D∞ × · · · × D∞ −→ D∞. In Section 5.5 I propose such an extension in the
context of memory-bounded queries.

Having introduced the formal framework for modeling streams as words and for
modeling stream processing by word-to-word functions, I can now state the first
representation theorem. Though any function Q : D∞ −→ D∞ is termed stream
operator, only those operators that produce their outputs successively by considering
one input-stream element after the other, have to be accepted as genuine stream
queries. This intuition on the continuous, successive production of the output can
be formalized by saying the output is determined only by finite prefixes. This is the
content of the following axiom denoted (FP∞).6

(FP∞) For all s ∈ D∞ and all u ∈ D∗: If Q(s) ∈ uD∞, then there is a w ∈ D∗

such that s ∈ wD∞ ⊆ Q−1(uD∞).

As a further aspect of stream processing we consider data-driveness: The actions
of the engine processing the stream (to be read as: the outputs produced by the
function Q in this abstract setting) are triggered by the input stream not by the
machine itself. In particular this means that finite streams are allowed to be mapped
only to finite streams. I fix this condition as further axiom:

(F2F) For all s ∈ D∗ it holds that: Q(s) ∈ D∗.

The dual constraint says that infinite streams must be mapped to infinite streams.
Accepting this axiom means that one considers, using the terminology introduced
above, local stream processing and not global stream processing.

(I2I) For all s ∈ Dω it holds that Q(s) ∈ Dω.

Already the axioms (FP∞) and (F2F) can be represented by a class of operators
based on the notion of abstract computability according to [gurevich07theory].
The very general notion of an abstract computable stream function is that of a

6(FP∞) is my generalization of the axiom (FP) in [weihrauch00computable].

CHAPTER 5. STREAM PROCESSING 102

function which is incrementally computed by calculations of finite prefixes of the
stream w.r.t. a function called kernel. More concretely, let K : D∗ −→ D∗ be a
function from finite words to finite words. Then define the stream query Repeat(K) :
D∞ −→ D∞ induced by kernel K as

Repeat(K) : s 7→ ©|s|j=0K(s≤j)

Definition 5.2. A query Q is abstract computable (AC) iff there is a kernel such
that Q(s) = Repeat(K)(s). We denote by QLAC the set of AC queries.

Using a more familiar speak from the stream processing community, the kernel
operator is a window operator, more concretely, an unbounded window operator. I
will stick to the window terminology in the following.

An important aspect for the usability of queries is that queries can be cascaded,
or—formally—that they can be composed. This is indeed the case for AC (and also
for SAC queries, see below) as shown in [gurevich07theory].

The definition of abstract computable functions is quite general and, in fact,
Definition 5.2 does not say anything about the computability of K. The main
idea for this definition stems from the theory of computability on real numbers,
termed “theory of type-2 effectivity” as outlined in [weihrauch00computable].
The robustness or—say—usability of this notion is shown by the fact that abstract
computable queries represent all functions that map finite streams to finite streams,
i.e. fulfill (F2F), and that are finite prefix determined, i.e. fulfill (FP∞). This is
the first representation result of this chapter.

Theorem 5.3. Abstract computable functions represent the class of stream queries
fulfilling (F2F) and (FP∞).

This theorem underlines the importance of the window concept because it shows
that any stream query implementing the core idea of an incremental, continuous
operation on the ever growing prefix of incoming stream elements can be represented
as a window-based function. So it is no surprise that most of the stream literature
discusses, in one or other form, window functions.

Theorem 5.3 corresponds exactly to Theorem 9 of [gurevich07theory] with
the only difference that the authors talk of continuity instead of the Postulate
(FP∞). For sake of completeness I give the definition of continuity according to

CHAPTER 5. STREAM PROCESSING 103

[gurevich07theory] and, in the appendix, the proof of Theorem 5.3. The topol-
ogy for which continuity is declared is similar to but not exactly the same as the
topology induced by the Cantor metric for infinite streams.7 Let p ∈ D∗. The open
ball B(p) around p is defined as the set of all streams (finite or infinite) having p as
prefix:

B(p) = {s ∈ D∞ | p v s} = pD∞

A query Q : D∞ −→ D∞ is called continuous [gurevich07theory] iff for every
open ball B the pre-image Q−1(B) is a union of (possibly infinitely many) open
balls. It is easy to see that functions continuous w.r.t. this topology are exactly
those functions that fulfill FP∞: An open ball B has the form B = B(u) = uD∞

for some u ∈ D∗. Continuity means that Q−1(uD∞) is open, i.e., that around any
s with Q(s) ∈ uD∞ one can find an open ball wD∞ 3 s.

As already noted by the authors of [gurevich07theory] this topology is not
metrizable (i.e., there is no metric inducing this topology) as the topology is not
Hausdorff: A finite prefix p and an infinite extension Dω 3 s w p are not separable.

The idea of a window as the main core of stream processing on finite and infinite
streams has been justified by the characterization in Theorem 5.3. This still should
be true when considering stream queries Q : Dω −→ Dω which are defined only on
infinite streams and that output only infinite streams. The finite prefix statement
then has the following form:

(FPω) For all s ∈ Dω and all u ∈ D∗: If Q(s) ∈ uDω, then there is a w ∈ D∗ such
that s ∈ wDω ⊆ Q−1(uDω).

Clearly, any operator Q : Dω −→ Dω that is generated as Repeat(K) for a
window function K fulfills (FPω). But does the converse hold, too? At least this
is not obvious from Theorem 5.3 as a closer inspection of the proof shows that the
window K is defined by relying on the definition of Q on finite streams, which in the
case we consider now is not possible as Q is defined only on infinite streams. But
indeed, using a different window construction also yields the desired representation
theorem.

7 The Cantor metric ρ is defined as follows: For any infinite streams s, s′ ∈ Dω

ρ(s, s′) =
{

0 if s = s’
1

2−n ifs 6= s′ and n = min{i | s=i 6= s′=i}

CHAPTER 5. STREAM PROCESSING 104

Theorem 5.4. Abstract computable functions of the form Q : Dω −→ Dω represent
the class of stream queries fulfilling (FPω).

Proof. See p. 193.

5.3 Constant-Size Windows

A simple fact following from Theorem 5.3 (and actually used in the proof of Theorem
9) [gurevich07theory]) is, that if Q maps finite streams to finite streams and is
continuous, then, for all finite streams s and letters u, Q(s) v Q(su) holds. Actually,
this can be easily extended to a monotonicity statement. A stream query Q is
<monotone iff it fulfills the following axiom:

(Mon) For all finite streams s′ ∈ D∗ and all (finite and infinite) streams s ∈ D∞:
If s′ v s, then Q(s′) v Q(s).

So we get

Proposition 5.5. (FP∞) and (F2F) together entail (Mon).

A stricter axiom than (Mon) is (Distribution). It actually characterizes
queries that are completely determined by their outputs for finite streams of length
1.

(Distribution) For all s ∈ D∗ with |s| ≥ 1: Q(s) ∈ D∗ and
for all s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦Q(s′).

Proposition 5.6. Any stream query Q fulfilling (Distribution) fulfills

For all s ∈ D∞: Q(s) =©|s|i=1Q(s=i)

In particular such stream queries are AC and hence fulfill (FP∞).

Proof. See p. 195.

In particular distributive queries are monotone:

Proposition 5.7. (Distribution) entails (Mon) and (F2F).

CHAPTER 5. STREAM PROCESSING 105

Note that the distribution axiom requires s and s′ to be non-empty streams. The
reason is that otherwise the stream query would have to map the empty stream onto
itself: Q(ε ◦ ε) = Q(ε) ◦Q(ε) entails that Q(ε) = ε:

As the proof of Proposition 5.6 shows distributive stream queries can be gener-
ated by windows which depend only on the 1-suffix of a word.

For later use I define the more general notion of an n-window (n ∈ N) which
corresponds to the notion of a finite window of width n.

Definition 5.8. A function K : D∗ −→ Y that is determined by the n-suffixes, i.e.,
that fulfills for all words w, u ∈ D∗ with |w| = n the condition

K(uw) = K(w)

is called an n-window (function). If additionally K(s) = ε, for all s with |s| < n,
then K is called a normal n-window.

Stream queries generated by an n-window for some n ∈ N are called n-window
abstract computable stream queries, for short n-WAC queries. The union WAC =⋃
n∈N n−WAC is the set of window abstract computable stream queries.

Please note that I chose to attach the finitude property to the window. An alter-
native way which seems to fit better the usual practices in the steaming community
is to attach the finitude to the Repeat functional. More concretely, one can define
a new functional Repeat n which depends on the window size n as a parameter and
which is defined as follows:

Repeat n(K) : s 7→ ©|s|j=0K(s[max({0,j−n}),j])

The reason why I chose to stick to the old Repeat functional is that this enables
re-using the results on AC functions. For example, though it may seem trivial, with
this approach it easily follows that all WAC queries are continuous.

The following proposition gives some simple properties w.r.t. (Distribution).

Proposition 5.9.

1. 0-windows correspond exactly to the constant functions on D∗ with K(u) =
K(ε) for all w ∈ D∗.

2. Every i-window with i ≤ j is also a j-window.

CHAPTER 5. STREAM PROCESSING 106

3. Stream queries fulfilling (Distribution) can be generated by a 1-window.
Conversely, if a stream query is generated by a 1-window with K(ε) = ε, then
it fulfills (Distribution).

Proof. See p. 195.

A property for stream queries related to (Distribution) is the filter property.
Roughly, the filter property states that Q filters out elements from the input stream
thereby outputting a subsequence. Remember that a subsequence w of a stream s

is a word whose elements appear in s in the order of w but perhaps not contiguous.
The following axiom gives a possible instantiation of this property:

(Filter)

1. Q(ε) = ε

2. For all s ∈ D∞, u ∈ D: Q(us) = u ◦Q(s) or Q(us) = Q(s).

The following proposition follows immediately.

Proposition 5.10. All operators fulfilling (Filter) are AC.

Proof. Define K(ε) = ε and K(uw) = u if Q(uw) = u ◦ Q(w) and K(uw) = ε if
Q(uw) = Q(w) for all w ∈ D∗ and u ∈ D.

Note that the explication of the filter property according to (Filter) lies be-
tween two different other notions of filter. There is the most general one definition
which requires only that for any s ∈ D∞ the output Q(s) is a subsequence of s.
This filter notion neglects the incremental aspect of stream processing and hence I
do not investigate its properties here.8

A more strict version of (Filter) can be termed time-invariant filters, abbrevi-
ated by (TI-Filter). According to this axiom, the decision whether to incorporate
the element u into the output stream does not depend on the position of u in the
input stream, in other words, the filter is time-invariant.

(TI-Filter)

8 An example use for this notion is given in the data mining book of Leskovec and colleagues
[Leskovec14mining].

CHAPTER 5. STREAM PROCESSING 107

1. Q(ε) = ε

2. For all s ∈ D∞, u ∈ D,w ∈ D∗:
Either Q(wus) = Q(w) ◦ u ◦Q(s) or Q(wus) = Q(w) ◦Q(s).

Clearly, all time-invariant filter queries are also distributive.

Proposition 5.11. (TI-Filter) entails (Distribution)

Proof. See p. 196.

There are even further different notions of filters coming from the realm of signal
processing where the domain D of stream elements is continuous (say D = R). In
this case, it is possible to talk about low-pass filters which filter out some frequencies
in a signal (thought to be a summation of waves with different frequencies). For
a treatment of time invariant filters within a quantitative-semantics framework see
[rodionova16temporal].

Considering the formulation of (Distribution) it is a small step towards more
specific axioms (Factoring-n) that, for each n ∈ N with n ≥ 1, capture exactly
the n-window stream queries.

(Factoring-n) ∀s ∈ D∗: Q(s) ∈ D∗ and

1. if |s| < n, then Q(s) = ε and

2. if |s| = n, then for all s′ ∈ D∞ with |s′| ≥ 1: Q(s◦s′) = Q(s)◦Q((s◦s′)≥2).

Axiom (Distribution) does not exactly correspond to (Factoring-1) due to
the special case of the empty stream. But the axiom (Distribution-1) defined
below does.

Now it is possible to prove results corresponding to propositions derived for
Axiom (Distribution), namely a proposition on the factorization of the query
result and the representability by a window-induced function.

Proposition 5.12. For any n ∈ N with n ≥ 1, a stream query Q : D∞ −→ D∞

fulfilling (Factoring-n) can be written for |s| ≥ n as

Q(s) =©|s|−n+1
j=1 Q(s[j,n+j−1])

For |s| < n, Q(s) = ε.

CHAPTER 5. STREAM PROCESSING 108

Proof. See p. 196.

Proposition 5.13. For any n ∈ N with n ≥ 1, a stream query Q : D∞ −→ D∞

fulfills (Factoring-n) iff it is induced by a normal n-window K.

Proof. See p. 197.

Intuitively, the class of WAC stream queries is a proper class of AC stream
queries because the former consider only fixed size finite portions of the input stream
whereas for AC stream queries the whole past of an input stream is allowed to be
incorporated for the production of the output stream. WAC queries are memory
bounded in a very strict way. I discuss the point of memory-boundedness in Section
5.5 in more detail and illustrate it with the following example.

Example 5.14. A simple example for an AC query that is not a WAC query is the
parity query Parity : {0, 1}∞ −→ {0, 1}∞ which is defined as Repeat(Kpar) where
Kpar is the parity window function K : {0, 1}∗ −→ {0, 1} given by

Kpar(s) =

 1 if number of 1s in s is odd
0 else

The window function Kpar is not very complex, indeed one can show that Kpar is
memory bounded. More concretely, it is easy to find a finite automaton with two
states that accepts exactly those words with an odd number of 1s and rejects the
others. In other words: parity is incrementally maintainable (to use a word form
dynamic complexity [patnaik97dynfo]). But finite windows are “stateless”, they
cannot memorize the actual parity seen so far. Formally, it is easy to show that
any finite-window function is AC0 computable: For any word length m construct a
circuit with m inputs where only the first n of them are actually used: One encodes
all the 2n values of the n-window K in a boolean circuit BCm, the rest of the m
word is ignored. All BCm have the same size and depth and hence a finite window
function is in AC0. On the other hand, a classical result of Furst, Saxe, and Sipser
[furst84parity] is that Parity is not in AC0.

The axioms (Factoring-n) are not exactly direct generalizations of the distri-
bution axiom (Distribution) as the ◦-factors do not factor disjoint parts of the
input stream. A more intuitive set of axioms generalizing (Distribution) are the
following axioms (Distribution-n):

CHAPTER 5. STREAM PROCESSING 109

(Distribution-n) For all s ∈ D∗: Q(s) ∈ D∗ and

1. if |s| < n, then Q(s) = ε and

2. if |s| = n, then for all s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦Q(s′).

Operators fulfilling (Distribution-n) give the following factorization represen-
tation of the output stream:

Proposition 5.15. For any n ∈ N with n ≥ 1, a stream query Q : D∞ −→ D∞

fulfilling (Distribution-n) can be written for |s| ≥ n as

Q(s) =©|s|j=1Q(s[nj−n+1,nj])

Proof. As above by induction.

All stream queries fulfilling (Distribution-n) can be characterized by tumbling
n-window windows which are defined as functions K : D∗ −→ D∗ such that

K(w) =

ε if |w| < n

ε if |w| is not a multiple of n
K(v) if |w| is a multiple with w = uv and |v| = n

Again note that one could have followed another approach by pushing the slide
parameter into the definition of a new Repeat operator.

According to this definition, stream queries induced by tumbling windows con-
sider only the last n elements in the stream and wait n elements before the content
is updated. Using the words of the streaming community: The window has width
n and slide n. According to this definition, in between times i and i + n actually
nothing is outputted to the output stream. This is one possible semantics for the
slide action. It corresponds, in the speak of the relational data stream query lan-
guage CQL [arasu06CQL], to the application of the IStream-operator to a sliding
window operator. Another possibility would have been to output in between i and
i+ n the contents of the last n-multiple i.

The following simple characterization can be derived:

Proposition 5.16. For any n ∈ N with n ≥ 1, a stream query Q : D∞ −→ D∞

fulfills (Distribution-n) and the condition that Q(s) = ε for all s ∈ D∗ with
|s| < n iff it is induced by a tumbling n-window.

CHAPTER 5. STREAM PROCESSING 110

Proof. Follows with Proposition 5.15.

Whereas (Distribution-n) is a strengthening of (Factoring-n) I consider
now a generalization of factoring which characterizes stream queries induced by
windows with a width n and slide factor m. I call such windows (n,m)-windows and
define them as follows:

K(w) =

ε if |w| < max{m,n}
ε if |w| is not a multiple of m
K(v) if |w| is a multiple of m with w = uv and |v| = n

The corresponding axioms are

(General-Factoring-n-m) ∀s ∈ D∗: Q(s) ∈ D∗ and

1. if |s| < max{n,m}, then Q(s) = ε and

2. if |s| = n, for all s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦Q((s ◦ s′)≥m).

5.4 Considering Time in the Word Model

A refined notion of abstract computability considered by Gurevich and colleagues
[gurevich07theory] is that of synchronous abstract computability, SAC for short,
which adds to the condition of abstract computability the condition that window K

maps the empty stream to the empty stream and all non-empty streams to a finite
stream of length 1.

Definition 5.17. A query Q is synchronous abstract computable (SAC) iff there
is a window K with K(ε) = ε and |K(s)| = 1 for all s 6= ε such that Q(s) =
Repeat(K)(s).

The authors give an axiomatic characterization of this notion, this time using a
property they call “non-predicting”. The original definition (Def. 17) [gurevich07theory]
says that Q is non-predicting iff for all streams s, s′ and all t ∈ N \ {0} such that
s≤t = s′≤t one has Q(s)=t = Q(s′)=t, which in natural speak says that the out-
comes of the query at some time t depends only on the prefix of the streams up to
t. Proposition 18 in [gurevich07theory] states that SAC queries are exactly the
non-predicting queries.

CHAPTER 5. STREAM PROCESSING 111

There are some clarifications needed here, first regarding the reading of the
definition, second regarding the chosen terminology, and third regarding the general
conception of time in this model.

Regarding the reading of the definition it has to be stated explicitly that if
s and s′ have at least length of t and are the same up to t, then the outcomes
Q(s) and Q(s′) are also defined up to t and are the same at position t. So in
particular a non-predicting operator maps infinite streams to infinite streams, i.e.,
being non-predicting entails (I2I). Considering their Proposition 18, the authors
also assume that of being non-predicting entails that finite streams are mapped to
finite streams, i.e., that being non-predicting entails (F2F), because SAC queries
map finite streams to finite streams. As I cannot find a plausible reading of non-
predictability that entails this fact I rephrase their Proposition 18 by mentioning
(F2F) explicitly.

Proposition 5.18 (Adaptation of [gurevich07theory]). SAC queries are exactly
the non-predicting queries that fulfill (F2F).

Regarding the chosen terminology it should be noted that “non-predicting” is
too weak a notion to capture the property stated under this term. The reason is
that also a stream query Qa that maps every non-empty stream (finite and infinite)
to the constant stream (a) and the empty stream to itself does not produce streams
by looking into the future—and hence Qa should be called non-predicting in an
intuitive sense. But surely Qa is not SAC as it maps infinite streams to a finite
stream.

So, intuitively it should be allowed to have the outcome up to some time point
t being determined by elements later than the arrival of a stream element but not
earlier. This leads to my notion of no-dilation computability: A query is Q is
no-dilation computable, for short: NDAC iff it is AC with a window K such that
K(ε) = ε and K(s) ≤ 1 for all s ∈ D∞ with s 6= ε. Choosing K(ε) = ε and K(s) = a

otherwise one can see that query Qa from above is an NDAC query.
The property corresponding to NDAC is a weakening of non-predictability (and

a strengthening of FP∞):

(FP∞ND) For all s ∈ D∞ and all u ∈ D∗: If Q(s) ∈ uD∞, then there is a w ∈ D∗

such that s ∈ wD∞ ⊆ Q−1(uD∞) and |w| ≤ |u|.

CHAPTER 5. STREAM PROCESSING 112

Stream query Q Axioms
AC of form
Q : D∞ −→ D∞ (F2F) & (FP∞)
Q : Dω −→ Dω (FPω)

normal n-window (Factoring-n)
tumbling n-window (Distribution-n)
SAC non-predicting & (F2F)
NDAC (FP∞ND)

Table 5.1: Representation Results

The following simple characterization can be derived.

Proposition 5.19. NDAC queries are exactly the queries fulfilling (FP∞ND).

Proof. Follows with the window construction from the proof of Theorem 5.4.

Regarding the chosen time model it is clear that in the word model of Gurevich
and colleagues [gurevich07theory] time is directly associated with the order in
which the elements in a stream arrive. So time is modelled by the natural numbers
with its natural ordering standing for the arrival ordering. In the synchronicity
notion underlying the notion of SAC queries this time model is applied both to
the input and the output stream. This synchronicity notion presupposes that the
stream positions are considered as “absolute” time points: The second position in
the output stream comes really later than the first position in the input stream, and
the same positions in output and input stream denote the same time points. I am
not going to discuss the plausibility of this notion of synchronicity but rather note
that in the beginning of this chapter I defined a different notion of synchronicity
based on an additional time dimension (for temporal) streams: the synchronicity
aspect concerns the alignment of the arrival time with the application time and not
the input-output synchronicity.

Having in the definition of temporal streams an additional time dimension is
important when one is going to consider non-discrete time models where there may
not be a smallest possible time interval in between to arriving elements. We re-
fer the reader to [rabinovich03automata] for further subtleties when considering
continuous flows of time in stream processing.

I summarize all of the representation results achieved so far in Table 5.1

CHAPTER 5. STREAM PROCESSING 113

5.5 Memory-Bounded Queries

As mentioned before, the notion of abstract computability is very general, even so
as to contain also queries that are not computable by a Turing machine according to
the notion of TTE computability [weihrauch00computable]. Hence, the authors
of [gurevich07theory] consider the refined notion of abstract computability modulo
a class C meaning that the window K inducing an abstract computable query has
to be in C. In most cases C stands for a family of functions of some complexity
class. In the paper, the authors consider variants of C based on computations by
a machine model called stream abstract state machine (sAsm). In particular, they
show that every AC query induced by a length-bounded window (in particular: each
SAC query) is computable by an sAsm [gurevich07theory].

A particularly interesting class from the perspective of efficient computation are
bounded-memory sAsm because these implement the idea of incrementally main-
tainable windows requiring only a constant amount of memory. (For a more general
notion of incremental maintainable queries see [patnaik97dynfo].) Of course these
machines are quite restrictive as they, e.g., do not allow to compute the INTER-
SECT problem of checking whether prior to some given timepoint t there were
identical elements in two given streams [gurevich07theory]. A slightly more gen-
eral version of bounded-memory sAMS are o(n)-bitstring sAMS which store, on
every stream and every step, only o(n) bitstrings. But even these cannot compute
INTERSECT [gurevich07theory].

I give a rough sketch of the Asm and the sAsm machine model, referring the
reader to [gurevich07theory] for details. An Asm and sAsm operates on first-
order sorted FOL structures with a static part and a dynamic part. The dynamic
part consists of functions which may change by transitions in an update process.
Updates are the basic transitions. Based on these, simple programs are defined as
finite sequences of rules: The basic rules are updates f(t1, . . . , tn) := t0. Then,
inductively, a rule is built by applying to basic rules a parallel execution construct
or by applying on given rules r1, r2 an if-then-else construct if Q then r1 else r2,
where the if-condition is given by a quantifier free formula Q on the signature of the
structure and where the post-conditions are r1, r2.

The machine model of Asm and sAsm do not seem to be widely used in the
sensor network stream community, where there is no complicated FOL structure

CHAPTER 5. STREAM PROCESSING 114

to manipulate, nor the database (stream) community where there is a similar but
slimmer model termed relational transducer [abiteboul00relational]. The authors
of [gurevich07theory] already hint to a connection between the concept of an
sAsm and of a Finite Cursor Machines (FCM) [grohe09database], which are more
expressive as they may have different cursors which are controlled on the client sight
and hence not data-driven: indeed in Proposition 29 [gurevich07theory] they give
a problem which is computable by a FCM but not by a bounded-memory sAsm.

Though the machine-oriented approach for the characterization of memory-boun-
dedness is quite universal and fits into the general approach for characterizing com-
putational classes, I add here a simple, straight-forward characterization following
the idea of primitive recursion over words [handley99complexity, bellantoni92new]:
Starting from basic functions on finite words, the user is allowed to built further
functions by applying composition and simple forms of recursion. In order to guar-
antee memory boundedness, all the construction rules are built with specific window
operators, namely lastn(·), which outputs the n-suffix. This construction gives the
user the ability to built (only) memory-bounded window functions K in a pipeline
strategy. The main extension to the approach of [gurevich07theory] is adding re-
cursion, which leads to a fine-grained definition of kernelsK. In particular, now, it is
possible to define the PARITY query, whereas without recursion for constant-width
Ks, as shown in Example 5.14, it is not.

In order to enable a pipeline-based construction I extend further the approach
of [gurevich07theory] by considering multiple streams explicitly as possible argu-
ments for functions with an arbitrary number of arguments. Still, all functions will
output a single finite or infinite word—though the approach sketched below can eas-
ily be adapted to work for multi-output streams. All of the machinery of Gurevich’s
framework is easily translated to this multi-argument setting. So, for example the
axiom FP∞ now reads as follows:

(FP∞) For all s1, . . . sn ∈ D∞, and all u ∈ D∗: If Q(s1, . . . , sn) ∈ uD∞, then there
are w1, . . . , wn ∈ D∗ such that si ∈ wiD∞ for all i ∈ [n] and w1D

∞ × · · · ×
wnD

∞ ⊆ Q−1(uD∞).

Monotonicity of a function Q : (D∞)n −→ D∞ now reads as: For all (s1, . . . , sn)
and (s′1, . . . , s′n) with si v s′i for all i ∈ [n]: Q(s1, . . . , sn) v Q(s′1, . . . , s′n).

In a second step I further adapt the set of rules with a co-recursive rule, in order

CHAPTER 5. STREAM PROCESSING 115

to describe directly memory-bounded queries Q = Repeat(K)—instead of only the
underlying windows K.

I define three types of classes in parallel: classes Accun which are intended
to model accumulator functions f : (D∗)n −→ D∗; classes Mbinc(n;m) that model
incrementally maintainable functions with bounded memory, i.e., memory-bounded
window functions with bounded output, and classes Mmbinc(n;m) of incrementally
maintainable, memory-bounded, and monotonic functions that lead to the defini-
tion of monotonic functions on infinite streams. The main idea, similar to that of
[bellantoni92new], is to partition the argument functions in two classes, normal
and safe arguments. In [bellantoni92new] the normal variables are the ones on
which the recursion step happens and which have to be controlled, whereas the safe
ones are those in which the growth of the term is not restricted. Here I control the
growth (the length) of the words explicitly and use rather the distinction between
input and output arguments: The input arguments are those where the input may
be either a finite or an infinite word. The output variables are the ones in which
the accumulation happens. In a function term f(x1, . . . , xn; y1, . . . , ym) the input
arguments are the ones before the semicolon “;”, here: x1, . . . , xn and the output
arguments are the ones after the “;”, here y1, . . . , yn.

Using the notation of [handley99complexity] for my purposes, a function
f with n input and m output arguments is denoted f (n;m). Classes Mbinc(n;m)

and Mmbinc(n;m) consist of functions of the form f (n;m). The class Mmbinc =⋃
n∈N Mmbinc(n;) contains all functions without output variables and is the class of

functions which describe the prefix restrictions Q�D∗ of stream queries Q : D∞ −→
D∞ that are computable by a memory-bounded sAsm.

Definition 5.20. The set of bounded n-ary accumulator word functions, for short
Accun, the set of (n+m)-ary memory-bounded incremental functions with n input
and m output arguments, for short Mbinc(n;m), and the set of monotonic, memory-
bounded, incremental (n+m)-ary functions with n input and m output arguments,
for short Mmbinc(n;m), are defined according to the following rules:

1. w ∈ Accu0 for any word w ∈ D∗ (“Constants”)

2. lastk(·) ∈ Accu1 for any k ∈ N (“Suffixes”)

3. Sak(w) = lastk(w) ◦ a ∈ Accu1 for any a ∈ D (“Successors”)

CHAPTER 5. STREAM PROCESSING 116

4. Pk(w) = lastk−1(w) ∈ Accu1 (“Predecessors”)

5. condk,l(w, v, x) =

 lastk(v) if last1(w) = 0
lastl(x) else

∈ Accu3 (“Conditional”)

6. Πj
k(w1, . . . , wn) = lastk(wj) ∈ Accun for any k ∈ N and j ∈ [n], n 6= 0.

(“Projections”)

7. shl(·)(1;0) ∈Mmbinc with shl(aw;) = w and shl(ε;) = ε. (“Left shift”)

8. Conditions for Composition (“Composition”)

(a) If f ∈ Accun and, for all i ∈ [n], gi ∈ Accum, then also f(g1, . . . , gn) ∈
Accum; and:

(b) If g(m;n) ∈ Mmbinc(m;n) and, for all i ∈ [m], gi ∈ Accul and h
(k;l)
j ∈

Mmbinc(k;m) for j ∈ [n], then f (k;l) ∈ Mmbinc(k;l) where using ~w =
w1, . . . , wk, ~v = v1, . . . , vl

f (k;l)(~w;~v) = g(m;n)(h1(~w;~v), . . . , hm(~w;~v); g1(~v), . . . , gn(~v))

(c) If g(m;n) ∈ Mbinc(m;n) and, for all i ∈ [m], gi ∈ Accul and h
(k;l)
j ∈

Mmbinc(k;m) for j ∈ [n], then f (k;l) ∈ Mbinc(k;l) where using ~w =
w1, . . . , wk, ~v = v1, . . . , vl

f (k;l)(~w;~v) = g(m;n)(h1(~w;~v), . . . , hm(~w;~v); g1(~v), . . . , gn(~v))

9. If g : (D∗)n −→ D∗ ∈ Accu and h : (D∗)n+3 −→ D∗ ∈ Accu then also
f : (D∗)n+1 −→ D∗ ∈ Accu, where:

f(ε, v1, . . . , vn) = g(v1, . . . , vn)

f(wa, v1, . . . , vn) = h(w, a, v1, . . . vn, f(w, v1, . . . , vn))

(“Accu-Recursion”)

CHAPTER 5. STREAM PROCESSING 117

10. If gi : (D∗)n+m −→ D∗ ∈ Accu for i ∈ [m], g0 ∈ Accu then k = k(n;m) ∈
Mbinc(n;m), where k is defined using the above abbreviations as follows:

k(ε, . . . , ε;~v) = g0(~v)

k(~w;~v) = k(shl(~w); g1(~v, ~w=1), . . . , gm(~v, ~w=1))

(“Window-Recursion”)

11. If gi : (D∗)n+m −→ D∗ ∈ Accu for i ∈ [m], g0 ∈ Accu, then f = f (n;m) ∈
Mmbinc(n;m), where f is defined using the above abbreviations as follows:

f(ε, . . . , ε; out, ~v) = out

f(~w; out, ~v) = f(shl(~w); out ◦ g1(~v, ~w=1), g1(~v, ~w=1), . . . , gm(~v, ~w=1))

(“Repeat-Recursion”)

Let Mmbinc = ⋃
n∈N Mmbinc(n;).

Within the definition above three types of recursions occur: the first is a primi-
tive recursion over accumulators. The second, called window-recursion, is a specific
form of tail recursion which means that the recursively defined function is the last
application in the recursive call. As the name indicates, this recursion rule is in-
tended to model the window functions. The last recursion rule (again in tail form)
is intended to mimic the Repeat functional.

In the first recursion, the word is consumed from the end: This is possible, as the
accumulators are built from left to right during the streaming process. Note, that
the length of outputs produced by the accu-recursion rule and the window-recursion
rule are length-bounded.

The window-recursion rule and the repeat-recursion rule implement a specific
form of tail recursion consuming the input words from the beginning with the left-
shift function shl(). This is required as the input streams are potentially infinite.
Additionally, these two rules implement a modified form of simultaneous recursion,
where all input words are consumed in parallel. The temporal model behind this
form of recursion is the following: At every time point one has exactly n elements to
consume, exactly one for each of the n input streams. These are thought to appear
at the same time. To model also the case where no element arrives in some input

CHAPTER 5. STREAM PROCESSING 118

stream, a specific symbol ⊥ can be added to the system. Giving the engine a finite
word as input means that the engine gets noticed about the end of the word (when
he has read the word). Note then, that there is a difference between the finite word
abc and the infinite word abc(⊥)ω.

The output of the repeat-recursion grows linearly: The whole history is outputted
with the help of the concatenation function. Note, by the way, that the concatena-
tion functions appears only in the repeat-recursion rule and also in a restricted form
in the successor functions, but there is no concatenation function defined in one of
the three classes. The recursion anchor has the special form that it directly outputs
the first output position of the recursively defined function f . Because of this, it
follows that all functions in Mmbinc are monotonic in their input arguments. I
state this as a proposition:

Proposition 5.21. All functions in Mmbinc are monotonic

Proof. I introduce the notion of a function f(~x; ~y) being monotonic w.r.t. its argu-
ments ~x: This is the case if for every ~y the function f~y(~x) = f(~x, ~y) is monotonic.

The functions in Mmbinc are either the left shift function (which is mono-
tonic) or a function constructed with the application of composition, which preserves
monotonicity, or by repeat-recursion, which, due to the concatenation in the output
position, also guarantees monotonicity.

The functions in Mmbinc map (vectors of) finite words to finite words. Because
of the monotonicity, it is possible to define for each f ∈ Mmbinc an extension
f̃ which maps (vectors) of finite or infinite words to finite or infinite words. If
f (n;) : (D∗)n −→ D∗, then f̃ : (D∞)n −→ D∞ is defined as follows: If all si ∈ D∗,
then f̃(s1, . . . , sn) = f(s1, . . . , sn). Otherwise, f̃(s1, . . . , sn) = supi∈Nf(s≤i1 , . . . , s

≤i
n)

where supi∈Nf(s≤i1 , . . . , s
≤i
n) is the unique stream s ∈ D∞ such that f(s≤i1 , . . . , s

≤i
n) v

s for all i. I denote by Bmsq those functions Q that can be presented as Q = f̃ for
some f ∈Mmbinc and call them memory-bounded stream queries.

Theorem 5.22. A function Q with one argument belongs to Bmsq iff it is a stream
query computable by a bounded-memory sAsm.

Proof. See p. 197.

Note that in a similar way one can model o(n) bitstring bounded sAsm: Instead
of using constant size windows lastk(c) in the definition of accumulator functions,

CHAPTER 5. STREAM PROCESSING 119

one uses dynamic windows lastf(·)(·), where, for a sublinear function f ∈ o(n),
lastf(|w|)(w) denotes the f(|w|) suffix of w.

5.6 Related Work

The work presented here is based on the foundation of stream processing according
to [gurevich07theory] which considers streams as finite or infinite words. The
research on streams from the word perspective is quite mature and the literature on
infinite words, language characterizations, and associated machine models abounds.
The focus in this chapter is on representational aspects for functions from words to
words. For all other interesting topics and relevant research papers on infinite words
we refer the reader to [weihrauch00computable] and [perrin2004infinite].

The representation theorems in this chapter are based on the Repeat func-
tional and a window function. An alternative representation by trees is given in
[hancock09representations]: An (infinite) input word is read as sequence of in-
structions to follow the tree, 0 for left and 1 for right. The leaves of the tree contain
the elements to be outputted. The authors give a characterization for the interest-
ing case where the range of the stream query is a set of infinite words: In this case
they have to use non-well-founded trees. Note, that in this type of representation
the construction principle becomes relevant. Instead of a simple instantiation with
a parameter value, one has to apply an algorithm in order to build the structure
(here: the function).

In [gurevich07theory] and in this paper, the underlying alphabet for streams
is not necessarily finite. This is similar to the situation in research on data words
[segoufin06automata, benedikt10automata], where the elements of the stream
have next to an element from a finite alphabet also an element from an infinite
alphabet.

The approach of this paper is axiom based. An example of an axiom-based ap-
proach for stream processing is given in [rabinovich03automata], but in [rabinovich03automata]
the emphasis is on temporal streams over continuos flows times (such as the reals).

Until now streams are considered in an abstract way, with stream elements
over an arbitrary domain D. In higher-level stream processing, where the do-
main elements have a certain semantics according to specifications in a knowl-
edge base or an ontology further aspects related to semantics become relevant.

CHAPTER 5. STREAM PROCESSING 120

Three of them will be dealt with in the following section on the STARQL frame-
work: correct window semantics w.r.t. the given certain-answer semantics, reason-
ing aspects w.r.t. streamed OBDA, and the equivalence of stream queries of dif-
ferent stream languages. Regarding reasoning aspects I refer the reader also to
[heintz10stream-basedJounral] and regarding the equivalence of stream queries
the reader may find [beck16equivalent] useful.

Aspects of performant—in particular memory-bounded—processing on streams
are touched in this chapter with the construction of a class of functions captur-
ing exactly those queries computable by an sAsm. This characterization is in
the tradition of implicit complexity as developed in the PhD thesis of Bellantoni
[bellantoni92predicativePhD] which is based on work of Leivant [leivant94foundational].
(See also the summary of the thesis in [bellantoni92new] where the main re-
sult is the characterization of polynomial time functions by some form of prim-
itive recursion). The main idea of distinguishing between two sorts of variables
in my approach comes from [bellantoni92predicativePhD], the use of constant,
o(n) size windows to control the primitive recursion is similar to the approach of
[lind73characterization] used for the “bounded recursion” rule.

The consideration of memory-boundedness in [arasu04characterizing] is couched
in the terminology of data-stream management systems. The authors of [arasu04characterizing]
consider FOL or rather: (non-recursive) SQL as the language to represent win-
dows. The main result is a syntactical criterion for deciding whether a given FOL
formula represents a memory-bounded query. Similar results in the tradition of
Büchi’s result on the equivalence of finite-automata recognizability with definabil-
ity in second-order logic over the sequential calculus can be shown for streams in
the word perspective [engelfriet01MSO, alur10expressiveness, alur12regular,
filiot13fromTwo-way, dave16fo-definable].

An aspect related to memory-boundedness is that of incremental maintainability
as discussed in the area called dynamic complexity [patnaik97dynfo, zeume14dynamicCQs].
Here the main concern is to break down a query on a static data set into a stream
query using simple update operators with small space.

The function-oriented consideration of stream queries along the line of this chap-
ter and [gurevich07theory] lends itself to a pipeline-style functional program-
ming language on streams. And indeed, there are some a few examples, such as
[cowley11stream], that show the practical realizability of such a programming

CHAPTER 5. STREAM PROCESSING 121

language.
The type of recursion I have used in order to handle infinite streams, namely the

rules of window-revision and repeat-revision, uses the consumption of words from
the beginning. This is similar to the co-algebraic approach for defining streams and
stream functions [rutten01elements, rutten05coinductive, endrullis10productivity].

5.7 Résumé

With the general (infinite) word-based framework I considered a sufficiently general,
yet simple model of streams which allows for specifying properties of stream queries
and characterizing them. Though the achieved results have a foundational character,
they are useful for applications relying, e.g., on the agent paradigm where stream
processing plays an important role. In setting up the stream (reasoning) architecture
of an agent, the engineer can rely on these results in order to ensure a specific input-
output behavior when using particular classes of stream queries.

The axiomatic characterizations given in this chapter are on a basic phenomeno-
logical level—phenomenological, because only observations regarding the input-
output behavior are taken into account, and basic, because no further properties
regarding the structure of the data stream elements are presupposed. So, the ax-
iomatic characterizations of this chapter lay the ground and are the starting point
for a more elaborated characterization of rational agents where also the properties
of various higher-order streams of states, beliefs, goals are taken into account. Such
an elaborated characterization of rational agents requires inventing axioms referring
to the specific observable properties associated with a stream of a given type.

For example, if considering the stream of epistemic states Φ1,Φ2, . . . of an agent,
an associated observable property is the set of beliefs Bel(Φi) an agent is obliged
to believe in its current state Φi. The beliefs can be expressed in some logic which
comes with an entailment relation |=. Using the entailment relation, the idea of a
rational change of beliefs of the agent under new information can be made precise.

In order to illustrate the kind of intended elaboration, I mention here the success
axiom which expresses that the agent “trusts” in the information it receives: If the
agent receives new information α, then the current state Φi should develop into state
Φi+1 such that Bel(Φi+1) |= α. The constraining effects that this axiom has on the
belief-state change may appear simple but, at least when the new information is not

CHAPTER 5. STREAM PROCESSING 122

consistent with the current beliefs, it is not clear how the change has to be carried
out. Axioms such as the success axiom are one of the main objects of study in the
field of belief revision (compare the introductory chapter and Chapter 7.) But what
is still missing in current research is the combination of belief-revision axioms with
axioms expressing basic stream-properties—such as those discussed in this chapter.

Though the subfield of belief-revision that deals with iterated applications of a
revision operator on a stream of new information seems to be the ideal framework for
the mentioned combination of revision axioms and stream axioms, there has been
not much progress along this line since the landmarking paper on iterated belief
revision by Darwiche and Pearl [Darwiche97onthe].

Chapter 6

High-level Declarative Stream
Processing

The former chapter presented foundational aspects of stream processing from the (in-
finite) word perspective, treating stream queries as functions from (infinite) words
to (infinite) words, and developed representation results for various stream func-
tions with complete axiomatic characterizations, i.e., representation results of the
first category. In this chapter, the focus is on STARQL (Streaming and Temporal
ontology Access with a Reasoning-based Query Language, pronounced Star-Q-L),
a particular stream query language framework allowing to express stream queries
in the sense above. As a corollary to investigations on two different semantics for
STARQL, this chapter gives a representation result of the second category, namely,
showing that STARQL queries can be rewritten into FOL queries.

STARQL is a declarative language in the sense that it provides a logic-based
(instead, say, a procedural) access to streaming data, and it is a high-level query
language in the sense that the semantics of the query language depends—next to the
streams—on a static background knowledge base. In the main application scenarios,
for which STARQL is intended to be used, the knowledge base is the union of an on-
tology (tbox) and data. Hence, STARQL can be understood as a contribution to the
recent efforts on temporalizing and streamifying OBDA [artale13temporalJCAI,
borgwardt13temporal, valle09first, calbimonte12enabling, phuoc11native,
oezcep14streamKI].

Though in some aspects similar to other temporal and stream OBDA approaches
mentioned above, STARQL differs mainly in the semantics of the window operator.

123

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 124

Instead of loosely adapting the bag semantics for window operators in relational
data stream managements (as done in many of the streamified OBDA approaches),
STARQL has a window operator with a built-in sequencing strategy: At every
evolving time point, the window produces a finite sequence of aboxes on which tem-
poral reasoning can be applied. The motivation for adding a sequence strategy was
born out of considerations on adequate representations for information needs over
streams. Just using a bag-semantics, in which the timestamps of the stream ele-
ments are dropped, would have not allowed integrating the certain answer semantics
for queries over a background tbox in an appropriate way.

The picture of relations between the different temporal and streamified OBDA
approaches, in particular w.r.t. the semantics of specific logical operators such
as the window operator, is still incomplete (a notable exception being the paper
[beck16equivalent] which tries to define equivalence between stream programs.)
To fill this gap, this chapter also gives an analysis of the query framework STARQL
in comparison to other streaming and temporal OBDA approaches. In particular,
it is shown that (a safe fragment of) TCQs [borgwardt13temporal] is embeddable
into STARQL (Prop. 6.11).

This chapter is structured as follows. Section 6.1 describes the syntax and se-
mantics of the STARQL framework. Section 6.2 introduces another semantics which
fits better to a more standardized formulation of FOL rewritability and gives a proof
of FOL rewritability for STARQL. Section 6.3 gives a comparison of the STARQL
query language regarding its expressivity w.r.t. LTL like query OBDA languages,
showing in particular how to embed the safe fragment of the temporal query lan-
guage of TCQs into STARQL. Section 6.4 contains related work. The chapter is
concluded by a résumé in Section 6.5.

This chapter is mainly based on the publication [oezcep15stream-query],
the only publication on STARQL with a clear reference to representation aspects.
For other aspects of STARQL, I refer the reader to the papers that were pub-
lished in the context of the Optique1 project. A general overview of the Optique
project (with a short high-level description of STARQL) can be found in the paper
[giese15zooming]. More details on the semantics of STARQL, its implementation
within a stream engine, its optimizations and further extensions can be found in the
public deliverables [oezcep13deliverable51,moeller14deliverable52, ioannidis15deliverable53,

1optique-project.eu/

optique-project.eu/

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 125

oezcep16deliverable54]. An early tutorial-style description of STARQL can be
found in [oezcep14RW2014]. In [oezcep14streamKI], safety aspects of STARQL
are discussed. Further recent developments w.r.t. STARQL towards an analytics
aware OBDA approach for use in industrial scenarios are given in [kharlamov14how,
kharlamov16ontologySigmod2016, kharlamov16towardsISWC16, kharlamov17semantic].
Details on the implementation of the STARQL engines for historical reasoning can be
found in [moeller15stream-temporal, neuenstadt15OBDA]. A visual interface
for stream processing with STARQL is described in [soylu16domain, soylu16vqs].

6.1 The STARQL Framework

STARQL is a stream query language framework for OBDA scenarios with temporal
and stream data. I call it a framework, because it describes a whole class of query
languages which differ regarding the expressivity of the DL used for the tbox and
regarding the embedded query languages used to query the individual intra-window
aboxes constructed in the sequencing operation (see below).

6.1.1 Example

The following example for an information need in an agent scenario illustrates the
main constructors of STARQL. A rational agent has different sensors, in partic-
ular different temperatures attached to different components. I assume that the
agent receives both, high-level messages and low-level measurement messages, from
a single input stream Sin. The agent has some background knowledge on the sen-
sors stored in a tbox. In particular, the tbox contains an axiom stating that all
temperature sensors are sensors and that all type-X temperature sensors are tem-
perature sensors. Factual knowledge on the sensors is stored in a (static) abox.
For example, the abox may contain assertions type-X-temperature-Sensor(tcc125),
attachedTo(tcc125,c1), locatedAt(c1,rear) stating that there is a temperature sensor
of type X named tcc125 that is attached to some component c1 located at the rear
of the physical agent. There is no explicit statement that tcc125 is a temperature
sensor, this can be derived only with the axioms of the tbox.

The agent has to recognize whether the sensed temperature is critical. Due to
some heuristics, a critical state is identified with the following pattern: In the last

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 126

1 CREATE STREAM Sout AS
2 CONSTRUCT GRAPH NOW { ?s a inCriticalState }
3 FROM STREAM Sin[NOW -5min , NOW]->10s, <http :// abox >, <http :// tbox >
4 USING PULSE AS START = 0s, FREQUENCY = 10s
5 WHERE { ?s a TempSens }
6 SEQUENCE BY StdSeq
7 HAVING
8 EXISTS i1 , i2 , i3
9 0 < i1 AND i2 < MAX AND plus(i2 ,1,i3) AND

10 GRAPH i3 { ?s : message ?m . ?m a A- Message } AND
11 FORALL i, j, ?x ,?y:
12 IF i1 <= i AND i <= j AND j <= i2 AND
13 GRAPH i { ?s :val ?x } AND GRAPH j { ?s :val ?y }
14 THEN ?x <= ?y

Figure 6.1: Example STARQL query

5 minutes there was a monotonic increase on some interval followed by an alert
message of category A, an A-message for short. The agent is expected to output
every 10 second all temperature sensors showing this pattern and to mark them as
critical. A STARQL formalization of this information need is given in the listing of
Figure 6.1.

The CONSTRUCT operator (line 2) fixes the format of the output stream. Here,
as well as in the HAVING clause (see below), STARQL uses the named-graph nota-
tion of the W3C recommended RDF2 query language SPARQL3 for fixing a basic
graph pattern (BGP) and attaching a time expression. The output stream contains
expressions of the form

GRAPH NOW { ?s a inCriticalState }

where NOW is instantiated by time points and ?s by constants fulfilling the required
conditions as specified in the following lines of the query. The evolvement of the
time NOW is specified in the pulse declaration (line 4).

The resources to which the query refers are specified using the keyword FROM

(line 3). Following this keyword one can refer to one or more streams (by names
or further stream expressions) and, optionally, by URIs to a tbox and an abox. In
this example, only one stream is referenced, the stream named Sin. In this case, the
stream consists, first, of timestamped BGPs of the form

GRAPH t1 { ?s hasVal ?y }

2https://www.w3.org/RDF/
3https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 127

stating that ?s has value ?y at time t1. In logical notation, these subgraphs would
be written as timestamped abox assertions of the form hasVal(?s,?y)〈t2〉. Secondly,
the input stream may contain timestamped BGPs of the form

GRAPH t2 { ?m a A-Message }

stating that at time point t2 a message of type A arrived. In DL-notation this would
be expressed as: A-Message(?m)〈t2〉. The window operator attached to the input
stream, [NOW-5min, NOW]->10s, is meant to give snapshots of the stream with the
slide of 10s (update frequency) and range of 5 minutes (all stream elements within
last 5 minutes).

The WHERE clause (line 5) specifies the sensors ?s that the information need asks
for, namely temperature sensors. Already here it becomes clear that the agent has to
incorporate his background knowledge from the tbox: In order to get all temperature
sensors ?s he has also to find all type-X sensors. The WHERE clause is evaluated only
against the static abox. The stream-temporal conditions are specified in HAVING

clause.
For every binding of ?s, the query evaluates conditions that are specified in the

HAVING clause (lines 7–14). A sequencing method (here StdSeq) maps an input
stream to a sequence of aboxes (annotated by states i, j) according to a grouping
criterion. The built-in sequencing method StdSeq is called standard sequencing. It
puts all stream elements with the same timestamp into the same mini abox.

Testing for conditions at a state is done with the SPARQL sub-graph mechanism.
So, e.g.,

GRAPH i3 {?s :message ?m . ?m a A-Message} (line10)

asks whether ?s showed a message of type A at state i3. State i3 is further deter-
mined as the successor of the end state i2 in the interval [i1, i2] (line 9). Over the
interval [i1, i2] the usual monotonicity condition (FORALL condition, lines 11–14)
is expressed using a first-order logic pattern.

Also in case of the HAVING clause, the background knowledge must be incorpo-
rated in order to guarantee a complete set of answers. For example, the tbox may
contain a taxonomy of different types of messages, in particular different sub-A-type
messages. If only instances of these subtypes are mentioned in the abox, then their

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 128

supertypes have to be inferred by the agent.

6.1.2 Syntax

The example in the previous subsection illustrated the syntax and the intended
semantics of STARQL. In this section I describe a grammar that captures this
example. This grammar generates a slight variant of a sub-fragment of the orig-
inal STARQL framework. In particular, the HAVING clauses are less expressive
than the original ones. Further I left out aggregation constructors and macro
definitions. For a full description I refer the reader to [oezcep13deliverable51,
oezcep14streamKI].

starql −→ [prefix] createExp
createExp −→ CREATE STREAM sName AS

constrExp
pulseExp −→ PULSE AS

START = start,
FREQUENCY = freq

constrExp −→ CONSTRUCT cHead(~x, ~y)
FROM listWStrExp
[, URIs − To − aboxes/tboxes]

[USING pulseExp]
[WHERE whereCl(~x)]
SEQUENCE BY seqMeth
HAVING safeHCl(~x, ~y)

cHead(~x, ~y) −→ GRAPH timeExp triple(~x, ~y)
{ . cHead(~x, ~y)}

listWStrExp −→ (sName | constrExp) winExp
[, listWStrExp]

winExp −→ [timeExp1 , timeExp2]->sl
timeExp −→ NOW | NOW - constant

whereCl(~x) −→ ECL(x̃)

seqMeth −→ StdSeq | seqMeth(∼)
term(i) −→ i

term() −→ MAX | 0 | 1
arAt(i1, i2) −→ term1(i1) op term2(i2)

(op ∈ {<,<=, =, >, >=})
arAt(i1, i2, i3) −→ plus(term1(i1),

term2(i2),
term3(i3))

stateAt(~x, i) −→ GRAPH i ECL (~x)
atom(~x) −→ arAt(~x) | stateAt(~x)

hCl(~x) −→ atom(x) | hCl(~x) OR hCl(~x)
hCl(~x, ~y) −→ hCl(~x) AND hCl(~y)

hCl(~x) −→ hCl(~x) AND FORALL ~y

IF hCl(~x, ~y) THEN hCl(~x, ~y)
hCl(~x, ~z) −→ EXISTS ~y hCl(~x, ~y) AND

hCl(~z, ~y)
safeHCl(x̃) −→ hCl(~x)

(~x contains no i variable)

Figure 6.2: Syntax for STARQL (OL, ECL) template.

The grammar (Figure 6.2) is denoted STARQL (OL,ECL) and it contains param-
eters that have to be specified in its instantiations: the ontology language OL and
the embedded condition language ECL. OL constrains the languages of the aboxes
and the tboxes that are referred in the grammar (underlined in Figure 6.2). ECL is
a query language referring to the signature of the ontology language. STARQL uses
ECL conditions in its WHERE and HAVING clauses.

The adequate instantiation of STARQL (OL, ECL) may vary depending on the
requirements of the use case. In Section 6.2 I consider the instantiation STARQL

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 129

(DL-Lite, UCQ) with the prototypical ontology language–query language combina-
tion used in classical OBDA: DL-Lite and UCQs.

I am not going to discuss the whole grammar but only make some comments on
the most interesting part, which is the set of rules for the specification of HAVING

clauses (abbreviated hCl in the grammar). In the original, full STARQL grammar
(see [oezcep14streamKI]) HAVING clauses are allowed to use arbitrary first-order
logic constructors, in particular all boolean connectors, and also exists- as well as
forall-quantifiers. As STARQL allows infinite domains (such as the real numbers in
order to specify, say, temperature values) queries using FOL constructors have to
be used with care in order to give safe queries, i.e., queries that output only finite
sets of bindings. A query such as φ(y) = ¬hasV alue(tcc125, y) for example is not
safe as it would require outputting all of the infinitely many ys not being values of
tcc125.

This problem is known since the beginning of classical DB theory and it has
been handled by describing syntactical rules guaranteeing safeness. A similar ap-
proach using a grammar with adornments handling the safeness was described in
[oezcep14streamKI]. The grammar presented here, which covers only a fragment
of full STARQL, has no adornments but still reflects safety conditions. For example,
the boolean connector for disjunction (or) is allowed to be applied only for disjunc-
tions with the same set of open variables. (This point regarding disjunctions is
discussed in more detail in Section 6.3). Furthermore, the existential and the forall
quantifiers are allowed to quantify only over variables which are guarded. Hence, an
exists quantifier over x is allowed only if x is bounded by a safe hCL clause appear-
ing as conjunction in the scope of the exists quantifier. And universally bounded
variables are allowed only if they are guarded as the antecedens of an implication in
the scope of the forall quantifier.

6.1.3 Semantics

The explication of the semantics for STARQL queries rests on the semantics of the
instantiations of the parameter values OL and ECL. The only presumption I make
is that the OL and ECL have to fulfill the following condition: There must be a
notion of a certain answer of an ECL w.r.t. an ontology. The motivation for such
a layered—or as I called it here: separated—definition of the semantics is a strict

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 130

separation of the semantics provided by the embedded condition languages ECL
and the semantics used on top of it. Hence the separated semantics has a plug-in-
flavor, allowing users to embed any preferred ECL without repeatedly redefining the
semantics of the whole query language.

For ease of exposition I assume that the query specifies only one output sub-graph
pattern and that there is exactly one static abox Ast and one tbox T . Similar to
the approach of [borgwardt13temporal], the tbox is assumed to be non-temporal
in the sense that there are no special temporal or stream constructors. I give a
denotational specification JSoutK of Sout recursively by defining the denotations of
the components. I will refer to the notion of a temporal abox within this denotation
semantics and also later on. A temporal abox is a finite set of timestamped abox
axioms ax〈t〉, with t ∈ T . I call structures of the form 〈(Ai)i∈[n], T 〉 consisting of a
finite sequence of aboxes and a pure tbox a sequenced ontology (SO). The index i of
the abox Ai is called its state.

So assume that the following query template is given.

Sout = CONSTRUCT GRAPH timeExpCons Θ(~x, ~y)

FROM S1 winExp1 , . . . , Sm winExpm,Ast, T

WHERE ψ(~x) SEQUENCE BY seqMeth HAVING φ(~x, ~y)

Windowing

Let JSiK for i ∈ [m] be the streams of timestamped abox assertions. The denotation
of the windowed stream wsi = Si [timeExpi

1 , timeExpi
2]->sli is defined by specifying

a function FwinExpi s.t.: JwsiK = FwinExpi(JSiK).
JwsiK is a stream with timestamps from the set T ′ ⊆ T , where T ′ = (tj)j∈N is

fixed by the pulse declaration with t0 being the starting time point of the pulse. The
domain of the resulting stream consists of temporal aboxes.

Assume that λt.gi1(t) = JtimeExpi1K and λt.gi2(t) = JtimeExpi2K are the unary
functions of time denoted by the time expressions in the window. We have to define
for every tj the temporal abox Ãitj〈tj〉 ∈ JwsiK. If tj < sl − 1, then Ãitj = ∅.
Else set first tistart = btj/slc × sl and tiend = max{tstart − (gi2(tj) − gi1(ti)), 0}, and
define on that basis Ãitj = {ax〈t〉 | ax〈t〉 ∈ JSK and tiend ≤ t ≤ tistart}. Now,
the denotations of all windowed streams are joined w.r.t. the timestamps in T ′:

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 131

js(Jws1K, . . . , JwsmK) := {
(⋃

i∈[m] Ãit
)
〈t〉 | t ∈ T ′ and Ãit〈t〉 ∈ JwsjK}.

Sequencing

The stream js(Jws1K, . . . , JwsmK) is processed according to the sequencing method
specified in the query. The output stream has timestamps from T ′. The stream
domain now consists of finite sequences of pure aboxes.

The sequencing methods used in STARQL refer to an equivalence relation ∼
to specify which assertions go into the same intra-window abox. The relation ∼ is
required to respect the time ordering, i.e., it has to be a congruence over T . The
equivalence classes are referred to as states and are denoted by variables i, j etc.

Let Ãt〈t〉 be the temporal abox of js(Jws1K, . . . , JwsmK) at t. Let T ′′ = {t1, . . . , tl}
be the time points occurring in Ãt and let k′ the number of equivalence classes gener-
ated by the time points in T ′′. Then define the sequence at t as (A0, . . . ,Ak′) where
for every i ∈ [k′] the abox Ai is Ai = {ax〈t′〉 | ax〈t′〉 ∈ Ãt and t′ in ith equiv. class}.
The standard sequencing method StdSeq is just seqMeth(=). Let F seqMeth be the
function realizing the sequencing.

WHERE Clause

In the WHERE clause only Ast and T are relevant for the answers. So, purely static
conditions (e.g. asking for sensor types as in the example above) are evaluated only
on Ast ∪ T . The result are bindings ~awh ∈ cert(ψ(~x), 〈Ast, T 〉). This set of bindings
is applied to the HAVING clause φ(~x, ~y).

HAVING Clause

STARQL’s semantics for the HAVING clauses relies on the certain-answer semantics
of the embedded ECL conditions.

The semantics of φ(~awh, ~y) has to be defined for every binding ~awh from the
evaluation of the WHERE clause. For every t, one has to specify the bindings for ~y.
Assume that the sequence of aboxes at t is seq = (A0, . . . ,Ak). I define the set of
separation-based certain answers, denoted: certsep(φ(~awh, ~y), 〈Ai ∪ Ast, T 〉).

If for any i the pure ontology 〈Ai ∪Ast, T 〉 is inconsistent, then we set certsep =
NIL, where NIL is a new constant not contained in the signature. In the other
case, the bindings are defined as follows. For t one constructs a sorted first-order

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 132

logic structure It: The domain of It consists of the index set {0, . . . , k} as well as
the set of all individual constants of the signature. For every state atom stateAt
GRAPH i ECL(~z) in φ(~awh, ~y) with free variables ~z having length l, say, introduce
an (l + 1)-ary symbol R and replace GRAPH i ECL(~z) by R(~z, i). The denotation
of R in It is then defined as the set of certain answers of the embedded condition
ECL(~z) w.r.t. the ith abox Ai: RIt = {(~b, i) | ~b ∈ cert(ECL(~z), 〈Ai ∪ Ast, T 〉)}.
Constants denote themselves in It. This fixes a structure It with finite denotations of
its relation symbols. The evaluation of the HAVING clause is then nothing more than
evaluating the FOL formula (after substitutions) on the structure It (see Chapter 2
for the definition of satisfaction of FOL formulas).

Let F φ(~awh,~y) be the function that maps a stream of abox sequences to the set of
bindings (~b, t) where ~b is the binding for φ(~awh, ~y) at time point t.

Summing up, the following denotational decomposition results:

JSoutK = {GRAPH JtimeExpConsK Θ(~awh,~b) | ~awh ∈ cert(ψ(~x),Ast ∪ T) and

(~b, t) ∈ F φ(~awh,~y)
(
F seqMeth(js(FwinExp1(JS1K), . . . , FwinExpm(JSmK)))

}

6.1.4 Properties of STARQL

Non-reified approach

A relevant question from the representational point of view is how to represent
time in the query language. For STARQL, the decision was to use a non-reified
approach, where time is handled in a special way. As illustrated by the agent example
above, the abox assertions (BGPs in SPARQL speak) are tagged with timestamps.
This method is similar to adding an extra time argument for concept and roles as
in [artale13temporalJCAI]. The non-reified approach allows representing time-
dependent facts such as the fact that some sensor showed some value at a given time
point. This time is relevant for the window semantics in STARQL.

An alternative strategy, called reified approach, is to handle time as an ordinary
attribute attached to some entities (“res” in latin, hence the term “reification”). For
example, in case of the agent scenario from the beginning of this chapter, it would
be possible to describe temperature values by measurement objects. Then, the fact
that a sensor shows a temperature value at some time could be expressed by stating
that the measurement is associated with that sensor, has a timestamp with that

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 133

time point, and has an associated value: measurement(m1), hasSensor(m1, s0),
hasV al(m1, 90◦C), hasT ime(m1, 30s). Here, the fact of a sensor showing a value at
some time is expressed by some natural reification of the event, namely by introduc-
ing the measurements. Sometimes reification leads to objects which can be hardly
coined natural (see, e.g., the discussion in [galton91reified]).

As the reified approach is more conservative and does not require to change the
semantics, a natural question is whether STARQL follows the non-reified strategy.
The main reason is that time requires a special treatment as it has specific constraints
for reasoning. For example, in the measurement scenario one would like to express
the time-dependent constraint that, at every time point, a sensor shows at most one
value. This can be done with a classical DL-Lite axiom by stating (func val) ∈ T .
Note that under such a constraint it is necessary that the window semantics preserves
the timestamps, as is indeed the case for the STARQL window semantics. Otherwise
two timestamped stream elements of the form val(tcc125, 92◦)〈3s〉 and of the form
val(tcc125, 95◦)〈5s〉 stating would lead to an inconsistency.

On the other hand, if one follows the reified approach such a time-dependent
constraint is not expressible in a DL: One would have to formulate that there are
no two measurements with the same associated sensor and same timestamp but
different values. The As DLs are concept oriented, they are not good at expressing
such a non-tree shaped constraints.

Homogeneous interface

For the syntax and the semantics of STARQL queries the exact resource of the input
stream is not relevant: It may be a stream of elements arriving in real-time via a
TCP port, but equally a simulated stream of data produced by reading out a text
file or a temporal database. In the former case, one can speak of (genuine) stream
querying, whereas in the latter case I use the term historical querying. So STARQL
offers the same interface to real-time queries (as required, for example, in moni-
toring scenarios) and historical queries (as required, e.g., in reactive diagnostics).
And, indeed such a homogenous interface to two different modes of querying has
proved useful for real industrial use cases, in particular, for the turbine-diagnostics
use case of SIEMENS in the context of the Optique project [kharlamov14how,
kharlamov16towardsISWC16, kharlamov17semantic].

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 134

Separation between static and temporal conditions

As illustrated in the example above, STARQL allows to separate the conditions
expressed in an information need into conditions that concern only the static part
of the background knowledge (tbox T and static abox Ast) and into conditions
which require both, the static part and the streams. The former can be queried
in the WHERE clause, the latter in the HAVING clause. Looking at the semantics of
HAVING clause, one sees that the HAVING clause also refers to the tbox and the static
abox. And indeed, this reference, at first sight, is not eliminable. The reference to
the tbox can be eliminated by just rewriting the HAVING clause into a new HAVING

clause using the standard perfect rewriting technique. Still, the theoretical question
remains whether it is possible to push all references to the static abox (all occurrences
of concept and role symbols that appear in the static abox) into the WHERE clause,
so that the HAVING clause can be evaluated only on the streams and the bindings
resulting from the evaluation of the WHERE clause. In other terms, is the HAVING

clause separable in a pure static part and a part containing only role and concept
symbols not part of the static abox? This is an open problem.

Even if separability in the sense above holds, in terms of feasible implementation,
the reference to a large static abox remains a challenging problem. As of the time of
writing up this monograph, and as far as I know, this problem has not been solved
satisfactorily by any of the current temporal and streamified OBDA systems.

An alternative operational semantics

The window semantics defined above is denotational and mimics the window oper-
ator definitions for CQL [arasu06CQL], which is one of the first relational data
stream query languages. From the implementation point of view, an operational
semantics is more helpful—at least it gives a different perspective on the intended
semantics of the window. Furthermore, the operational view also sheds light on why
the window definition was chosen exactly the way as stated above. The operational
semantics is illustrated with query template given in the listing of Figure 6.3:

Referring to the STARQL grammar, Figure 6.3 instantiates timeExp1 = NOW-wr,
where wr is a constant denoting the window range, and timeExp2 = NOW. I distin-
guish between a pulse time tpulse and a stream time tstr. (For more than one stream
one would have more local stream times.) The pulse time tpulse evolves regularly

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 135

1 CREATE STREAM S_{out}
2
3 ...
4 FROM Sin [NOW -wr , NOW] -> sl
5 USING PULSE WITH START = st , FREQUENCY = fr
6 ...

Figure 6.3: Example template query for illustration of operational semantics

1 CREATE STREAM Sout AS
2 ...
3 FROM STREAM Sin: [NOW -3s, NOW] -> "3S"^^ xsd: duration
4 USING PULSE WITH START = "2005 -01 -01 T00 :00:00 CET "^^ xsd:dateTime ,
5 FREQUENCY = "2S"^^ xsd: duration
6 ...

Figure 6.4: Example query for illustration of operational semantics on one stream

according to the frequency specification, tpulse = st −→ st+fr −→ st+2fr −→
In contrast, the stream time tstr is jumping/sliding and is determined by the trace of
endpoints of the sliding window. More concretely, the evolvement of tstr is specified
as follows:

tstr tstr +m× sl
IF tstr +m× sl ≤ tpulse (for m ∈ N maximal)

The window contents at tpulse is given by: {ax〈t〉 ∈ Sin | tstr − wr ≤ t ≤ tstr}.
Note that always tstr ≤ tpulse. This a crucial point regarding the homogeneity
aspect mentioned above: Having always tstr ≤ tpulse guarantees that applying the
window on real-time streams does not give different stream elements than applying
the window on a simulated stream from a DB with historical data. Otherwise, i.e.,
if tstr > tpulse), the window in a historical query would contain future elements from
[tpulse, tstr] whereas in the real-time case the window cannot contain future elements
from [tpulse, tstr].

As an example, consider the STARQL in the listing of Fig. 6.4 following example
query illustrates the operational semantics.

Then one gets the following evolvements of the pulse time and the streaming
time.

tpulse : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→
tstr : 0s→ 0s→ 3s→ 6s→ 6s→ 9s → 12s→

The example query in the listing of Figure 6.5 refers for multiple streams and is
intended to illustrate the synchronization effect of the pulse.

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 136

1 CREATE STREAM Sout AS
2 CONSTRUCT { ?sens rdf:type : RecentMonInc }<NOW >
3 FROM STREAM Sin1 [NOW -3s, NOW]->"3S"^^ xsd:duration ,
4 STREAM Sin2 [NOW -3s, NOW]->"2S"^^ xsd: duration
5 USING PULSE WITH START = "2005 -01 -01 T00 :00:00 CET "^^ xsd:dateTime ,
6 FREQUENCY = "2S"^^ xsd: duration
7 SEQUENCE BY StdSeq AS seq
8 HAVING (...)

Figure 6.5: Example query for illustration of operational semantics on two streams

tpulse : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→
tstr1 : 0s→ 0s→ 3s→ 6s→ 6s→ 9s → 12s→
tstr2 : 0s→ 2s→ 4s→ 6s→ 8s→ 10s→ 12s→

Synchronicity

Similar to the semantics defined for the relational stream query language CQL
[arasu06CQL], I assumed for the semantics of STARQL synchronized streams.,
i.e., input streams where the time stamps respect the arrival order. It is pos-
sible to defer the handling of asynchronous streams to the implementation level
as done by [arasu06CQL]. And also this is foreseen in the layered approach of
[kraemer09semantics], where all synchronization is handled on the levels below.
But this is not a must when designing a stream processing system on the abstraction
level of ontologies. Regarding the synchronicity aspect, e.g., it is a matter of flexibil-
ity to give also the user of the ontological query language a means to specify the way
he wants to handle asynchronous streams directly, and even doing the specification
for each stream query—independently of the other queries. A possibility for this
is the use of a slack parameter. And indeed STARQL as defined in the technical
report [oezcep13deliverable51] is intended to handle also these.

6.1.5 Rewritability of HAVING Clauses

From the representational point of view, the most important property of STARQL
queries is that its HAVING clauses are FOL rewritable under the separation-based
semantics. In order to state the proposition, the rewritability notion has to be
adapted to the case of a sequential ontology. I suggest the following natural notion
of rewritability: Let O = 〈(Ai)i∈[n], T 〉 be an SO. The canonical model DB((Ai)i∈[n])
of a sequence of aboxes is defined as the sequence of minimal Herbrand models

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 137

DB(Ai) of the aboxes Ai. Let QL1 and QL2 be two query languages over the same
signature of an SO and let OL be a language for the sequenced ontologies SO.

Definition 6.1. QL1 allows for QL2-rewriting of query answering w.r.t. ontology
language OL iff for all queries φ in QL1 and tboxes T in OL there exists a query φT
in QL2 such that for all n ∈ N and all sequences of aboxes (Ai)i∈[n] it holds that:
cert(φ, 〈(Ai)i∈[n], T 〉) = ans(φT ,DB(Ai)i∈[n]))

I call an ECL language rewritability closed w.r.t. OL iff ECL allows for perfect
rewriting such that the rewritten formula is again an ECL condition.

Proposition 6.2. Let OL be an ontology language and let ECL be a rewritability-
closed condition language w.r.t. OL. Denote by QL1 the instantiation of HAVING

clauses with this ECL and OL. Then QL1 allows for QL1-rewriting of (separation-
based) certain query answering w.r.t. OL.

This is an immediate consequence of the separated semantics.

6.2 Separation-based versus Holistic Semantics

This section introduces a new semantics for STARQL HAVING clauses, called holistic
semantics, and shows that for a fragment of the HAVING clauses the holistic and the
separated semantics are actually the same. One reason for introducing a holistic se-
mantics is that it allows to compare the expressivity of STARQL with temporal-logic
oriented query languages. In particular, I show that the HAVING fragment captures
(a safe fragment) of the LTL inspired query language of temporal conjunctive queries
(TCQs) [borgwardt13temporal].

I assume that I have a HAVING clause where the free variables ~x of the WHERE

clause are instantiated already and hence can be considered to be bounded.
With every time point t an SO 〈(Ai)i∈[nt], T 〉 is associated. The length of the

sequence nt may depend on the time point t. As I now fix the length, I write just n
for nt.

Definition 6.3. Let O = 〈(Ai)i∈[nt], T 〉 be an SO. Let Î = (Ii)i∈[n] be a sequence of
interpretations Ii = (∆, ·Ii) over a fixed non-empty domain ∆ where the constants’
interpretations do not change for different Ii, Ij. Then Î is a model of O (written
Î |= O) iff Ii |= 〈Ai, T 〉 for all i ∈ [n].

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 138

All interpretations Ii have the same domain ∆. The constants’ denotations does
not change from state to state, hence they are considered rigid.

The tbox T is assumed to be a non-temporal tbox. Its inclusions hold at every
time point. For example, a tbox axiom temperatureSensor v Sensor means that
at every time point a temperature sensor is a sensor.

One can easily verify that the set of models of O = 〈(Ai)i∈[n], T 〉 is just the
cartesian product of all sets of models Ii of the local ontologies T ∪ Ai.

Proposition 6.4. {Î | Î |= 〈(Ai)i∈[n], T 〉} = ×i∈[n]{I | I |= 〈Ai, T 〉}

The satisfaction relation between sequences of interpretations and Boolean HAVING

clauses is defined as follows.

Definition 6.5. Let Î = (Ii)i∈[n] be a sequence of interpretations and ν be an
assignment of individuals d ∈ ∆ to individual variables and numbers i ∈ [n] to state
variables i, j. Let ν[j 7→ j] be the variant of ν where j is assigned j. The semantics
are defined as follows:

Î, ν |= GRAPH i α iff Iν(i) |= α

Î, ν |= EXISTS i φ iff there is i ∈ [n] s.t. Î, ν[i 7→ i] |= φ

Î, ν |= FORALL i φ iff for all i ∈ [n] it holds that Î, ν[i 7→ i] |= φ

Î, ν |= EXISTS x φ iff there is d ∈ ∆ s.t. Î, ν[x 7→ d] |= φ

Î, ν |= FORALL x φ iff for all d ∈ ∆ it holds that Î, ν[x 7→ d] |= φ

Î, ν |= φ1 AND φ2 iff Î, ν |= φ1 and Î, ν |= φ2

Î, ν |= φ1 OR φ2 iff Î, ν |= φ1 or Î, ν |= φ2

Î, ν |= φarAt iff I0, ν |= φarAt

Î |= φ iff Î, ∅ |= φ

For arbitrary HAVING clauses φ(~x) and a sequence of interpretations Î, the set
of answers is defined as ans(φ(~x), Î) = {~a | Î |= φ(~a)}. The set of certain answers
w.r.t. an SO O = 〈(Ai)i∈[n], T 〉 is: certh(φ,O) = ⋂

Î|=O ans(φ, Î)

I consider a fragment of the HAVING clauses for OL = DL-Lite and ECL = UCQ
and denote it by L∃HCL: In this fragment I disallow the operators FORALL x and
EXISTS x. In contrast, the implicit existential quantifiers in the UCQs are allowed.

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 139

I show that the original separation-based semantics and the holistic certain an-
swer semantics (denoted certh) are the same on this fragment.

Theorem 6.6. For any SO O = 〈(Ai)i∈[n], T 〉 and any φ ∈ L∃HCL the following
equality holds: certh(φ,O) = certsep(φ,O).

Proof. See page 199.

As a corollary to the theorem above the rewritability for STARQL queries in the
holistic semantics results.

Theorem 6.7. Let QL1 be the instantiation of the HAVING clause language with
ECL = UCQ and OL = DL-Lite. Then QL1 allows for QL1 rewriting for holistic
certain query answering w.r.t. OL on the abox sequence.

Moreover, as HAVING clauses are based on FOL with <, plus (the MAX operator
can be rewritten with <) and the state variables i can be pushed into the UCQs,
one gets the following additional corollary:

Corollary 6.8. Let QL1 be the instantiation of HAVING clauses with ECL = UCQ
and OL = DL-Lite. Then QL1 allows for FOL(<, plus) rewriting for holistic cer-
tain query answering w.r.t. OL on the abox sequence.

These rewritability theorems still do not say whether it is required to generate/-
materialize the abox sequence or whether it can be defined as a view. In the end,
the rewriting given above is “local” in the sense that it concerns only the sequential
ontology within a window. If a rewriting w.r.t. the whole stream is required, then
one has to incorporate the sequencing strategy, the pulse and the window semantics.

The pulse function defines the outputs of the STARQL query. So the rewritten
query must be informed about the time points. I formalize this by allowing the
FOL query to refer to just the list of time points. The window contents can be
calculated with some simple arithmetics using the order <, the addition operator
and a multiplication operator. For the standard sequencing method there is a one-
to-one correspondence between pairs of state and developing time (i, NOW) and
timestamps which can be expressed easily as a FOL query with some arithmetic
incorporating a multiplication operation mult. So one gets the following result:

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 140

Corollary 6.9. Let QL1 be the instantiation of HAVING clauses with ECL = UCQ
and OL = DL-Lite and assume that the sequence of aboxes is generated by standard
sequencing. Then QL1 allows for FOL(<, plus, mult) rewriting for holistic certain
query answering w.r.t. OL on the stream of timestamped abox axioms.

With this corollary on the rewritability of STARQL’s HAVING clauses the main
step has been taken in order to show that STARQL queries (as a whole) are trans-
formable in relational data stream languages such as CQL [arasu06CQL]. For this
transformation also the specification of an unfolding mechanism is required which I
have not discussed here (see, e.g., [neuenstadt15OBDA].)

6.3 Comparison with TCQs

The fragment of the HAVING clause language, for which I showed the equivalence of
the holistic and the separation-based semantics, is still expressive enough to simu-
late query languages such as the language of temporal conjunctive queries (TCQs)
[borgwardt13temporal], that combine temporal-logic operators with lightweight
DL languages.

TCQs are defined by following a weak integration of conjunctive queries (CQs)
and a linear temporal logic (LTL) template.

The syntax is given on the left-hand side in Figure 6.6, the semantics according
to the following definition and the right-hand side in Figure 6.6.

Definition 6.10. Let φ be a Boolean TCQ. For Î = (Ii)i∈[n] and i ∈ [n] one defines
Î, i |= φ by induction on the structure of φ as in the right-hand side of Figure 6.6.

The set of answers at i is defined as ans(φ, Î, i) = {~a | Î, i |= φ(~a)}. For a SO O
the set of certain answers at i is cert(φ,O) = ⋂

Î|=I ans(φ, Î, i). The set of (certain)
answers is defined as the (certain) answers at the last state: ans(φ, Î) = ans(φ, Î, n)
and cert(φ,O) := cert(φ,O, n).

A simple example shows that TCQs is not domain independent—though it is
intended to be used in the OBDA paradigm: Take φ(x, y) = A(x) ∨ B(y) and
consider interpretations I = ({a}, ·I), J = ({a, b}, ·J) with AI = AJ = {a} and
BI = BJ = ∅: One has (a, b) ∈ ans(φ, J) but (a, b) /∈ ans(φ, I). As the TCQs are
not domain independent, I consider the following safe fragment TCQs where the
rule for ∨ is replaced by: If φ1, φ2 are in TCQs and have the same free variables,

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 141

φ −→ CQ |
φ ∧ φ | φ ∨ φ |
#φ | φ |
#−φ | −φ |
φUφ | φ Sφ

Î, i |= ∃y1, . . . , ym.ρ iff Ii |= ∃y1, . . . , ym.ρ

Î, i |= φ1 ∧ φ2 iff Î, i |= φ1 and Î, i |= φ2

Î, i |= φ1 ∨ φ2 iff Î, i |= φ1 or Î, i |= φ2

Î, i |= #φ1 iff i < n and Î, i+ 1 |= φ1

Î, i |= φ1 iff i < n implies Î, i+ 1 |= φ1

Î, i |= #−φ1 iff i > 0 and Î, i− 1 |= φ1

Î, i |= −φ1 iff i > 0 implies Î, i− 1 |= φ1

Î, i |= φ1 Uφ2 iff ∃k : i ≤ k ≤ n, Î, k |= φ2

and Î, j |= φ1∀j, i ≤ j < k

Î, i |= φ1 Sφ2 iff ∃k : 0 ≤ k ≤ i, Î, k |= φ2

and Î, j |= φ1∀j, k < j ≤ i.

Figure 6.6: TCQs: syntax and semantics

then φ1 ∨ φ2 is in TCQs; , − are disallowed; the rules for S, U are replaced by:
If φ1, φ2 are in TCQs and have the same free variables, then φ1 Uφ2 and φ1 Sφ2 are
in TCQs.

It can be shown that TCQss are embeddable into STARQL HAVING clause. The
translation θ is the usual one known from translating modal logics (and description
logics) into predicate logic. It just simulates the semantics for TCQs within the
object language of STARQL. For example, θi(∃y1, . . . , ym.ψ) = GRAPH i ψ; θi(φ1∨
φ2) = θi(φ1) OR θi(φ2); θi(#−φ1) = i > 0 AND θi−1(φ1). From the similarity of the
semantics for TCQs and the holistic semantics of L∃HCL-queries one can see that the
transformation θ yields for every TCQs φ a L∃HCL-query with the same set of certain
answers.

Proposition 6.11. For all SOs O and TCQs φ: cert(φ,O) = certh(θ(φ),O)

Due to some unsafe operators in TCQs, STARQL embeds not all TCQs. This is
an intended feature of STARQL as it was meant to be applicable for strict OBDA
scenarios where safe query languages such as SQL are used for the backend sources.

The full language of TCQs allows for queries for which an implementation in
a domain independent language such as SQL leads to performance issues: In the
case of arbitrary disjunctions a function has to be implemented that returns all con-
stants in the active domain. On the other hand, STARQL is more expressive than
the safe fragment of TCQs: it offers (different) means to generate abox sequences,

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 142

whereas for TCQs it is assumed that these are given in advance. Moreover, TCQs
allow for quantifiers only within embedded CQs, but cannot handle outer quantifi-
cation, which is needed in order to, e.g., express the monotonicity condition as in
the example from the beginning.

In this section I considered only the expressivity of the HAVING fragment in
comparison to the LTL inspired framework of TCQs. A comparison of the whole
STARQL query language with other stream-temporal query languages can be found
in the STARQL chapter of [kharlamov17semantic]. The main results of this
comparison is that STARQL can compete with other stream-temporal languages
w.r.t. the offered expressivity (though regular path queries as required in SPARQL
1.14 are not supported) and that it has a unique standing w.r.t. the support of a
flexible sequencing mechanism.

6.4 Related Work

There are various, quite distinct approaches to high-level declarative stream pro-
cessing, be it the work on relational data stream managements [arasu06CQL,
chandrasekaran03telegraphCQ, hwang07cooperative, kraemer09semantics],
or on SPARQL-derived stream-query languages [valle09first, calbimonte12enabling,
phuoc11native] or on complex event processing [anicic12stream, cugola10tesla].
For some recent approaches the reader is also referred to papers published in the
proceedings of the workshop on high-level declarative stream processing, Hidest’155.

But, investigations regarding representational issues in the realm of high-level
temporal and stream processing are rather rare. They appear implicitly in investiga-
tions on FOL rewritability such as the framework of TCQs [borgwardt13temporal],
which was extensively discussed here, or such as the framework of [artale13temporalJCAI]
which considers tboxes with temporal operators.

From a more abstract and sociological point of view, the efforts in finding a stan-
dard for high-level declarative query languages over temporal and stream data can be
understood as a search for the essential concepts, the hidden structures underlying
all current stream-temporal query languages. Comparisons on the expressivity of dif-
ferent stream query languages—either practically by benchmarks and experimental

4https://www.w3.org/TR/sparql11-query/
5https://www.ifis.uni-luebeck.de/hidest15.html

https://www.w3.org/TR/sparql11-query/
https://www.ifis.uni-luebeck.de/hidest15.html

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 143

setups as in [dellaglio13correctness] or theoretically as in [beck16equivalent]—
can be understood as the search for the structure preserving mappings accord-
ing to representation scenario framework of this monograph. It should be noted,
that the various communities of stream researchers have not converged to such a
standard. This is true, e.g., for the community on RDF stream reasoning6 (see
[dellAglio15towards, aglio15rspql] as a first try) but also for the older commu-
nity working on relational data stream management systems ([jain08towards] can
be understood as a first try).

6.5 Résumé

The STARQL query language framework is part of the recent venture of adapting
classical OBDA for stream-temporal reasoning. As explained in the beginning of
the monograph, the OBDA paradigm has a strong representational aspect in form
of FOL rewritability. In this chapter I developed a representation result along
this line by showing a rewritability result for STARQL HAVING clauses. Further
representational issues came up with the correct representation of time (reified vs.
non-reified).

The rewritability results shown in this chapter are trivial for the separation-based
semantics and are a little bit harder for the holistic semantics of STARQL queries.
Rewritability becomes even harder if one allows the tbox to incorporate temporal op-
erators as in [artale13temporalJCAI]. The focus on classical tboxes, as assumed
in this chapter, is a clear restriction in expressivity which may lead to undesirable
consequences in diagnostic scenarios. For example, consider the following tbox

{∃tempVal v TempSens, ∃pressVal v PressSens, TempSens v ¬PressSens}

and assume that the input stream is

Sin = {. . . tempVal(s0, 90)〈3s〉, pressVal(s0, 70)〈4s〉 . . . }

The information regarding the sensor s0 is not consistent with the tbox, as it would
entail that s0 is both a pressure sensor and a temperature sensor, which is excluded

6https://www.w3.org/community/rsp/

https://www.w3.org/community/rsp/

CHAPTER 6. HIGH-LEVEL DECLARATIVE STREAM PROCESSING 144

by the tbox. This inconsistency will not be detected if the static abox does not know
about s0 and hence does not classify it. If the tbox were allowed to use temporal
constructors, then one could express necessary rigidity assumptions. For example,
one would state that if a sensor is a temperature sensor at some time, then it will
be in the future (and was in the past).

As a stream-temporal OBDA query language allowing for rewritability (and
also unfoldability), STARQL is a candidate for applications requiring a declarative
conceptualization over temporal and stream data. Next to the obvious scenarios
for query answering in a central knowledge base, also high-level stream processing
within a rational agent (see introduction of this monograph) are potential application
scenarios. In rational agents various transformation tasks from low-level sensor
stream data to high-level declarative stream data are required. In a classical OBDA
approach these transformations would not have to be actually implemented, rather
the high-level query on the virtual high-level stream would be transformed to a low-
level query on the low-level sensor streams. As far as I know, there are no agent
systems applying OBDA for the transformations mentioned above.

In this monograph, I spared out completely implementation aspects for STARQL.
Descriptions of STARQL implementations can be found in the Optique deliverables
[moeller14deliverable52, ioannidis15deliverable53, oezcep16deliverable54]
and in the papers [moeller15stream-temporal, neuenstadt15OBDA]. From a
theoretical point of view, the most interesting question is to invent a good strategy
of combining the mini-aboxes of the window with the possibly large static abox. In
general, considering the moderate query answering times of current high-level stream
engines on large static background knowledge, a good theory for a combination of
streaming and large static data is still lacking.

Chapter 7

Representation for Belief Revision

Belief revision [agm1985] deals with the problem of changing a declaratively speci-
fied repository under a new piece of potentially conflicting information, called trigger
in the following. If there is trust in the incoming information—and classical belief
revision in contrast to non-prioritized belief revision [hansson99survey] assumes
so—the integration may trigger a revision of the repository. The reason is that the
trigger may be incompatible with the repository so that some of its formulae have
to be eliminated in order to keep it satisfiable. An abstract means to describe the
revision is by binary belief revision operators, i.e., functions getting a repository and
a trigger as argument and outputting a new repository.

Depending on the intended role of the repository and the formal constraints on it,
it is referred to under various names. If the repository is an arbitrary set of sentences
(in some logic), then it is called a belief base [hansson91phd]. If the repository is a
logically closed set of sentences in some logic, then it is called a belief set [agm1985].
If the main idea is to represent with the repository the knowledge of a domain by
a finite belief base such that the revision operators applied on it depend only on
the semantics and not the syntactical representation, then one talks of a knowledge
base (for short KB) and of knowledge base revision—following the terminology of
[dalal1988investigations]. In this chapter I will mainly deal with operators for
knowledge-base revision. In turn, within this class the focus is on knowledge-base
revision operators that follow a particular construction principle, namely that of
reinterpretation as explained in the next sections [oezcep10ontology].

In the last 30 years since the start of formal belief revision with the work of
AGM (Alchourron, Gärdenfors, and Makinson, [agm1985]), roughly four construc-

145

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 146

tion principles were investigated and mutually interrelated: The first one is that of
partial-meet revision going back to AGM [agm1985]. The result is calculated by
considering maximal subsets of the belief set consistent with the trigger and then in-
tersecting a selection of them (hence the name partial-meet). Another construction
principle (applied mainly to belief bases) uses kernels, i.e., minimal sets of inconsis-
tencies, in order to guide the contraction/revision. The third principle rests on rank-
ing sentences w.r.t. an epistemic entrenchment relation. And the last construction
principle approaches revision purely semantically, considering only possible worlds
or more specifically, models, for the KB and the trigger, taking into consideration
relations (orderings) on the possible worlds to guide the revision. Knowledge-base
revision falls into this last category.

For belief-revision operators relying on any of the construction principles above,
the incompatibility between the KB and the trigger is explained with previously
obtained false information in the KB. Therefore, the elimination of formulae in
the knowledge base is an adequate means. In contrast, if the diagnosis for the
incompatibility is not false information but ambiguous use of symbols, a different
strategy and a corresponding construction principle seems more appropriate. As an
example, consider an integration scenario where an ontology from an online library
system (trigger) has to be integrated into an ontology of another online library
system (the knowledge base). Here one faces the problem of ambiguous use of
symbols. For example, the term “article” may be used in one library system for
all entities that are published in the proceedings of a conference or in a journal,
and in the other, “article” may stand for entities published in journals only. So one
reading of “article” has to be reinterpreted such that conflicts due to ambiguity are
resolved and such that the different readings are interrelated in a reasonable way.
This idea of interrelating different readings is the core of semantic integration with
semantic mappings, in particular, using bridging axioms [noy04semantic]. In the
online library example, one would state a bridging axiom that states one reading of
“article” is contained in the other reading.

The properties of reinterpretation heavily depend on the types of bridging axioms
that one is going to allow to guide the reinterpretation. Choosing different classes
of bridging axioms leads to different classes of reinterpretation operators. In the
example above, allowing only equivalence (in propositional logic: bi-implication)
may lead to a loss of relations between the different readings of “article” whereas

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 147

a use of subsumption (in propositional logic: implication) may preserve relevant
relations between the readings.

In this chapter I report on results for knowledge-base revision relying on reinter-
pretation—with a particular focus on representational aspects. For one class of
revision operators based on reinterpretation, namely those using implications as
bridging axioms, a representation theorem can be proved (see Section 7.3): There
is a set of axioms—usually called postulates in the belief-revision community—that
models exactly this class of reinterpretation operators. So, the represented class of
structures are just the revision operators fulfilling the postulates and the represent-
ing class of structures is the same class, constructed with implications as bridging
axioms.

Finding the right set of postulates is non-trivial due to the specific symbol- (and
not sentence-) oriented construction principle for reinterpretation operators. When
a symbol is reinterpreted, it is reinterpreted uniformly in the KB. Whereas classical
belief revision eliminates only those sentences in the KB which are identified as
culprits for an inconsistency, reinterpretation amounts to eliminating a whole bunch
of formulae of the KB, namely those containing the reinterpreted symbol. In order
to capture this uniformity condition, the main idea is to represent the KB by its
most atomic components (formally: prime implicates)—thereby approximating the
symbolic level by sentences as good as possible. Then, the effects of the implication-
based operators are described by uniform closure conditions on the prime implicates.

As mentioned in the introductory chapter, it may be the case that there is not
only one interesting construction principle for a set of axioms but more than one.
And it is quite useful and instructive to consider different construction principles
for the same operator because one may have additional or other properties not
shared by the other system, say, one of them might be more feasible than the other,
or might be better suited for implementation etc. In fact, regarding the point
of implementability this chapter gives an alternative representation for a class of
operators based on reinterpretation. The construction principle for defining this
class of operators requires the construction of possibly infinite sets of sentences,
which makes a direct implementation impossible. But, as shown below, it is possible
to describe the class of operators equivalently by finite operators that are more
appropriate for implementation means (see Theorem 7.7): Instead of referring to
bridging axioms, the construction relies on flipping polarities of literals in the KB.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 148

The last point regarding the multiplicity of different constructions is exploited
even further in this chapter. Though the reinterpretation operators are mainly built
to solve ambiguities, as those appearing in the integration scenarios illustrated above,
one can argue that the reinterpretation-based framework is sufficiently general to
capture also classical revision operators. This is an argument in favor of the fact
that the hidden structure of reinterpretation is a useful one. I report on achieved
results showing that it is possible to find appropriate classes of bridging axioms such
that some of the classical revision operators discussed in [eiter92onComplexity]
can be equally represented as reinterpretation operators: The revision operator of
Weber [weber86updating] can be represented by full-meet revision on the set of
bridging axioms that have the form of bi-implications. A natural variant of We-
ber revision can be represented as full-meet revision of bridging axioms having the
form of implications. The operator of Satoh [satoh88nonmonotonic] (= skep-
tical operator of [delgrande03consistency]) can be represented as partial-meet
revision of the disjunctive closure of bi-implications, and the operator of Borgida
[borgida85language] can be represented as partial-meet revision of bridging ax-
ioms that are either literals or contained in the disjunctive closure of bi-implications.

This chapter is structured as follows. Section 7.1 provides background on basic
notions from belief revision. Section 7.2 discusses the general idea of reinterpretation
and the class of reinterpretation operators investigated in this chapter. Section 7.3
gives a representation theorem for the implication-based revision operators. Section
7.4 introduces the subclass of model-based revision operators for which the equiva-
lence results with reinterpretation operators are proved in Section 7.5. The chapter
is concluded by a discussion of related work (Section 7.6) and a résumé (Section
7.7).

The content of this chapter is based on the papers [oezcep12KnowledgeBase,
oezcep17BeliefRevision]. The framework of reinterpretation was developed in
a series of papers [oezcep06ontology, oezcep08towards, oezcep10ontology,
oezcep16minimality, oezcep16NMR] in the context of my PhD thesis [oezcepPhdEnglisch].
But neither in the series of papers nor in the thesis I considered representational
aspects, which are at the core of this monograph.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 149

7.1 Preliminaries

For the results and the construction of reinterpretation operators investigated in this
chapter I draw on various constructions and results from classical revision theory
as initiated by Alchourron, Gaerdenfors and Makinson (AGM) [agm1985]. AGM’s
revision operators rest on a notion of logic in the polish tradition. A logic is rep-
resented as a binary tuple (L,Cn(·)) with a set of formulae L and a consequence
operator Cn(·). (Remember from Chapter 2 that a consequence operator is reflexive,
monotone and idempotent.) AGM assumes further that L contains all propositional
formulae and additionally requires the consequence operator to be supra-classical,
i.e., if α follows classically from X, then α ∈ Cn(X), fulfills the deduction theorem,
i.e., if some formula β follows from X and α, then α → β follows from X, and is
compact, i.e., if α follows from X, then it already follows from a finite subsets of X.

In all of the following considerations of this chapter the set of formulae L is the
set of sentences sent(P) for a set of propositional symbols P . And the consequence
operator Cn(·) is the one induced by the entailment relation |= for propositional
logic. Actually I will switch between the use of the consequence operator and the
use of the entailment relation, using the fact that α ∈ Cn(X) iff X |= α.

Next to this consequence operator I consider another operator that is a weakening
of classical propositional consequence: Some of the equivalence results in this chapter
heavily depend on the use of the disjunctive closure [hansson99textbook]. The
disjunctive closure B of a finite set of sentences B is defined as follows: B = {β1 ∨
· · · ∨ βn | βi ∈ B, n ∈ N \ {0}}.

Classical belief-revision functions à la AGM operate on belief sets, i.e., sets logi-
cally closed w.r.t. the consequence operator, and a formula which triggers the revi-
sion of the belief set into a new belief set. Some of the reinterpretation operators are
based on revising logically closed sets of bridging axioms. But note the difference:
In reinterpretation not the repository (belief-set, belief base or knowledge based) is
revised, but a closure of bridging axioms.

Reinterpretation operators are defined with dual remainder sets, which are simi-
lar to the concept of remainder sets by AGM [agm1985]. The notion of a dual
remainder set is a generalization that can be used to define revision operators
also for logics that do not allow for sentential negation. (See [oezcep06ontology,
oezcep08towards, oezcep10ontology, oezcep16minimality, oezcep16NMR]

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 150

for examples of applying the idea of reinterpretation for revising KBs in description
logic, where negation is a concept constructor and not a sentence constructor.)

As I am going to consider also the more general case of multiple revision, i.e.,
revision with sets Y of sentences as triggers, I define the following notions for this
general case. The special case of singletons Y = {α} covers the case of a trigger
that is a sentence α. The dual remainder sets modulo Y are defined as follows:

X ∈ B>Y iff X ⊆ B and X ∪ Y is consistent and

for all X ′ ⊆ B with X (X ′ the set X ′ ∪ Y is not consistent

Let B be an arbitrary set of sentences. An AGM-selection function γ for B is a
function γ : pow(B) −→ pow(B), such that for all sets of formulae Y the following
holds: 1. If B>Y 6= ∅, then ∅ 6= γ(B>Y) ⊆ B>Y ; 2. else γ(∅) = {B}.

With these notions one can define multiple partial-meet revision for arbitrary sets
of sentencesB, which are usually called belief bases (see, e.g., [hansson99textbook]).
Given any set B, a AGM-selection function γ for B, and any set Y of formulae, mul-
tiple partial-meet base revision is defined as:

B ∗γ Y =
⋂
γ(B>Y) ∪ Y

Revising with a single sentence α then is nothing else than revising with the singleton
{α}, i.e.: B ∗γ α = B ∗γ {α}. Two special cases of partial-meet revision result from
two instantiations of the selections function γ: If γ selects all of the sets, then the
revision is called full-meet revision and has the form B ∗Y = B ∗γ Y = ⋂

B>Y ∪Y .
If γ selects exactly one set, then the revision is called maxi-choice revision.

For the representation theorem of Section 7.3 I am going to set up a set of
postulates. These are motivated by postulates discussed for belief-base revision.
As the focus is on knowledge-base revision (where the syntactical representation of
the KB is not allowed to influence the revision) these postulates will be adapted in
quite a strong way. The adaptations will be discussed with reference to the following
postulates of classical belief-base revision.

(BR1) B ∗ α 6|= ⊥ if α 6|= ⊥.

(BR2) B ∗ α |= α .

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 151

(BR3) B ∗ α ⊆ B ∪ {α}.

(BR4) For all β ∈ B either B ∗ α |= β or B ∗ α |= ¬β.

(BR5) If for all B1 ⊆ B: B1 ∪ {α} |= ⊥ iff B1 ∪ {β} |= ⊥, then (B ∗ α) ∩ B =
(B ∗ β) ∩B.

Postulate (BR1) is the consistency postulate [agm1985]. It says that the revision
result has to be consistent in case the trigger α is consistent. Postulate (BR2) is
the success postulate ([gaerdenfors82rules]): The revision must be successful in
so far as α has to be in the revision result. (BR3) is called the inclusion postu-
late for belief-base revision [hansson99textbook]. The revision result of opera-
tors fulfilling it are bounded from above. Postulate (BR4) is the tenacity postulate
[gaerdenfors88knowledge]. It states that the revision result is complete with
respect to all formulae of B [gaerdenfors88knowledge]. Postulate (BR5) is the
logical uniformity postulate for belief-base operators [hansson93reversing]. It says
that the revision outcomes are determined by the subsets (in)consistent with the trig-
ger. The logical uniformity postulate generalizes the right extensionality postulate
for revision operators, which states that the revision outcomes of equivalent triggers
α, β lead to the same revision result: B ∗α = B ∗β if α ≡ β. In contrast to Hansson,
I specified the postulate as “logical” as I will use the notion of uniformity later on
in a different sense.

Reinterpretation operators are based on bridging axioms. Two classes of bridging
axioms used throughout this chapter are the set of bi-implications

Bimpl = {←→p | p ∈ P}

and the set of implications

Impl = {−→p ,←−p | p ∈ P}

As I am going to define quite a lot of change operators, I make the following
notational convention: All revision operators are denoted by ∗, possibly with super-
and subscripts. All reinterpretation operators are denoted by the symbol ◦, possibly
with super- and subscripts.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 152

7.2 Reinterpretation Operators

The general idea of applying a reinterpretation operator on a knowledge base B
and a trigger α is to trace back the conflict between B and the trigger α to an
ambiguous use of some of the common symbols. So, the idea for resolving the
conflict is to assume in the first place how the different uses of the symbols are
related, stipulating the relations explicitly as a set of bridging axioms BA, and then
applying a classical revision strategy on BA as the knowledge base to be revised.

Example 7.1. Assume that the sender of the trigger has a strong notion of article
defined to be those entities published in a journal. The sender of the trigger has
stored the information that some entity b is not an article in her KB because she
has acquired the knowledge that b is not published in a journal. Assume that
the information ¬Article(b) is represented in propositional logic by the literal α =
¬q. This bit of information α is sent to the holder of the KB B. The holder
of B has a weaker notion of article—defining them as entities published either in
the proceedings of a conference or in a journal. In her KB the same entity b is
stated to be an article. So B entails q. Now, a conflict resolution strategy is to
completely separate the readings of all symbols by renaming all the ones in B with
primed versions, resulting in an “internalized” KB B′. In particular, q becomes q′ in
the receiver’s KB. Then, guesses on the interrelations of the different readings are
postulated by bridging axioms. The type of reinterpretation depends on the class
of initial bridging axioms. So for example, considering bi-implications would lead
to stipulations of axioms p ↔ p′, actually stating that the reading of p and p′ is
the same. The resolution of the conflicts between B and α requires not to include
q ↔ q′, as this entails an inconsistency.

Considering more fine-grained sets of bridging axioms such as implications p→ p′

and p′ → p leads to more fine-grained solutions. In this example, the reinterpretation
result could contain q → q′ (articles as used in the trigger are articles as used in B)
but not q′ → q (articles in the sense of B are articles in the sense of α).

The following parameterized equation illustrates the general strategy for reinter-
pretation:

B ◦ α = BA ∗ (B′ ∪ {α})

The first parameter is the set of initial bridging axioms: BA contains sentences over

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 153

P ∪ P ′ relating the meaning of the symbols P (associated with the sender) with
those in P ′ (associated with the receiver). A very simple example of a bridging
axiom is the bi-implication p ↔ p′ stating that the reading of p in the knowledge
base is actually the same as the reading in the trigger. The trigger is the union of
the original trigger and the “internalized version” B′ of the original knowledge base
B. Concretely, here and in the following B′ is the outcome of substituting in every
sentence of B propositional symbols p with their primed variants p′. The second
parameter in the schema is a classical base-revision function ∗. In this paper, only
partial-meet revision on arbitrary finite KBs is considered as instance of ∗.

Technically, reinterpretation-based revision is similar to base-generated revi-
sion [hansson99textbook] which combines the benefits of belief-base revision and
belief-set revision, namely: the benefit of having a finite (and hence implementable)
resource and the benefit of syntax-insensitivity. The difference relies on the special
type of the generating base one uses for reinterpetation, namely a set of bridging
axioms. As the reinterpretation-based approach is not sentence-oriented but symbol-
oriented it can be applied to various logics such as description logics [oezcep10ontology].

Four different classes of reinterpretation operators fitting the above schema are
those based on bi-implications as bridging axioms and those based on implications,
both in turn considered per se or w.r.t. the disjunctive closure.

Definition 7.2. Let B be a knowledge base, α be a formula, and γ be a selection
function for Impl (Impl, Bimpl, Bimpl, resp.) and ∗γ be a partial-meet revision oper-
ator for Impl (Impl,Bimpl,Bimpl, resp.). 1. The implication-based, 2. the disjunc-
tively closed implication-based, 3. the bi-implication based, and 4. the disjunctively
closed bi-implication based reinterpretation operators are defined as follows

1. B ◦→γ α = Impl ∗γ (B′ ∪ {α})
2. B ◦→γ α = Impl ∗γ (B′ ∪ {α})
3. B ◦↔γ α = Bimpl ∗γ (B′ ∪ {α})
4. B ◦↔γ α = Bimpl ∗γ (B′ ∪ {α})

If γ is the identity function, then γ can be dropped and the resulting operators are
called skeptical reinterpretation operators (using the terminology of [delgrande03consistency]).
If γ is such that |γ(X)| = 1 for all X, then the induced operator is called a choice
reinterpretation operator.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 154

Another reinterpretation operator—which does not fit into the homogeneous
scheme of Definition 7.2 and hence is defined separately—is termed literal-supported
reinterpretation operator. It uses the notion of a bridging axiom in a very tolerant
way. Concretely, the operator uses the following set of bridging axioms:

Bimpl+ = Bimpl ∪ {p′,¬p′ | p ∈ P}

So, next to the disjunctive closure of bi-implications it contains the disjunctive
closure of literals in the internal vocabulary.

Definition 7.3. Let γ be an AGM-selection function for Bimpl+ and ∗γ a mul-
tiple partial-meet revision operator for Bimpl+. Then define the literal-supported
reinterpretation operators by: B ◦litγ α = Bimpl+ ∗γ (B′ ∪ {α}).

Note that the result of all reinterpretation operators introduced above contain
bridging axioms and hence are not subsets of sent(P) but subsets of sent(P ∪ P ′).
Accordingly, reinterpretation operators are not genuine revision operators. This is
prima facie not an essential problem: For any reinterpretation operator ◦ a corre-
sponding revision ∗◦ operator is definable by restricting the outcome to the vocab-
ulary P of the sender. But there are different ways to implement the restriction:
One extreme case is to delete from the result all sentences that contain at least one
internal symbol (i.e. a symbol from P ′). Technically, this amounts to the definition
B ∗◦ α = (B ◦ α) ∩ sent(P). On the other extreme is the solution that, first, one
closes the resulting set w.r.t. the consequence operator and only afterwards one does
the restriction, technically: B ∗◦α = CnP(B ◦α) = CnP∪P ′(B ◦α)∩ sent(P). And of
course, there are even further possibilities when considering other closure operators.

Because of these possibilities, I decided to stick to the distinction between rein-
terpretation operators and revision operators and just compare them w.r.t. the con-
sequences in the public vocabulary P . Equivalence result w.r.t. the consequences in
the public vocabulary are just the contents of Section 7.5. In that section I show
that reinterpretation operators are expressive enough to capture classical revision
operators. This means actually that for a given revision operators ∗ one can find a
reinterpretation operator ◦∗ such that for all B and α the equivalence B∗α ≡P B◦∗α
holds. This equivalence can equally be expressed as JB ∗ αK = JCnP(B ◦∗ α)K.

It should be stressed already here that all reinterpretation operators considered
in this chapter are motivated by a specific integration scenario such as the one dis-

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 155

cussed in the example above on online library systems: The information in the KB
and that in the trigger are over the same domain. There is trust in the informa-
tion stemming from the sender of the trigger and there is a clear evidence that the
symbols in the KB and in the trigger are strongly related—though they still may
differ. This is the reason why, in this chapter, only special kinds of bridging ax-
ioms are considered where one reading p is related to another syntactically similar
reading p′. Clearly, one can consider further bridging axioms that go beyond the
resolution of ambiguities. For example, one may consider also bridging axioms that
relate synonymous symbols (say “beverage” and “drink”). But nothing prevents the
general reinterpretation framework from using these kinds of bridging axioms. Of
course, what is required then is a knowledge engineering step (based on heuristics,
say) regarding the potential conflicts in a given integration scenario in order to find
an appropriate initial set of bridging axioms.

The idea of reinterpretation, as developed in [oezcepPhdEnglisch] was not
completely new. It was used implicitly in the operators of Delgrande and Schaub
(DS) [delgrande03consistency], but not from the perspective of disambiguating
symbols, rather using the bridging axioms as helper axioms for revision. Moreover,
though the conflict resolution in DS revision is similar to reinterpretation it is not
the same. Due to the implicit use of reinterpretation, I give the definitions of the
revision operators of DS already in this section. Other relevant revision operators
are defined in Section 7.4

DS revision operators are defined with the notion of a belief-change extension.
I describe here only their general framework for revision and not that of parallel
revision and contraction in a belief change scenario.

Definition 7.4. [delgrande03consistency] Given B and α, a belief-change exten-
sion, for short: a bc extension, is defined as a set of the form CnP(B′ ∪{α}∪Bimi)
where Bimi ∈ Bimpl>(B′ ∪ {α}). If no such Bimi exists, then sent(P) is the only
belief-change extension. The family of all belief-change extensions is denoted by
(Ei)i∈I .

A DS-selection function c is defined for I as c(i) ∈ I. So it corresponds to
AGM-selection functions that select exactly one element.

Based on these notions, choice revision ∗cDS, which selects exactly one bc exten-
sion, and skeptical revision, which selects all bc extensions, can be defined.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 156

Definition 7.5. [delgrande03consistency] Given a KBB, a formula α and (Ei)i∈I
the set of all bc extensions and a selection function over I with c(I) = k, choice
revision ∗cDS and skeptical revision ∗DS are defined as follows:

B ∗cDS α = Ek(for c(I) = k) and B ∗DS α =
⋂
i∈I
Ei

The idea of using bc extensions can also be used for other sets than bi-implications.
This may result in the following definitions as described in [oezcep12KnowledgeBase].
A set CnP(B′∪{α}∪X) is an implication-based bc extension iffX ∈ Impl>(B′∪{α}).
Let (Imi)i∈I be the set of all implication-based consistent bc extensions for B and
α and c be a selection function for I with c(I) = k. The new operators are defined
as follows:

Definition 7.6. Implication-based choice revision ∗c,→DS and implication-based skep-
tical revision ∗→DS are defined by:

B ∗c,→DS α = Imk (for c(I) = k) and B ∗→DS α =
⋂
i∈I

Imi

The implication-based choice-revision operator ∗c,→DS is the one which is in the
main focus of this chapter. From a representational view it can be characterized in
three ways: It can be characterized by a set of postulates as shown in Section 7.3.
It can equivalently be characterized by an implication-based choice reinterpretation
operator ◦→γ as shown in Proposition 7.22. A last form of representation is given
in the following theorem and concerns the fact that the result of implication-based
choice revision is an infinite set. It can be shown that the infinity of the result is a
mere technicality: There is an operator that gives a finite result and is equivalent to
implication-based choice revision. In order to state and prove this result, I have to
define the relevant notion of partial flipping here, which is an adaptation of the flip-
ping operator used in [delgrande03consistency] for proving a finite representation
result for bi-implication based revision.

For ease of definition I assume that only connectors ∧,∨ and ¬ appear in the
knowledge base (otherwise just recompile the KB equivalently). An occurrence of
a propositional symbol is syntactically positive iff it occurs in the scope of an even
number of negation symbols, otherwise it is syntactically negative. Let (Imi)i∈I be
the family of bc extensions for B and α, and let Imk be an implication-based bc

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 157

extension chosen by the selection function, c(I) = k. The result of partial flipping
over B, for short dBe→k , is defined as follows: If p → p′ /∈ Imk, then switch the
polarity of the negative occurrences of p in ∧

B (by adding ¬ in front of these
occurrences). If p′ → p /∈ Imk, then switch the polarity of the positive occurrences
of p in ∧B. Let dBe→ = ∨

i∈IdBe→i .
With these definitions one can state the finite representability theorem.

Theorem 7.7 ([oezcep12KnowledgeBase]). B ∗c,→DS α has the same models as
dBe→c ∧ α and B ∗→DS α has the same models as dBe→ ∧ α.

Proof. See p. 201.

7.3 A Representation Theorem for Implication-
Based Choice Revision

This section develops the theory that is necessary to yield a representation theorem
for implication-based choice-revision operators ∗→DS.

The main distinctive feature of Delgrande’s and Schaub’s operators ∗cDS, ∗DS as
well as of ∗c,→DS , ∗→DS is that these are defined on finite sets B of formulae as left
argument, but do not depend on the specific representation of B, i.e., they are
knowledge-base revision operators [dalal1988investigations]. My strategy is to
adapt known postulates for belief-base revision (see preliminaries of this chapter) to
knowledge-base revision. For this, one has to replace all references to the set B and
its subsets by syntax-insensitive concepts.

The key for the adaptation is the use of prime implicates entailed by the knowl-
edge base B. Roughly, prime implicates are the most atomic clauses entailed by B.
In the following subsection I recapitulate the definition of prime implicates prime(B)
for a knowledge base B and restate the fact that B is equivalent to prime(B) (Propo-
sition 7.8).

A second adaptation concerns the uniformity of the operators ∗cDS, ∗DS as well
of the operators ∗c,→DS , ∗→DS. The conflicts between B and the trigger α are handled
on the level of symbols and not on the level of formulae. Therefore, in order to
mirror this effect on the prime implicates one has to impose a uniformity condition.
This will be done implicitly by switching the perspective even further from prime
implicates to uniform sets of prime implicates (see Definition 7.10 below).

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 158

7.3.1 Prime Implicates and Uniform Sets

Let P be a set of propositional symbols and S ⊆ P . Let α ∈ sent(P). Let α be
a non-tautological formula. The set primeS(α) of prime implicates of α over S is
defined in the following way.

primeS(α) = {β ∈ clauseS(α) | ∅ 6|= β and β has no

proper subclause in clauseS(α)}

So, the set of prime implicates of α w.r.t. S is the set of all minimal clauses in
sent(S) following from α. For tautological formulae α let primeS(α) = {p ∨ ¬p},
where p is the first propositional symbol occurring in α with respect to a fixed order
of P . For knowledge bases let primeS(B) = primeS(∧B). If S is clear from the
context, then I just write prime(α). The conjunction of all formulae in prime(α) is
called the Dual Blake Canonical Form (DBCF) of α [armstrong98two].1

Clearly, the set of prime implicates of a knowledge base B is equivalent to B
itself. In the following propositions I use the abbreviation prime(·) = primeP(·) and
assume that B,B1, B2 ⊆ sent(P).

Proposition 7.8. For knowledge bases B: prime(B) ≡ B.

Proof. See p. 203.

An additional simple fact is given in the following proposition. It justifies the
perspective on the set of prime implicates as a canonical representation for the
knowledge contained in the knowledge base.

Proposition 7.9. If B1 ≡ B2, then prime(B1) = prime(B2).

Proof. See p. 203.

The notion of uniform sets is introduced in order to capture the conflict reso-
lution strategy by the implication based revision operators. If, e.g., the bridging
axiom p′ → p is eliminated in the conflict resolution process, then formulae of the
knowledge base B, in which p occurs positively, are not preserved in the revision
result. In general, if a set of implication-based bridging axioms Im is given, then

1The definition of prime implicates according to [armstrong98two] does not explicitly exclude
tautologies. But their examples do not contain tautologies. Therefore I excluded tautological
clauses, too.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 159

B′ ∪ Im preserves a subset of prime implicates of B which fulfills some closure con-
dition concerning the polarities of symbols. These sets of prime implicates can be
characterized as uniform sets according to the following definition.

Definition 7.10. Let B ⊆ sent(P) be a knowledge base. A set X ⊆ prime(B) is
called uniform w.r.t. B and implications, X ∈ U Impl(B) for short, iff the following
closure condition holds: If pr ∈ prime(B) is such that (a) symb(pr) ⊆ symb(X) and
(b) for all symbols p in pr there is a prp ∈ X that contains p in the same polarity,
then pr is contained in X, i.e., pr ∈ X.

Example 7.11. Let B = {p ∨ q, p ∨ r ∨ s, r ∨ t, s ∨ u}. Then prime(B) = B.
Now, among all subsets X ⊆ prime(B) only the set Y := {p ∨ q, r ∨ t, s ∨ u}
is not uniform as it would have to contain p ∨ r ∨ s, too. Formally, U Impl(B) =
pow(prime(B))\{{p∨ q, r∨ t, s∨u}}. Note that only in case of the non-uniform set
Y one cannot find a set of implication based hypotheses Im such that Y is exactly
the set of prime implicates of B which are preserved by B′ ∪ Im.

The following proposition on the closure of the set of uniform sets is an immediate
consequence of their definition.

Proposition 7.12. For all X, Y ∈ U Impl(B) it is the case that X ∩ Y ∈ U Impl(B).

The union of uniform sets may not be uniform again. So let X ∪′ Y denote the
smallest uniform set containing the uniform sets X and Y .

The interaction of uniform sets with implications, which will be used for the rep-
resentation theorem below, is stated in the following propositions. The first propo-
sition states how prime implicates interact with uniform substitutions. Uniform
substitutions ρ are (partial) functions from propositional symbols to propositional
formulae. ρ(α) or αρ results from α by substituting for all propositional symbols p
all (!) its occurrences in α by the formula ρ(p).)

Proposition 7.13. Let P and P ′ be disjoint sets of propositional symbols. Let
B be a knowledge base and ρ be a uniform injective substitution for some subset
S = {p1, . . . , pn} ⊆ P such that ρ(S) = {p′1, . . . , p′n} ⊆ P ′.
Then: primeP∪P ′(Bρ) ≡P primeP(Bρ).

Proof. See p. 203.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 160

The interaction of a set of implications Im with prime implicates is captured in
the following proposition. It states that all prime implicates of B′ ∪ Im that do not
contain primed symbols are prime implicates of B.

Proposition 7.14. Let P and P ′ be disjoint sets of propositional symbols. Let B be a
knowledge base and ρ be a uniform injective substitution for a set S = {p1, . . . , pn} ⊆
P such that ρ(S) = {p′1, . . . , p′n} ⊆ P and let Im be a set of implication based
hypotheses containing at most primed symbols of ρ(S).
Then: primeP(Bρ ∪ Im) ⊆ primeP(B).

Proof. See p. 204.

As a corollary to the propositions, one can deduce the main result of this sub-
section, Theorem 7.15. This theorem is a proper justification for Definition 7.10—in
the sense that Definition 7.10 really captures the intended concept. The theorem
shows that for all B, Im one can find a uniform set X that is equivalent to B′ ∪ Im.
The set X exactly describes the collection of logical atoms (prime implicates) of
the receiver’s KB B that are preserved after dissociating the name spaces of the
sender and receiver (step from B to B′) and adding hypotheses on the semantical
relatedness in Im.

Theorem 7.15. Let P and P ′ be disjoint sets of propositional symbols. Let B be
a knowledge base and ρ be a uniform injective substitution for some subset S =
{p1, . . . , pn} ⊆ P such that ρ(S) = {p′1, . . . , p′n} ⊆ P and let Im be a set of implica-
tion based hypotheses containing at most primed symbols of ρ(S).
Then there is a uniform set X ∈ U Impl(B) such that: B′ ∪ Im ≡P X.

Proof. See p. 207.

7.3.2 Postulates for Implication-Based Choice Revision

The following postulates for revision operators ∗ are adapted variants of the postu-
lates mentioned in this chapter’s section on preliminaries (Section 7.1). They are
exactly the ones that characterize the implication-based choice revision operators.

(R1) B ∗ α 6|= ⊥ if B 6|= ⊥ and α 6|= ⊥.

(R2) B ∗ α |= α.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 161

(R3) There is a set H ⊆ U Impl(B) such that B ∗α ≡ ∧⋃′H ∧α or B ∗α ≡ ∧⋃′H.

(R4) For all X ∈ U Impl(B) either B ∗ α |= X or B ∗ α |= ¬∧X.

(R5) For all Y ⊆ U Impl(B): If ⋃′ Y ∪ {α} |= ⊥ iff ⋃′ Y ∪ {β} |= ⊥, then {X ∈
U Impl(B) | B ∗ α |= X} = {X ∈ U Impl(B) | B ∗ β |= X}.

Postulate (R1) can be termed the postulate of weak consistency. It says that the
revision result has to be consistent (satisfiable) in case both the trigger α and the
knowledge base B are consistent. The consistency postulate for belief-base revision
(BR1) is stronger as it requires consistency also in the case where only α is consistent.
Postulate (R2) is a weak success postulate: The revision must be successful in so far
as the result has to entail α. It is weaker than the postulate (BR2) for belief bases
as the latter requires that the trigger is directly contained in the revision result.
(R3) is an adapted version of the inclusion postulate for belief-base revision (BR3).
The classical inclusion postulate can be rewritten as: There is a B1 ⊆ B such that
B ∗ α = B1 ∪ {α} or B ∗ α = B1. In (R3) B is replaced by the set of uniform sets
w.r.t. B, and set identity is shifted to equivalence. Note that due to the definition of
the ∪′-closure operator the set ⋃′H ′ is a uniform set and hence the postulate (R3)
can be reformulated as:

(R3’) There is a set H ∈ U Impl(B) such that B ∗ α ≡ ∧H ∧ α or B ∗ α ≡ ∧H.

Postulate (R4) can be called uniform tenacity. It is a very strong postulate, which
states that all uniform sets w.r.t. B either follow from the result or are falsified.
This postulate will capture the maximality of the operator ∗c,→DS . Postulate (R5) is
an adaptation of the logical uniformity postulate for belief-base operators (BR5). It
says that the revision outcomes w.r.t. the revision operator ∗ are determined by the
uniform sets entailed by the revision result.

As the representation theorem below shows, postulates (R1)–(R5) are sufficient
to represent the class of implication-based choice revision operators modulo equiv-
alence.

Theorem 7.16. A revision operator ∗ fulfills the postulates (R1)–(R5) iff it can be
equivalently described as ∗c,→DS for some selection function c.

Proof. See p. 207.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 162

7.4 Model-Based Belief Revision

The purpose of this and the next section is to demonstrate that some well-known
classical belief-revision operators can be simulated by reinterpretation operators. In
fact, all of the revision operators for which a simulation by reinterpretation operators
is given in the next section, can be described as model-based belief revision operators.
These are going to be introduced in this section.

The main idea of model-based belief revision is to let the revision be driven only
by the models of the knowledge base and of the trigger. With this approach the
concrete syntactical representation of the belief base becomes irrelevant and hence
model-based revision can be a proper means to implement knowledge base operators:
Given a KB B, consider its models JBK, apply the model-based revision on it and
then (hopefully) one can finitely represent the outcome again as a new KB.

Though quite many different model-based operators exist, the core idea for
the revision is the same: The models of the revision are those models of the
trigger that are minimal w.r.t. some appropriate (pre-, partial, or total) order
or, more specifically, a distance function. As shown by Katsuno and Mendelzon
[katsuno92propositional], there are strong connections between revision opera-
tors based on orders (of a specific kind) and the postulates they fulfill.

All model-based operators that are in the focus of this paper are defined on the
base of minimal difference between models of the knowledge base and the trigger.
Minimal difference in turn is explicated by using—in some or other form—the sym-
metric difference of models represented as sets. The symmetric difference for any
pair of sets A,B is defined as A∆B = A\B∪B \A. Let X1, X2 be sets of sentences.
∆min(X1, X2) is the set of inclusion-minimal symmetric differences between models
of X1 and X2.

∆min(X1, X2) = min⊆{I∆J | I ∈ JX1K, J ∈ JX2K}

If one considers a set of sentences X1 with exactly one model I in the first
argument, then one gets as special case ∆min(I, X2) which is the set of inclusion-
minimal symmetric differences between I and models of X2. (Remember that I is
identified with the set of proposition symbols that are true according to I).

∆min(I, X2) = min⊆{I∆J | J ∈ JX2K}

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 163

The set Ω(X1, X2) describes those propositional variables that are involved in a
minimal difference between a model of X1 and a model of X2.

Ω(X1, X2) =
⋃

∆min(X1, X2)

In the symmetric difference operator ∆, information regarding the origins of the ele-
ments is lost. This loss is mitigated within the following non-commutative definition
of the symmetric difference: ∆±(A,B) = (A \ B,B \ A). For any set of sentences
X1, X2 define

∆±(X1, X2) = {(I \ J, J \ I) | I ∈ JX1K, J ∈ JX2K}

Now consider a subset of these sets which are minimal w.r.t. the cartesian product
order <⊆×⊆ defined as usual by (A,B) <⊆×⊆ (C,D) iff A ⊆ C and B ⊆ D.

∆min
± (X1, X2) = min<⊆×⊆(∆±(X1, X2))

The adapted operator for Ω(·, ·) is denoted Ω±(X1, X2) which is defined as the pair of
two sets: the first (second) argument consists of all propositional variables contained
in the first (second) argument of some pair in ∆min

± (X1, X2).

Ω±(X1, X2) =
(⋃
{Y1 | ∃Y2 : (Y1, Y2) ∈ ∆min

± (X1, X2)},⋃
{Y2 | ∃Y1 : (Y1, Y2) ∈ ∆min

± (X1, X2)}
)

The Satoh revision operator ∗S [satoh88nonmonotonic] defines the models of
the revision result as those models of the trigger for which there is a model of the
knowledge base with minimal symmetric difference.

JB ∗S αK = {I ∈ JαK | There is J ∈ JBK with I∆J ∈ ∆min(B,α)}

A natural weakening of this operator is the following one, which is coined weak Satoh
revision here.

JB ∗wkS αK = {I ∈ JαK | There is J ∈ JBK with I∆±J ∈ ∆min
± (B,α)}

Note that in both Satoh revision operators, minimality concerns the whole set

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 164

of models of the knowledge base. In contrast to this, the operator of Borgida
[borgida85language] considers for each model of the knowledge base the mod-
els of the trigger that are minimally distant. Borgida revision is defined as follows:
If B ∪ {α} is consistent, then JB ∗B αK = JB ∪ {α}K. Otherwise,

JB ∗B αK = ⋃
I∈JBK{J ∈ JαK | I∆J ∈ ∆min(I, {α})}

The operator of Weber [weber86updating] puts all those models of the trigger
into the revision result for which there is a knowledge base model differing at most
in the propositional variables involved in a minimal difference. In the trivial case
where B ∪ {α} is consistent the definition is JB ∗B αK = JB ∪ {α}K. Else:

JB ∗W αK = {J ∈ JαK | There is I ∈ JBK s.t. I \ Ω(B,α) = J \ Ω(B,α)}

A natural variant of the Weber operator uses the non-commutative definition
of symmetric difference. In lack of a better name this operator is coined the weak
Weber operator.

JB ∗wkW αK = {J ∈ JαK | There is I ∈ JBK s.t.

I \ pr1(Ω±(B,α)) = J \ pr2(Ω±(B,α))}

7.5 Equivalence Results

The first equivalence result states that Satoh revision can be represented by disjunc-
tively closed bi-implication-based reinterpretation operators ◦↔γ . The proof uses the
known fact (re-stated below) that Satoh revision is nothing else than skeptical DS
revision.

Theorem 7.17 ([delgrande03consistency], Corollary 4.8). Skeptical DS revision
is Satoh revision:

JB ∗DS αK = JB ∗S αK

For skeptical DS revision, due to its construction with bridging axioms, it can
be shown that it is represented by an operator ◦↔γ with a simple selection function
γ.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 165

Theorem 7.18. Skeptical DS revision ∗DS can be represented by an operator ◦↔γ
where γ is defined independently of B (and α). That is, there is a selection function
γ such that for any KB B and formula α the following holds:

JB ∗DS αK = JCnP(B ◦↔γ α)K

Here the function γ = γ1 is defined as

γ1(H) = { X ∈ H | X ∩ Bimpl is maximal in {X ′ ∩ Bimpl | X ′ ∈ H} }

Proof. See p. 164.

As a corollary one gets:

Theorem 7.19. Satoh revision can be simulated by disjunctively closed bi-implica-
tion-based reinterpretation operators ◦↔γ : There is a selection function γ s.t. for any
KB B and formula α:

JB ∗S αK = JCnP(B ◦↔γ α)K

Here the function γ = γ1 is defined as

γ1(H) = { X ∈ H | X ∩ Bimpl is maximal in {X ′ ∩ Bimpl | X ′ ∈ H} }

In case of DS choice revision ∗cDS the outcome depends on a selection function
c. Hence, one can mimic such an operator only by a reinterpretation operator that
uses a maxi-choice AGM selection function (depending on c).

Proposition 7.20. Let B a KB, α a trigger and c be a selection function for the
bc extensions over B and α. There is a maxichoice selection function γc for Bimpl
such that.

JB ∗cDS αK = JCnP(B ◦↔γ α)K

Proof. See p. 209.

Similar observations as for the theorems above also lead to the representation
of implication-based skeptical DS revision and weak Satoh revision by disjunctively
closed implication-based reinterpretation.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 166

Theorem 7.21. Implication-based skeptical DS revision and weak Satoh revision
can be simulated by disjunctively closed implication-based reinterpretation operators
◦→γ : There is a selection function γ such that for any KB B and formula α it holds
that

JB ∗→DS αK = JB ∗wkS αK = JCnP(B ◦→γ α)K

Here the function γ = γ2 is defined as

γ2(H) = { X ∈ H | X ∩ Impl is maximal in {X ′ ∩ Impl | X ′ ∈ H} }

Proof. See p. 210

Also for the choice variant a representation by the corresponding reinterpretation
operator can be proved.

Proposition 7.22. Let B a KB, α a trigger and c be a selection function for the
implication-based bc extensions over B and α. There is a maxichoice selection func-
tion γc for Impl such that:

JB ∗c,→DS αK = JCnP(Impl ∗γ (B′ ∪ {α}))K

Proof. As above.

For the proof of the theorem it is again sufficient to consider the proof for DS re-
vision because it can be shown that skeptical implication-based revision ∗→DS actually
is the same as weak Satoh revision.

Theorem 7.23. JB ∗→DS αK = JB ∗wkS αK

Proof. See p. 210.

Weber revision is quite similar to Satoh, but it is more tolerant w.r.t. the models
to be taken into account in the revision result. Dually, this tolerance w.r.t. the
models means more skepticism regarding the sentences to keep in the revision result.
Actually, this is reflected in the following theorem which says that Weber revision can
be simulated by bi-implication-based reinterpretation: That is, in contrast to Satoh
revision, the set of bi-implications is not exploited further w.r.t. logical consequences
within the disjunctive closure. Moreover, as there is no additional closure of the

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 167

bridging axioms, even full meet revision can be used, i.e., γ can be chosen as the
identity function.

Theorem 7.24. Weber revision can be represented by skeptical bi-implication-based
reinterpretation ◦Bimpl, i.e., for any KB B and formula α:

JB ∗W αK = JCnP(B ◦↔ α)K

Proof. See p. 210.

With a similar argument one can show:

Theorem 7.25. The weak Weber operator can be represented by skeptical implication-
based reinterpretation.

Proof. See p. 211.

Borgida revision is special in the sense that it considers the minimal symmetrical
difference of models not globally, but locally for each model of the knowledge base.
This model dependency can be simulated by literal-supported reinterpretation which
allows the use of arbitrary primed literals as bridging axioms and thus allows the
construction of arbitrary models of the knowledge base.

Theorem 7.26. Borgida revision can be represented by literal-supported reinterpre-
tation: There is γ for Bimpl+ such that for any KB B and formula α:

JB ∗B αK = JCnP(B ◦litγ α)K

Proof. See p. 211

7.6 Related Work

The reinterpretation framework uses bridging axioms to guide the resolution of con-
flicts. The most related work is that of Delgrande and Schaub [delgrande03consistency].
But, additionally, there is a great deal of work in the general area of ontology change
with which the reinterpretation framework presented in this chapter shares the main
motivations. A classification of different forms of ontology-change operators with
pointers to the literature is given by Flouris and colleagues [flouris08ontology].

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 168

Contributions to ontology mapping, ontology alignment, and mapping revision [meilicke08reasoning,
qi09conflictBased] are related to my approach in so far as they investigate ade-
quate constructions of semantic mappings, which are generalizations of bridging ax-
ioms. A more recent approach for mapping management in the paradigm of OBDA
is given in [lembo15mapping].

Approaches for revising ontologies represented in description logics cannot rely
on the general AGM strategy, as the consequence operator over DLs does not have
the required properties (such as the deduction property) [flouris05applying] so
that different strategies are required. More recent approaches to ontology revision
can be found in [ribeiro14Minimal, benferhat14prioritized].

The reinterpretation approach is symbol-oriented. A different symbol-oriented
approach is described by Lang and Marquis [lang10reasoning]. Their revision op-
erators are not based on bridging axioms but use the concept of forgetting [Lin94forgetit].
As exemplified by the Weber operator [weber86updating] (see Section 7.4), there
are strong connections between these approaches.

The notion of a prime implicate is used also in the approaches of [pagnucco06knowledge,
zhuang07implementing, bienvenu08prime]. In contrast to the approach of this
chapter, all the approaches do not use prime implicates in the formulation of the
postulates but (only) define new belief-revision operators based on prime implicates
and show that they fulfill some classical postulates.

7.7 Résumé

This chapter provided an investigation of reinterpretation operators and the induced
knowledge-base operators from the representational perspective. Next to a classical
representation theorem with postulates I considered also mutual simulations of oper-
ators, in particular showing, first, that operators with infinite revision results can be
presented by operators with finite results and, second, that many classical revision
operators can be simulated by reinterpretation operators. The latter is an argument
in favor of the generality of reinterpretation: Though all reinterpretation operators
have been developed mainly for ontology-integration scenarios, they provide a suf-
ficiently general framework for investigating classical belief-revision operators—at
least, this has been shown for five classical belief-revision operators that are defined
on purely semantical grounds.

CHAPTER 7. REPRESENTATION FOR BELIEF REVISION 169

Though the logic considered here was propositional logic, the symbol-oriented
approach of reinterpretation lends itself for applications over knowledge bases repre-
sented in more expressive logics such as description logics or predicate logic (see, e.g.,
my contributions [oezcep06ontology, oezcep08towards, oezcep10ontology,
oezcep16minimality, oezcep16NMR]). The general idea is to state bridging
axioms about the relations of the predicate symbols and constants in the differ-
ent name spaces by stating, e.g., the equivalence of the unary predicate symbol P ′

and P by ∀xP ′(x) ↔ P (x). Of course, the revision operators now become more
complex. Moreover, it cannot be guaranteed that the conflicts can be solved by
disambiguation—the knowledge bases of the sender and the receiver may be reinter-
pretation incompatible because they entail different cardinalities for their domains
[oezcep08towards]. An open question is whether the representation theorems can
be transferred to these logics. At least, the notion of uniform sets can also be defined
for predicate logics and its fragments—though the prime implicate concept may not
be purely semantical [oezcepPhdEnglisch].

A further research line is a systematic study of reinterpretation operators w.r.t.
the types of bridging axioms one is going to allow initially. As mentioned in the
text above, one could consider bridging axioms such as p′ ↔ q, which relate symbols
hypothesized to be synonyms. Using a set H of such creative hypothesis may induce
operators that are quite different from classical revision operators as the former may
not be conservative: B′ ∪ H may entail formulae β ∈ sent(P) that do not already
follow from B. Such creative behavior does not occur for bridging axioms H chosen
from Impl or Bimpl.

Also within this line of search one would set up criteria for genuine bridging
axioms: For example, the literals used as bridging axioms for the representation of
Borgida revision do not really bridge the meanings of symbols. In particular, the
question arises whether for more restricted classes of bridging axioms a representa-
tion of Borgida revision is possible.

Chapter 8

Conclusion

“A funny thing happened in the last few years. We began to lose the Closed World
Assumption.”1 These words from a blog on data-science issues summarizes the
situation of CS that motivated the research reported in this monograph. In various
applications of CS, the designer will have to accept that his formal specification
may have many models and—under these—many unintended models. This is even
true for the field of database systems, which is usually assumed to adhere to the
closed-world assumption, in contrast to the field of logic, which adheres to the
open-world assumption. A clear indication is the use of NULL values to handle
the incompleteness of data stored in DBs. Though the NULL value construct is
part of the SQL query standard, it is the most criticized one, mainly due to its
non-intuitive semantics [libkin16SQLs] which may easily lead to unintended DB
models and hence also to unintended query answers.

Of course, one might say that the NULL value construct is a sign of a glitch in
the SQL standard and that, in general, standardizations w.r.t. formal specifications
can be understood as well-meant efforts to tame the multiplicity of (unintended)
models. But unfortunately, even a totally worked-out standard cannot prevent the
undesirable development of diseased misuse of formal specifications adhering to this
standard. One example of such an unfortunate development can be termed “Im-
portitis”: Instead of designing a formal specification fitting the requirements, the
application designer imports freely available formal specifications—in many cases
without thinking about the consequences of imported axioms in this context. This

1Kurt Cagle: Data Science and the open world assumption, blog entry, http:
//www.datasciencecentral.com/profiles/blogs/data-modeling-and-the-open-
world-assumption (last access 14 July 2017)

170

http://www.datasciencecentral.com/profiles/blogs/data-modeling-and-the-open-world-assumption
http://www.datasciencecentral.com/profiles/blogs/data-modeling-and-the-open-world-assumption
http://www.datasciencecentral.com/profiles/blogs/data-modeling-and-the-open-world-assumption

CHAPTER 8. CONCLUSION 171

in turn may easily lead to formal specifications without any model or with many
unintended models.

Another example of such a development could be called “Annotationitis”: The
application designer uses formal specifications to annotate the entities of the domain
without really asking what to represent. Everything gets labelled, but it is not clear
to what ends. In this monograph I tried to argue for a methodological shift in that
the application designer should ask himself “What do I really want to represent, and
does the formal specification really represent it?”.

Having identified representation theorems as appropriate means for taming the
multiplicity of possible models of formal specifications, this monograph worked out
a representation framework and gave representation results for various CS appli-
cations. The representation definition that I used appears to be appropriate for
the applications considered in this monograph. One alleged weakness of my repre-
sentation definition is the semi-formality of the representation notion, in particular
w.r.t. the condition that states that the representing structures must be “easily con-
structible”. Of course, it is possible to formalize this term using some complexity
theoretic notion. For example, one might state that a set of representing objects is
easily constructible iff there exists a Turing Machine that enumerates all represent-
ing objects in some encoding using feasible time and space resources. But, actually,
the informality of my representation definition is necessary due to the overall aim
of supporting application designers in building only “intended models”: There is
the human component of “intentions” that make it hard to formalize “simplicity”
on purely complexity theoretical terms without incorporating cognitive aspects. By
the way, an analogous informality is inherent to the Church-Turning thesis stating
that all “intuitively” calculable problems can be calculated by Turing machines.

As explicated in the introduction, the overall goal of the research reported in this
monograph is to support application designers in building good formal specifications
for information systems. Inspecting the proofs of the representation results of this
monograph in detail, it becomes clear that there is no obvious way to mechanize the
process of representation. But in the end, this is what a company expects from a full
support tool for the application engineer: A system that (semi-)automatically builds,
analyzes, possibly completes and corrects formal specifications and “overviews” the
models of the formal specification by describing a class of representing models.

Of course, building for each individual information system its own support tool

CHAPTER 8. CONCLUSION 172

is a possible approach, but actually one is interested in general principles underlying
the individual support tools, or in other words: One is interested in (principles of)
a general-purpose support tool. And here machine learning (ML) enters the stage.
The following paragraph contains a speculative outlook on how the representation
framework developed in this monograph can be enhanced by ML methodology in
order to build such a support tool.

Machine learning investigates general algorithms for finding hypotheses (models)
fitting a sequence of training data and generalizing to all data as well as possible. In
the subfield of ML called Inductive Logic Programming (ILP) [muggleton91inductive],
the hypotheses are logical theories, mostly given as intensional rules, and the data
in the sequence are basic (extensional) facts. So, ILP seems to be a good starting
point for the task of generating formal specifications for an information system. The
application designer trains the ML algorithm with simple facts expressing the in-
tended behavior of the system by, say, the allowed input-output instances, and the
ML algorithm comes up with possible theories capturing this behavior. Of course
the ambitions must go further, as anticipated by the theoretical ambition under-
lying, e.g., Church’s synthesis problem2 [church57applications] or the practical
ambition of building a compiler that, given a specification in a high-level program-
ming language, produces highly efficient code fulfilling the specification (see, e.g.,
[schwartz86programming]). In ILP terms, the aim is not only learning inten-
sional rules for specifying the intended behavior of a system but also learning pos-
sible designs of information systems producing the behavior.

Clearly, this more ambitious task is not trivial, as this presupposes that one has
first ideas on possible parameters or—in machine learning terms—first ideas on the
possible hidden variables. Generally one has to come up with ideas on the relevant
features that have to be incorporated into the model. In logical terms the hidden
variables correspond to concepts and relations that are introduced to describe the
architecture of the information system—and not just the input-output behavior. So
the problem is to determine the feature space, i.e., to extract correct features to
specify data and hypotheses.

But, there is good news: Recent ML research comes up with solutions as devel-
oped, e.g., in deep learning [schmidhuber14deep] that enable automatic feature

2Given a formal specification φ(In,Out) for the input-output behavior find a concrete function
F such that φ(In, F (In))

CHAPTER 8. CONCLUSION 173

extraction. Clearly, the problem of automatic representation is not solved by a
straightforward application of ML methods: First of all, the logical setting is more
demanding due to the general relational structure of the models, which, prima fa-
cie is more complicated than the simple vector-structure with feature-attributes.
Secondly, representation in the sense of this monograph also requires identifying
representing models and finding mappings from other models to the representing
models. Hence, one has to extend the idea also to learning the set of potential
representing models.

Though speculative, above thoughts on using ML methods for automatic repre-
sentation with logical structures are not utopian because of the current trends and
developments in ML. First of all, it has been clear to the deep learning community
that finding correct features means finding the right representation—and so it is
not a pure coincidence that “feature learning” is sometimes also called “represen-
tation learning” as in the title of [bengio13representation]. So, whereas earlier
ML research was already satisfied by the promising outcomes of ML algorithms,
current ML research recognizes the necessity of understanding those outcomes (se-
mantically). But even more, recent research in the intersection of logic and machine
learning—sometimes mentioned under the buzz word “Data Science”—can be con-
sidered as a twofold attempt: Understanding and describing the results of machine
learning algorithms in a logical setting as done, e.g., in [grohe17learning], and, vice
versa, using logical constraints to guide or optimize machine learning algorithms, as
done, e.g., [deng14large-scale].

If it was not already clear before, this monograph might have convinced the
reader of the pre-eminent role that logic plays for CS. Acknowledging the importance
of logic, it is surprising to see that many academic curricula in CS pay barely
attention to logic—let alone to a smooth integration of logic with the subfields of
CS. Hence I would like to use the last paragraphs of the conclusion to make a plea
for a complete restructuring of CS curricula under the motto “Logic, Logic, and
Logic”3.

All students—not only master students but even more importantly: bachelor
students—should be trained as early as possible with logic and formal methods, not
only to get acquainted with the results produced in the discipline of logic but also
to get trained in necessary skills for formalizing own ideas, domains and information

3This is actually the title of a book [boolos99logic] by the logician J. Boolos.

CHAPTER 8. CONCLUSION 174

systems, for building models and using them, and in general for learning to speak,
think and argue precisely.

Classical themes such as syntax, semantics, calculi for propositional and first-
order logic should be the starting points laying the ground for advanced topics of
logic and for the treatise of other logics. For example, students should become
acquainted with the general ideas of finite model theory, descriptive complexity,
proof theory and with “computational” logics such as (existential) second order
modal logics, datalog, description logics, dynamic logic, temporal logic, probabilistic
logic—and this themes are usually not taught in mathematics courses.

In the other subfields of CS that are part of the curriculum the role of logics has
to be clearly worked out and, even more, logic has to be the thread. For example,
in a course for database systems one should stress the role of first-order logic as
query language rather than practicing SQL. On the other hand, the conception of
the logic courses should refer to concrete applications from CS such as those men-
tioned in the introduction of this monograph. Moreover, in order to strengthen the
trust in logic, students should be trained first in logical and functional program-
ming paradigms (with Prolog, answer set programming, DLV, Haskell, Lisp) before
becoming acquainted with the object-oriented paradigm.

Also for non-CS courses that are part of the curriculum a clear reference to CS
is required. Students should be guided to ask also in mathematics courses those
kinds of questions that a computer scientist is interested in. For this purpose early
programming exercises in non-CS courses may prove useful.

Appendix A

Proofs

Proofs for Chapter 2

Construction of cln(T)

I give details on the construction of cln(T). The finite closure cln(T) of the
negative inclusions axioms and the functionality axioms are (only) relevant for
checking the satisfiability of the ontology which can be tested by a simple FOL
query. With induction on the stepwise construction of the chase one can show
that can(O) is a model of the whole ontology O iff the negative inclusion axioms
and functionality axioms are in accordance with the original abox. The authors of
[calvanese09ontologies] define the negative closure cln(T) in order to capture all
possible conflicts [calvanese09ontologies]. I extend their definition of the nega-
tive closure to the logic DL-LiteuF ,R and reformulate the definition in an alternative
representation that fits better to the extensions cl⊥ that we will use in the proofs of
some propositions. Let B̄ be an abbreviation for B1 u · · · uBn.

1. All functionality axioms of T are in cln(T).

2. For all negative inclusions B̄ v ¬B ∈ T let B̄ uB v ⊥ ∈ cln(T).

3. If B̄ v B ∈ T and B uB′ v ⊥ ∈ cln(T), then B̄ uB′ v ⊥ ∈ cln(T).

4. If P1 v P2 ∈ T and ∃P2 u B̄ v ⊥ ∈ cln(T), then ∃P1 u B̄ v ⊥ ∈ cln(T).

5. If P1 v P2 ∈ T and ∃P−2 u B̄ v ⊥ ∈ cln(T), then ∃P−1 u B̄ v ⊥ ∈ cln(T).

175

APPENDIX A. PROOFS 176

6. Let X := {∃P v ¬∃P, ∃P− v ¬∃P−}.
If X ∩ cln(T) 6= ∅, then X ⊆ cln(T).

The FOL query for testing the satisfiability is built as the disjunction of boolean
queries qτ for every τ ∈ cln(T) in the following way: if τ = (functR) then qτ =
∃x, y, zR(x, y) ∧ R(x, z) ∧ y 6= z; if τ = A v ⊥, then qτ = ∃x.A(x). For the other
τ ∈ cln(T) the query qτ is defined similarly [calvanese09ontologies].

Proof of Proposition 2.2

Let αI = 1. Then (dnf(α))I = 1. Hence there is a dual clause kl in dnf(α) such
that klI = 1. By definition there is a subclause kl′ ⊆ kl in Θ′S(α). Therefore
(Θ′S(α))I = 1. If αI = 1 , then (αI)I = 1 and hence (ΘS(α))I = 1.

Proof of Proposition 2.3

Proof of “⊇”: Consequence of Prop. 2.2.
Proof of “⊆”: Let θ = ΘS. Let β /∈ CnP\S(θ(α)). Then there is an assignment I1

for ∨I∈Int(S) αv such that I1 |=
∨

I∈Int(S) αI and I1 |= ¬β. The first relation entails
that there is a I ∈ Int(S) such that I1 |= αI. Define a new interpretation I2 with
pI2 = pI for all p ∈ S and pI2 = pI1 for all other symbols. Then I2 |= ¬β and
I2 |= α, and hence β /∈ CnP\S(α).

Now let θ = Θ′S. We have to show: For all δ with symb(δ) ⊆ P \ S it is the case
that if α |= δ, then also θ(α) |= δ. This assertion is equivalent to the assertion that
for δ with symb(δ) ⊆ P \ S it is the case that if θ(α) ∪ {¬δ} has a model, α ∪ {¬δ}
has a model, too. Let I be a model of θ(α) ∪ {¬δ}. That means that there exists a
dual clause kl′ in θ(α) with (kl′)I = 1. In dnf(α) there is a dual clause kl, such that
substituting all literals of S in kl by > results in kl′. Let I′ be a modification of I
defined by: for all p /∈ S let pI′ = pI. For all p ∈ S let pI′ = 1 if p ∈ kl and pI′ = 0
if ¬p ∈ kl. (We may assume that not at the same time p,¬p ∈ kl.) Then klI′ = 1
and hence αI′ = 1 follows. Because I changes at most symbols in S, it is also the
case that (¬δ)I′ = 1.

APPENDIX A. PROOFS 177

Proofs for Chapter 3

Proof of Proposition 3.8

Ad (P1): By definition. Ad (P2): Holds because the upper-shift of b ∪ c contains
the upper shifts of b and c. Ad (P3): Left-to-right clear. For the other direction:
As a ∪ b has a non-empty intersection with the upper-shift of c, one of a or b must
have a non-empty intersection with the upper-shift of c, hence either srpc(a, c) or
srpc(b, c). Ad (P4): If a∩ b 6= ∅, then in particular both a and b are non-empty. The
assertion follows because the upper-shift of b contains b. Ad (P5): Follows from the
fact that there must be a proper set extension with an upshift of either a or X \ a.

Proof of Proposition 3.12

Clearly one has (b)⇑,pc ⊆ (b)⇑srpc : (b)⇑,pc contains all cells b′ on the same level as b for
which b •∼ b′, hence b′ ⊆ (b)⇑srpc . For the other direction assume for contradiction
that there is some a with b •∼ a and a 6⊆ (b)⇑,pc. Let a′ := a \ (b)⇑,pc. It holds that
sr(a′, a), as a′ ∩ a 6= ∅. Because of b •∼ a it follows that also sr(a′, b) contradicting
a′ ∩ (b)⇑,pc = ∅.

Proof of Proposition 3.14

1. Let δ(a, c) or δ(b, c). Because of (Pgreln) it follows that a∩c⇑δ 6= ∅ or b∩c⇑δ 6= ∅.
Hence (a∪ b)∩ c⇑δ 6= ∅ and with (Pgrels) it follows that δ(a∪ b, c). The other
direction is proved similarly: Assume δ(a ∪ b, c), then because of (Pgreln) it
follows (a ∪ b) ∩ c⇑δ 6= ∅, i.e., a ∩ c⇑δ 6= ∅ or b ∩ c⇑δ 6= ∅ which with (Pgrels)
entails δ(a, c) or δ(b, c).

2. Let a ∩ b 6= ∅. In particular b 6= ∅. It is the case that b •∼ b, hence b ⊆ b⇑δ .
Hence a∩ b⇑δ 6= ∅, so with (Pgrels) it follows that δ(a, b). The same argument
works for the roles of a and b exchanged.

Proof of Proposition 3.15

Let a ∩ b⇑δ 6= ∅. Then there is a c such that c •∼ b and a ∩ c 6= ∅. Because of (P4)
one gets δ(a, c). So due to the definition of •∼ one must also have δ(a, b).

APPENDIX A. PROOFS 178

Proof of Proposition 3.16

Let a ⊆ b. Let x ∈ a⇑δ . So there is a c with c •∼ a and x ∈ c. I show c ⊆ b⇑δ (and
so also x ∈ b⇑δ). Assume not, then there is a subset of c′ ⊂ c such that c′ ∩ b⇑δ = ∅.
Because of (Pgreln) it follows that not δ(c′, b). Because of (P2) also not δ(c′, a), and
because of c •∼ a also not δ(c′, c), but this contradicts (P4).

Proof of Proposition 3.17

Due to Proposition 3.12 one can assume that ·⇑δ = (·)⇑srpc = (·)⇑,pc. Now, let
a⇑δ (b⇑δ , so the pc-cell a⇑δ is a proper subset of the cell b⇑δ . But then an additional
application of ·⇑δ = (·)⇑,pc amounts to a shift in pc which must be a cell contained
in or the same as the cell b⇑δ . This shows (Pdoubleshift).

In order to prove (Punionshift), let a⇑δ⇑δ = b⇑δ
⇑δ 6= X and a⇑δ * b⇑δ and

b⇑δ * a⇑δ . So the pc-cells a⇑δ and b⇑δ are not on the same path from the leaves to the
root X in pc, but their upper shifts are. So, that means that ã ∪ bmust be a cell that
contains a⇑δ and b⇑δ . As it is the smallest such cell one gets ã ∪ b = a⇑δ

⇑δ = b⇑δ
⇑δ .

Hence a ∪ b⇑δ = a⇑δ
⇑δ⇑δ = b⇑δ

⇑δ⇑δ .

Proof of Proposition 3.18

Let a⇑δ * b⇑δ and b⇑δ * a⇑δ . So the pc-cells a⇑δ and b⇑δ are not on the same path
from the leaves to the root X in pc. That means that ã ∪ b must be a cell whose
underlying set contains a⇑δ and b⇑δ . Now consider (a′∪b′). I prove us((ã′ ∪ b′)↑,pc) =
us((ã ∪ b)↑,pc). As a′∪ b′ ⊆ a∪ b, it follows that us(ã′ ∪ b′) ⊆ us(ã ∪ b), so one knows
that the cell ã′ ∪ b′ must be under the cell ã ∪ b. Now assume that ã ∪ b is strictly
above the cell ã′ ∪ b′. As a⇑δ and b⇑δ are incomparable it must be the case that
us(ã′ ∪ b′) ⊇ a⇑δ ∪ b⇑δ . Hence us(ã′ ∪ b′) ⊇ us(˜a⇑δ ∪ b⇑δ) ⊇ us(ã ∪ b) which means
that the underlying set of ã ∪ b is contained in the underlying set of the cell ã′ ∪ b′.
With the assertion proven before this would mean that ã ∪ b and ã′ ∪ b′ have the
same underlying sets. Could it be the case that the level of ã ∪ b is strictly higher
than that of ã′ ∪ b′? No, because ã ∪ b the smallest low level cell containing a ∪ b
and this must be the level of ã′ ∪ b′ as the underlying set is the same as that of ã ∪ b.

APPENDIX A. PROOFS 179

Proof of Proposition 3.21

Assume uiso(a). In order to show siso(a), let δ(x, a), then (Pgreln) says that x∩a⇑δ 6=
∅, but a⇑δ = a, so x ∩ a 6= ∅. Now assume siso(a). It has to be shown that a⇑δ = a,
indeed, it is sufficient to show a⇑δ ⊆ a. So let b ∼• a, that means that all b have
the same set of incoming δ edges as a. I have to show b ⊆ a. Assume otherwise, let
e = b \ a. It holds that δ(e, b). So it must also hold that δ(e, a). But as siso, this
entails e ∩ a 6=, contradiction.

Proof of Proposition 3.23

Assume sr(a, b]c) and not sr(a, b) and not sr(a, c). As us(b⇑)∩a = ∅ and us((c⇑)∩a =
∅ but us((b]c)⇑)∩a 6= ∅, one has us(b⇑)∪us(c⇑) (us((b]c)⇑). Hence it follows that
us((b⇑) 6= us(c⇑), because otherwise one would have us(b⇑) ∪ us(c⇑) = us((b] c)⇑).
Now, let b] c = b′] c′ where b′ 6= b and c 6= c′. One of b′, c′ must have elements of
both b and c. W.l.o.g let us assume it is b′. That means that b̃′ = ˜b ∪ c and hence
sr(a, b′).

Proof of Proposition 3.25

Clearly reflexivity and symmetry hold for ∼0. So it remains to show transitivity.
So let x ∼0 y and y ∼0 z. One has to show that x ∼0 z. For contradiction assume
x 6∼0 z. Then either not {x} •∼ {x, z} or not {z} •∼ {x, z}. Assume it is not
{x} •∼ {x, z}. (The other case is handled symmetrically.) As (P2) holds, this can
be the case only if there is a set a such that δ(a, {x, z}) but not δ(a, {x}). The
latter together with the assumptions that x ∼0 y and y ∼0 z implies, that not
δ(a, {x, y}) and not δ(a, {y}) and not δ(a, {y, z}) and not δ(a, {z}). But now, as
δ(a, {x, z}), axiom (P2) implies also δ(a, {x, z, y}). But this means that one has two
different irregular splits of {x, z, y} w.r.t. a, namely {x}] {z, y} and {z}] {x, y}.
This contradicts Axiom (PirrSplit), hence one may conclude that ∼0 is indeed an
equivalence relation and that for all x ∈ X, the equivalence class [x]∼0 is defined.

Proof of Theorem 3.26

Let b1, b2 ⊆ [x]∼0 . If b1, b2 are singletons, then the assertion follows directly from
the assumption. Now assume that one of them contains two elements, say it is

APPENDIX A. PROOFS 180

b1 = {e, f} and b2 = {d}. One knows

b1 = {e, f} •∼ {f} •∼ {f, d} •∼ {d} = b2

If b2 = {d1, d2} then one has

b1 = {e, f} •∼ {f} •∼ {f, d1} •∼ {d1} •∼ {d1, d2} = b2

Now a more restricted version of the proposition is proved: Namely for all b ⊆ [x]∼0

one has for all x ∈ b: x •∼ b. This is true for b of size 1 and 2. So assume for
induction that it holds for all b of size n and assume that b has size n + 1, e.g.,
b = b′ ∪ {e}. Take an arbitrary z ∈ b′ ∪ {e}. In the first case say z ∈ b′. By
induction: z •∼ b′ and z •∼ e. If not z •∼ b′ ∪ {e} were the case, then this could
only be the case because there exists f with δ(f, b′∪{e}) but not δ(f, z), that would
also mean that not δ(f, b′) and not δ(f, e). So one gets an irregular split of b′ ∪ {e}
for f . As b′ contains at least two elements, say g ∈ b′ and g 6= e, I consider now
b′ \ {g}∪{e, g}. Now it must be not δ(f, b′ \ {g}) and not δ(f, {e, g}) as e •∼ {e, g}.
So in the end, more than one irregular splitting exists, contradiction. Now of course,
take b1 and b2 arbitrarily. Then b1

•∼ x for any x ∈ b1 and b2
•∼ y for any y ∈ b2,

but x •∼ y, hence b1
•∼ b2.

Proof of Theorem 3.29

Cells of level 0 are constructed as [x]∼0 which is possible due to Prop. 3.25. On top
of these one constructs per recursion other partitions, showing that these indeed are
partitions and that all cells built have the same rank.

Assume that one has already constructed cells up to level n, i.e., one has a
partition of sets on level n and a corresponding equivalence relation ∼n. In case the
nth partition consists only of the set X, the construction is finished. Otherwise one
defines the cells on level n + 1 as sets of the forms a⇑δ , where a is a cell on level
n. I have to show that theses indeed make up a set partition. Clearly, these sets
cover the whole set X: Because there are no isolated points different from X due
to (Pnoiso), one has a (a⇑δ . Due to (Pnested) one knows that the sets on level
n+1 are going to be aligned. But this does not exclude that one set a⇑δ is a proper
subset of another set b⇑δ for sets a, b on level n, i.e., assume for contradiction that

APPENDIX A. PROOFS 181

a⇑δ (b⇑δ . Due to (Pdoubleshift) it follows that a⇑δ⇑δ ⊆ b⇑δ . Now take any x ∈ a
and y ∈ b. I consider two cases: n = 0. So a, b are cells on level 0. Because of Thm.
3.26 one knows that x⇑δ = a⇑δ and y⇑δ = b⇑δ . But then the following (in)equalities
can be derived:

r({x}) (Prop. 3.26)= r(a) (Def. of r(·))= 1 + r(a⇑δ) (Def. of r(·))= 2 + r(a⇑δ⇑δ)
(Pdoubleshift)
≥ 2 + r(b⇑δ) > 1 + r(b⇑δ) (Def. of r(·))= r(b) (Def. of r(·))= r(y⇑δ)

So, one would get r({x}) > r({y}) contradicting (Phomrank). So, it holds that all
cells of level 0 have the same rank.

If n > 0, then a and b have the forms a = a′⇑δ and b = b′⇑δ for cells a′, b′ on level
n − 1. One may assume that these have the same rank (per induction.) Similar
as for case n = 0 one calculates the inequality r(a′) > r(b′), which contradicts the
induction hypothesis.

Now assume pc is the partition chain resulting from this construction. One has
to show that δ = srpc. One has to show for all a, b that δ(a, b) iff srpc(a, b). Assume
that b is a cell in pc. Then us(b̃) = b in pc, and (b)⇑,pc = (b̃)↑,pc = us(b̃)⇑δ = b⇑δ . So
with (Pgreln) and (Pgrels) one gets δ(a, b) iff srpc(a, b).

Now assume that b is an arbitrary set. Let b̃ be the cell in pc containing b. If
one can show that b⇑δ = us(b̃)⇑δ , then one can use the same argument as above for
the case b = us(b̃). Now show by induction on the level N of b̃ that b = us(b̃).

Case N = 0: Here b̃ is a cell on level zero. Because of Prop. 3.26 one knows that
b •∼ us(b̃), hence b⇑δ = us(b̃)⇑δ .

Case N > 0: Two sub-cases are distinguished, N = 1 and N > 1. Assume first
that N = 1. So let us(b̃) have level 1. Then b is covered by a set {c1, . . . , ck} of cells
of level 0. I argue that it cannot be the case that b⇑δ ⊆ us(b̃): take x1 ∈ c1, x2 ∈ c2.
As x1, x2 are in different cells c1, c2 of level 0 one knows that not (x1

•∼ {x1, x2} and
x2
•∼ {x1, x2}). Assume without loss of generality that not x1

•∼ {x1, x2}. That
means that there is a z such that δ(z, {x1, x2}) but not δ(z, {x1}). But one has
b⇑δ ⊇ {x1, x2}⇑δ ⊇ x1

⇑δ = c1
⇑δ = us(b̃). Now it cannot be the case that b⇑δ = us(b̃),

because then {x1, x2}⇑δ = us(b̃) = x1
⇑δ . As δ(z, {x1, x2}), this means by (Pgreln)

that z ∈ {x1, x2}⇑δ = x1
⇑δ . By (Pgrels) it then follows δ(z, x1)—contradiction.

Hence, b⇑δ (us(b̃). But still it could be the case that b⇑δ (us(b̃)⇑δ . But then due
to nestedness (Pnested) b⇑δ must contain properly at least one cell of level 0, say d.

APPENDIX A. PROOFS 182

So one has d⇑δ (b⇑δ , hence with (Pdoubleshift) it follows that d⇑δ⇑δ ⊆ b⇑δ (usb̃
⇑δ .

But as d is a cell of level 1, one must have d⇑δ = us(b̃) leading to a contradiction.
Hence b⇑δ = b̃⇑δ follows.

Case N > 1. Let b̃ be a cell of level N > 1 and let b be covered by a set
{c1, . . . , ck} of cells of level N − 1 > 0. The cells c1, c2 can be represented as
c1 = c′1

⇑δ and c2 = c′2
⇑δ for N − 1 level cells c′1, c′2. One can choose c′1 and c′2

such that b ∩ c′i 6= ∅, i.e., there is x1 ∈ c′1 ∩ B and x2 ∈ c′2 ∩ B. It follows that
c′1
⇑δ * c′2

⇑δ and c′2
⇑δ * c′1

⇑δ and c′1
⇑δ⇑δ = c′2

⇑δ⇑δ 6= X. Using axiom (Punionshift)
it follows that c′1 ∪ c′2

⇑δ =c′1
⇑δ⇑δ

⇑δ
= c′2

⇑δ⇑δ
⇑δ

= b̃⇑δ . Because of (Pcelldet) it follows
that x1 ∪ x2

⇑δ = b̃⇑δ and so also b⇑δ = b̃⇑δ .

Proof of Proposition 3.31

1. This assertion follows from the fact, that for all b ⊆ X with level at most n−3
(in pc2) the upward cells in both pc1 and pc2 are identical, b⇑,pc1 = b⇑,pc2 . Hence,
by definition of nearness it immediately follows that srpc1(a, b) iff srpc2(a, b).

2. In order to proof this assertion suppose srpc1(a, b), i.e., a ∩ us(b⇑,pc1) 6= ∅. I
distinguish different cases depending on the level lpc1(b) of b in pc1.

Assume lpc1(b) = n−2, then b⇑,pc1 = (n−1, c) for some set c on the level n−1.
If c = c1 or c = c2, then b⇑,pc2 = (n− 1, c1 ∪ c2). So from a∩ us(b⇑,pc1) 6= ∅ one
deduces a ∩ us(b⇑,pc2) 6= ∅, i.e. srpc2(a, b). If c is an underlying set of another
cell on level n−1, then one has us(b⇑,pc2) = (n−1, c) and hence also srpc2(a, b).

Now assume that lpc1(b) = n− 1. Then b̃pc1 = (n− 1, c) for some set c on the
partition level n − 1. Then one will have b̃pc2 = (n − 1, c′) for c ⊆ c′. Hence,
b⇑,pc2 = (n,X) and so srpc2(a, b).

Last assume that lpc1(b) = n − 1. In this case, the level of b in pc2 may be
n− 1 or n. But in any case, one has b⇑,pc2 = (n,X), and therefore srpc2(a, b).

Proof of Proposition 3.40

According to (3.5), if KB |= rcc-sr(ya, xa), then KB |= P(xa, b) ∧ C(ya, b). Since
KB |= EC(xa, ya) either P(ya, b) or EC(ya, b) must hold, hence C(ya, b).

APPENDIX A. PROOFS 183

Proof of Proposition 3.42

Assume that KB |= rcc-sr(A, b1) or . . . or rcc-sr(A, bn). It has to be shown that
KB |= rcc-sr(A,B). W.l.o.g assume that KB |= rcc-sr(A, b1) (otherwise rename
bi). This means that there is a b ∈ (a)↑ such that KB |= P(b1, b) ∧ C(A, b). Since,
according to our assumption, b1 is already contained in B, it follows that b = B.
Thus, for b1 = B one has KB |= P(B,B) ∧ C(A,B), hence KB |= rcc-sr(A,B).

Proof of Proposition 3.43

“⇒”: Assume KB |= rcc-sr(A∪B,C), that is according to (3.5), KB |= P(C, y) ∧
C(A ∪ B, y) for an ld-region y of the next level above C. But then KB |= C(A, y)
or KB |= C(B, y), which follows from the definition of A ∪ B as sum of A and B.
For reductio ad absurdum assume that not KB |= C(A, y) and not KB |= C(B, y),
which means that KB |= DC(A, y) and KB |= DC(B, y). We have seen that,
according to the assumption, KB |= C(A ∪ B, y). Hence, there is a w such that
P(w,A ∪ B) and P(w, y). The first implies C(w,A ∪ B), hence C(w,A) or C(w,B),
that is, C(A,w) or C(B,w). Together with P(w, y) it follows from the definition
of the relation P (cf. Section 2.4) that C(A, y) or C(B, y), not DC(A, y) or not
DC(B, y), contradiction. Finally, for y = C one has KB |= P(C,C) ∧ C(A,C) or
KB |= P(C,C) ∧ C(B,C), hence KB |= rcc-sr(A,C) or KB |= rcc-sr(B,C).
“⇐”: W.l.o.g. assume KB |= rcc-sr(A,C), that is according to (3.5), KB |=
P(C, y) ∧ C(A, y) for an ld-region y of the next level above C. From the axiom for
the sum of regions (see Section 2.4) it follows that if C(A, y), then C(A∪B, y) for an
arbitrary region B ⊆ X, hence, together with P(C, y), KB |= rcc-sr(A ∪B,C).

Proof of Proposition 3.44

Assume KB |= rcc-sr(A,B ∪ C) and not KB |= rcc-sr(A,B) and not KB |=
rcc-sr(A,C). Let P(B, b) and P(C, c), for b, c ld-regions of the next level above B,
C. Since not C(A, b) and not C(A, c), one has b ∪ c ((B ∪C)↑, where (B ∪C)↑ is
an ld-region of the next upper level. It must be the case that b 6= c, otherwise not
KB |= rcc-sr(A,B ∪ C). Now, let B′ ∪ C ′ = B ∪ C where B′ 6= B and C ′ 6= C,
that is, we move border points of B to C (or vice versa) in order to get a different
irregular splitting B′ ∪ C ′ of B ∪ C w.r.t. A; but B′ and C ′ will not be regions (in

APPENDIX A. PROOFS 184

the meaning of the word as used in this work) anymore. Hence, the uniqueness of
irregular splits is conserved, as long as B and C are constrained to be regions.

Proof of Proposition 3.45

Let A ⊆ X be an arbitrary region. One has to show rcc-sr(A,X \ A) or rcc-sr(X \
A,A). First assume that A or X \ A are not ld-regions, e.g., w.l.o.g., assume A
is not a ld-region. Then Ã overlaps with X \ A and we have rcc-sr(X \ A,A) (cf.
Propositions 3 and 8). Now assume that both A and X \ A are ld-regions. But,
because the order is normal, either a (a↑ or X \ A ((X \ A)↑, where A↑ and
(X \ A)↑ are ld-regions of the next upper level. Hence, either rcc-sr(X \ A,A) or
rcc-sr(A,X \ A).

Proof of Proposition 3.46

Ad 1: Symmetry follows from commutativity of the conjunction in (8). As I excluded
the empty set as a region, condition (1) for proximity spaces is trivially fulfilled.
Because of the symmetry of rcc-srj, it suffices to show that one of the conditions
(2.a) or (2.b) is fulfilled. I show it for (2.b). Accordingly, rcc-srj(A∪B,C) iff there
is a y of level j such that rcc-sr(A ∪ B, y) and rcc-sr(C, y). This is equivalent to
saying there are y1 and y2 of level j such that P(y, y1) and C(A ∪ B, y1) as well as
P(y, y2) and C(C, y2). But per definitionem C(A ∪B, y1) iff C(A, y1) or C(B, y1), so
that the equivalence with rcc-srj(A,C) or rcc-srj(B,C) follows.
Ad 2: Let rcc-sri(z1, z2), i.e., there is a y of level i s.t. rcc-sr(z1, y) and rcc-sr(z2, y).
According to Definition 2, there is a y′ of level j such that P(y, y′). As rcc-sr is a
right-scaled proximity relation, it follows that rcc-sr(z1, y

′) and rcc-sr(z2, y
′), hence

rcc-srj(z1, z2).
Ad 3: Let rcc-sr(z1, z2) and let z2 be of level j. Then for y = z2 we have rcc-sr(z1, y)
and (because of reflexivity) rcc-sr(z2, y), hence rcc-srj(z1, z2).

APPENDIX A. PROOFS 185

Proofs for Chapter 4

Proof of Proposition 4.2

Let T ∪ A ∪ AxRCC8 be an ontology with a spatially complete abox A and the
ω-admissible background theory AxRCC8. I build a simple closure T ′ of the pure
DL-Lite part of T in the following way. Every DL-Lite axiom of T is in T ′. For
every B v ∃R̃1, R̃2.r ∈ T let {B v ∃R1, B v ∃R2} ⊆ T ′, for B v ∃R̃, l.r ∈ T and
B v ∃l, R̃.r ∈ T let {B v ∃R,B v ∃l} ⊆ T ′. I claim that T ∪ A ∪ AxRCC8 is
satisfiable iff the DL-Lite ontology T ′ ∪ (A \ NA) is satisfiable. Here NA denotes
the RCC8-network contained in A. The difficult direction is the one from right to
left which I will prove in the following. Let T ′ ∪ (A \ NA) be satisfiable by some
model I which can w.l.o.g. be assumed to be the canonical model for the chase
chase(T ′p ∪ (A \ NA)). Here, T ′p denotes the PI axioms in T . As A is spatially
complete, there exists a model I′ |= NA∪AxRCC8. I let X = chase(T ′p ∪A) which is
satisfiable by an interpretation J built as a merge of I and I′. Now, I will extend X
by further chasing steps in the following way. Different from the chase construction
of [calvanese09ontologies], I start with the set X which may already be infinite.
This fact poses no problems as I chose an ordering over set of all possible strings
over the signature of the ontology and the chasing constants.

In addition to the chasing rules listed in Definition 2.10, I will use a chasing
rule for axioms of the form B v ∃R̃1, l.(r1 ∨ · · · ∨ rk) ∈ T and the other axioms of
the form B v ∃U1, U2.R ∈ T (Figure A.1). Let Si denote the sets created during
the chasing process. Directly after applying this chasing rule a completion step is
applied in order to make the generated constraint network have a unique model
modulo isomorphism. For every node n∗ appearing in Si an atom rn∗(n∗, y∗), where
rn∗ ∈ BRCC8 is some basic relation, is added. There may be infinitely many nodes
already in S0 but these are not constrained at all. So one may assume that these
nodes are pairwise related by the disjointness relation dc. So, in every chasing step

Chasing Rule (R)
If B(x) ∈ Si and there are no y, y∗, x∗ s.t. {R1(x, y), l(y, y∗), l(x, x∗), r1(y∗, x∗)}
is contained in Si, then let Si+1 = Si ∪ {R1(x, y), l(y, y∗), l(x, x∗), r1(y∗, x∗)}. The
constants y, y∗ are completely new constants not appearing in Si. The constant x∗
is the old x∗ if already in Si, otherwise it is also a completely new constant symbol.

Figure A.1: Additional chasing rule that accounts for ∃U1, U2.r-concepts

APPENDIX A. PROOFS 186

there can be defined two disjoint sets of localities V dc
i and V fin

i with the following
properties: For all pairwise distinct nodes in V dc

i it is the case that dc(a∗, b∗) ∈ Si
and for all nodes a∗ ∈ V dc

i and nodes b∗ ∈ V fin
i it is the case that dc(a∗, b∗) ∈ Si

and both networks are complete and relationally consistent. Now, the complete
constraint network induced by V fin

i is finite and is consistent with r1(y∗, x∗). This
fact follows, e.g., from the patch-work property of ω-admissible theories. I use a
path-consistency algorithm or some other appropriate algorithm to find a complete
and consistent set induced by V fin

i ∪{y∗} that extends the networks induced by V fin
i

and y∗, resp. The new node y∗ is related to the nodes in V dc
i by dc-edges. This step

does not disturb the consistency of the whole network because every composition
of some basic relation with dc results in a disjunction which again contains dc.
Proceeding in this way, I finally define ⋃∞i=0 Si which induces a canonical model of
T ∪ A ∪ AxRCC8.

Now I define the closure cl⊥(T) by extending the rules (1)–(6) for cln(T) with the
rules: (i) If B1 v ∃l, l.r for eq /∈ r ∈ T , then B1 v ⊥ ∈ cl⊥; (ii) if B1 v ∃l, l.r1 ∈ T
and B2 v ∃l, l.r2 ∈ T such that eq /∈ r1 ∩ r2, then B1 u B2 v ⊥. Using cl⊥(T) one
can define a FOL query that is false in DB(A) iff T ∪ A is satisfiable.

Proof of Theorem 4.4

The proof follows the proof of Theorem 5.15 for pure DL-Lite ontologies [calvanese09ontologies].
I adapt the chase construction to account for the RCC8 relations r ∈ RelRCC8. The
main observation is that the disjunctions in r can be nearly handled as if they were
predicate symbols.

Let φ(~x) be a n-ary GCQ+-query. If T ∪ A is not satisfiable, cert(Q, T ∪ A) is
the set of all n-ary tuples of constants of the ontology O. But Proposition 4.2 states
that satisfiability is FOL-rewritable. So I can assume, that O is satisfiable.

Let pr be the UCQ resulting from applying the algorithm to φ(~x) and O. I
have to show that cert(φ(~x),O) = (pr)DB(A). I proceed in two main steps. First,
we construct a chase-like set chase∗(O), declare what it means to answer φ(~x)
with respect to chase∗(O), resulting in the set ans(φ(~x), chase∗(O)), and then
show that ans(φ(~x), chase∗(O)) = cert(φ(~x),O). In the second step, we show that
ans(φ(~x), chase∗(O)) = (pr)DB(A).
First Step. I construct a chase-like set chase∗(O) that will be the basis for proving

APPENDIX A. PROOFS 187

the correctness and completeness of our algorithm. I use the chase rules of Definition
2.10 and the special rule (R) of Figure A.1 to build chase∗(O). Every time (R) is
applied to yield a new abox Si, the resulting constraint network in Si is saturated
by calculating the minimal labels between the new added region constants and the
other region constants. The application of (R) does not constrain the RCC8-relations
between the old regions and even stronger: Let (R) be applied to a tbox axiom of
the form A v ∃R̃, l.r and A(a) ∈ Si resulting in the addition of R(a, b), l(b, b∗)
and r(b∗, a∗). Then it is enough to consider all c∗ ∈ Si and all relations rc∗,a∗
such that rc∗,a∗(c∗, a∗) ∈ Si. The composition table gives the outcome rc∗,a∗ ; r =
r′c∗,b∗ and one adds r′c∗,b∗(c∗, b∗) to Si. This step will be called the step of triangle
completion. After the triangle completion step one closes the assertions up with
respect to the subset relation between RCC8-relations and with respect to symmetry.
I.e., if r1(x∗, y∗) is added to Si, then one also adds r2(x∗, y∗) for all r2 such that
r1 ⊆ r2 and r−1

2 (y∗, x∗). For different c∗1, c∗2, assertions of the form rc∗1,b∗(c
∗
1, b
∗)

and rc∗2,b∗(c
∗
2, b
∗) do not constrain each other (because of the patch-work property).

As the number of regions is finite and we excluded the non-atomicity axiom, the
saturation leads to a finite set Si+k (for some k ∈ N) that is a superset of Si.
Let chase∗(O) = ⋃

Si be the union of all aboxes constructed in this way. The
set chase∗(O) does not induce a single canonical model. But it is universal in the
following sense:

(*) For every model I of O define a model Ic from chase∗(O) by taking a (con-
sistent) configuration of the contained RCC8-network and taking the minimal
model of this configuration and the thematic part of chase∗(O). Then Ic maps
homomorphically to I.

The claim (*) holds because ∃U1, U2.r-constructs do not appear on the left-hand
side of the PI axioms; hence new information on the spatial side cannot be used
during the chasing process to produce new information on the thematic part.

I explain what it means to answer a GCQ+-query with respect to chase∗(O). I
transform φ(~x) into a CQ τ1(φ(~x)) where the relations r ∈ RelRCC8 are considered
as predicate symbols. E.g., let φ(x, y) = ∃R.A(x) ∧ ∃R̃1, l.(tpp ∨ ntpp)(y) and
X = τ1(φ(x, y), {∃R̃1, l.tpp(y)}) for short. Then

X = ∃z, z∗, x∗.∃R.A(x) ∧R(x, z) ∧ l(z, z∗) ∧ l(x, x∗) ∧ (tpp ∨ ntpp)(z∗, x∗)

APPENDIX A. PROOFS 188

The set of answers ans(chase∗(O), φ(~x)) is defined by homomorphisms of the atoms
of τ1(φ(~x)) into chase∗(O).

(a1, . . . , an) ∈ ans(chase∗(O), φ(~x)) iff there is a homomorphism h from τ1(φ(~x))
into chase∗(O) with h(xi) = ai (for i ∈ {1, . . . , n}). The homomorphic image of
φ(~x) in chase∗(O) is called a witness of φ(~x) w.r.t. ~a in chase∗(O). Clearly, if
I |= chase∗(O) and ~a ∈ ans(chase∗(O), φ(~x)), then I |= φ(~x/~a).

I now prove ans(φ(~x), chase∗(O)) = cert(φ(~x),O).
⊆-direction: Let ~a ∈ ans(chase∗(O), φ(~x)). Let I |= O and Ic be the model

according to claim (*). Because Ic |= φ(~x/~a), it follows that I |= φ(~x/~a).
⊇-direction: Let ~a ∈ cert(O, φ(~x)). For every I |= O consider Ic. All these

Ic differ at most on the interpretations of the RCC8-Relations which are assigned
to regions x∗, y∗. Consider for all x∗, y∗ the assertion r(x∗, y∗), r ∈ RelRCC8 where
ri ∈ r iff there is Ic such that Ic |= ri(x∗, y∗). Then r(x∗, y∗) is in chase∗(φ(~x),O).
Therefore we find a homomorphism h from φ(~x) onto chase(φ(~x),O) with h(~x) = ~a.
Second Step. Let pr be the outcome of the algorithm applied to φ(~x). I show
prDB(A) = ans(chase∗(O), φ(~x)).
⊆-direction: Let ψ = ψ(~x) ∈ pr be a conjunctive n-ary query. I have to show

ψ(~x)DB(A) ⊆ ans(chase∗(O), φ(~x)). This can be done by induction over the number
of steps that are needed in order to construct ψ(~x) in the PerfectRef algorithm. In
the base case ψ ∈ τ1(Q). The assertion follows directly from the fact that DB(A)
is contained in chase∗(O). Inductive step. Let ψ = ψi+1 and ψi+1 be the outcome
of applying one of the steps in the algorithm to ψi. If the steps are those contained
in the original PerfectRef-algorithm we can argue in the same line as in the proof
of Lemma 5.13 of [calvanese09ontologies]. In the other cases the induction steps
are provable because of the correctness of the implicit deductions.
⊇-direction: This is the direction showing the completeness of the algorithm. Let

~a ∈ ans(chase∗(O), φ(~x)). So there is a witness of ~a w.r.t. τ1(φ(~x)) in chase∗(O).
This witness lies in some Sk of the chase chase∗(O) and shall be denoted Gk. One
has to find a ψ(~x) ∈ pr such that it has a witness in the abox A. This can be proved
by considering the pre-witness of ~a with respect to φ(~x) in all Si for i ≤ k. The

APPENDIX A. PROOFS 189

!"

#"$"%&" '"$"%("

)*" +,-"

%."
/"/"/"

%0" %1(2&3"

-4"56"B

B B B

-4"56"B -4"56"B

Figure A.2: Network N used in proof of Lemma 4.6

pre-witness of ~a with respect to ψ(~x) in Si is defined by:

Gi =
⋃

β′∈Gk

{β ∈ Si | β is an ancestor of β′ in Sk and

there exists no successor of β in Si that is an ancestor of β′ in Sk}

By induction on i (i ∈ {0, . . . , k}) one can find a ψ(~x) ∈ pr such that the
pre-witness of ~a with respect to φ(~x) in Sk−i is a witness for ψ(~x). By induction
assumption there is ψ′(~x) ∈ pr such that Gk−i+1 is a witness of ~a w.r.t. ψ′(~x)′

in Sk−i+1. If Sk−i+1 results from Sk−i by application of one of the chase rules in
Definition 2.10, then the argument proceeds in the same manner as in the proof
of Lemma 5.13 in the paper of [calvanese09ontologies]. Otherwise, Sk−i+1 is
constructed by applying rule (R) or one of the saturation steps (triangle completion,
upward closure, symmetry closure, resp.) following the application of rule (R). But
all these steps have a corresponding case in the algorithm.

Proof of Lemma 4.6

As is known, the reachability problem in symmetric (undirected) graphs is logspace
complete [reingold08undirected]—where graph reachability asks whether for nodes
s, t in G there is a path between s and t. By reducing this problem to the satisfiabil-
ity test for RCC3 networks I will have shown that the latter problem is Logspace
hard itself. So let be given a (symmetric) graph G = (V,E) and nodes s, t ∈ V . I
define the network N in the following way (see Figure A.2): Let V = {v1, . . . , vn}
be an enumeration of the nodes of G. W.l.o.g. let s = v1 and t = vn and let
B = BRCC3. Nodes of N are given by V ∪ {a} where a /∈ V . Labelled edges of
N are given by: s{DR}a; t{ONE}a; vi{B}a for all i 6= 1, n; vi{EQ}vj if E(vi, vj);
vi{B}vj if ¬E(vi, vj). Now we show that the network N is satisfiable iff s and t are

APPENDIX A. PROOFS 190

connected in G. Assume that s and t are connected. Then there is an EQ-path in N
between them, hence s{EQ}t follows. But this contradicts s{DR}a and t{ONE}a.
Now assume that s and t are not connected; then there is no path consisting only of
EQ-labels between s and t. The graph G consists of at least 2 components, and s, t
are in different components. We define a consistent configuration as follows: For all
nodes v, v′ in the component in which s is contained, let v{DR}a and v{EQ}v′. For
all nodes v, v′ in the component of t let v{ONE}a and v{EQ}v′. For all nodes v, v′

in the other components let v{DR}a and v{EQ}v′. For all nodes v, v′ which have
not a label yet, let v{DR}v′. Two remarks : 1. EQ-edges for edges E(vi, vj) in G

with j > i+ 1 are not shown in Figure A.2. 2. I inserted edges labelled B for better
illustrations. But these are not needed.

Proof of Proposition 4.7

I construct a generic tbox Tg that allows one to encode any RCC3 constraint network
so that checking the consistency of RCC3 constraint networks is reducible to a
satisfiability check of this tbox and a spatially complete abox. Let for every r ∈
RelRCC3 be given role symbols R1

r , R
2
r . The generic tbox Tg has for every r ∈ RelRCC3

a concept symbol Ar and a corresponding axiom with the content that all instances
of Ar have paths over the abstract features R1 resp. R2 to regions that are r-related.

Tg = {Ar v ∃R̃1
r , R̃

2
r .r, (funct l, R1

r , R
2
r) | r ∈ RelRCC3} (A.1)

Now, let N be an arbitrary RCC3 constraint network which has to be tested for
relational consistency. Let AN be an abox such that for every r(a, b) in N three new
constants are introduced: xab, xa, xb.

AN = {Ar(xab), R1
r(xab, xa), R2

r(xab, xb) | r(a, b) ∈ N} (A.2)

The construction entails: Tg∪AN∪AxRCC3 is satisfiable iff N∪AxRCC3 is satisfiable.
If the data complexity of the satisfiability check for DL-Liteu,+F ,R(RCC3)-ontologies
were in AC0, then the consistency of constraint networks could be tested in AC0,
too. (Note that Tg is a fixed tbox.) But checking the consistency of RCC3 constraint
networks is LOGSPACE-hard and AC0 (LOGSPACE.

APPENDIX A. PROOFS 191

Proof of Proposition 4.10

Sufficiency of the condition for unsatisfiability is clear. The proof for necessity is
done by induction on the number of =-marked labels. So let be given a RCC=

network N . One may assume, that the network has for every pair of nodes exactly
one labelled edge between. I assume further that the edges are undirected as all
relations are symmetric.

Base case: Assume that none of the four conditions hold. As there are no marked
labels, then N unsatisfiability can occur only, if N contains DR(v, v) for some node
v (first condition) or DR(v, w) and O(v, w) (fourth condition). But these cases are
excluded by assumption.

Induction step: Let N contain n marked labelled edges and assume that for all
networks N ′ with n−1 marked labelled edges unsatisfiability of N ′ implies one of the
conditions. Now, assume that for N no one of the four conditions holds. We have
to show that N is satisfiable. Take an arbitrary =-marked labelled edge between
nodes v, w. The label λ of this edge is either O= or B=. We define a new network
N ′ which results as a contraction from N by identifying v and w to the node z.
For N ′ we may assume again that it contains for every pair of nodes exactly one
labelled edge: If in N we have r1(v, k) and r2(w, k), then the edge between z and
k in N ′ results as r1 ∩ r2 and is =-marked iff r1 or r2 is marked. Clearly r1 ∩ r2 is
not empty, as otherwise one would have a contradiction to the fact that N does not
fulfill conditions 3 and 4. Clearly N is satisfiable iff N ′ is satisfiable. Assume to the
contrary that N ′ is unsatisfiable. Hence, one of the four conditions holds for N ′: 1)
Assume N ′ contains DR(v′, v′) or DR=(v′, v′) for some node v′. If v′ is not z, then also
DR(v′, v′) ∈ N resp. DR=(v′, v′) ∈ N—contradicting the fact that N does not fulfill
condition 1. Otherwise v′ = z, but this cannot be the case either, as there are no
self-loops DR(v, v), DR=(v, v), DR(w,w), DR=(w,w) in N nor DR(v, w) or DR(v, w).
2) Assume N ′ contains DR=(v′, w′). If neither v′ nor w′ is z, this contradicts the
fact that N does not fulfill the 2. condition. Otherwise v′ = w′ = z, leading to
a contradiction with the fact that N does not fulfill condition 1. 3) Assume N ′

contains a cycle in which there is DR(v′, w′) and there is a path from v′ to w′ such
that every label on the path is B= or O=. The case that the path does not contain
z immediately leads to a contradiction. Otherwise, the path extends to a path in
N fulfilling the 3. condition—contradiction. Similarly, if N ′ fulfills condition 4, the

APPENDIX A. PROOFS 192

verifying path can be extended to a path in N fulfilling condition 4—contradiction.

Proof of Proposition 4.11

The idea is to find concepts that are unsatisfiable according to the tbox (this
amounts to constructing the negative closure as in the proofs for pure DL-Lite
[calvanese09ontologies]). These are formulated as boolean queries, and the (fi-
nite) disjunctions of these queries are answered over the abox. For example, if
A1 v ¬A2 is in the tbox, then the query contains ∃x(A1(x) ∧ A2(x)) as disjunct.
The introduction of concepts of the form ∃U1, U2.r enlarges the potential conflicts
of a tbox T with an abox A. So in addition to the FOL queries that result from
the negative closure of the tbox, one has to find queries for the potential conflicts
in the four conditions of Proposition 4.10. The resulting conjunctive queries have
further to be fed into a perfect rewriting algorithm like PerfectRef for pure DL-Lite
[calvanese09ontologies] in order to capture the implications of the tbox.

Concerning the first two conditions one has to deal with axioms of the form B v
∃l, l.DR. If this axiom occurs in the tbox T , then one has to produce the CQ ∃x.B(x).
Similarly, if {B v ∃R̃, R̃.DR, (functR)} ⊆ T , then the CQ ∃x.B(x) has to be added.
Also if {B v ∃R̃1, R̃2.DR, (functR1, functR2)} ⊆ T , then one may get a conflict of
the first kind and hence one has to add a CQ ∃x, y[B(x) ∧ R1(x, y) ∧ R2(x, y)].
Concerning the third and fourth condition I note that this can be only the case
if the =-marked paths have maximal length one. Otherwise one already has a
contradiction of the abox with the functionality assertions in the tbox. Hence, one
considers only the case of pairs of tbox axioms of the general form A v ∃R̃1, R̃2.DR
and B v ∃R̃3, R̃4.O with (functR1, R2, R3, R4). In this case one can feed into the
PerfectRef algorithm also the CQ ∃x, y, z, w[A(x) ∧ B(y) ∧ R1(x, z) ∧ R3(y, z) ∧
R2(x,w) ∧R4(y, w)].

APPENDIX A. PROOFS 193

Proofs for Chapter 5

Proof of Theorem 5.3 (mainly [gurevich07theory])

First assume that Q is AC. Then it clearly maps finite streams to finite streams.
Moreover, it fulfills (FP∞): For s ∈ D∞ and u ∈ D∗ assume that Q(s) ∈ uD∞, so
there is an l ∈ N such that u v ©l

j=0Q(s≤j), Consider w := s≤l. Then s ∈ wD∞

and for all s′ ∈ wD∞ one has Q(s′) w Q(w) and hence Q(s′) ∈ uD∞.
Now assume that Q maps finite streams to finite streams and that Q is AC.

Define a window K as follows

K(ε) := ε

K(sa) = Q(sa)−v Q(s) for s ∈ D∗, a ∈ D

In order to show the well-definedness of K it has to be shown that Q(s) v Q(sa).
But we have Q(s) ∈ D∞, so due to (FP∞) there is w ∈ D∞ such that s ∈ wD∞ ⊆
Q−1(Q(s)D∞). So as sa w s one has also Q(sa) ∈ f(s)D∞, in other words: Q(s) v
Q(sa).

Now one has to show that Repeat(K) indeed is the same as Q. This is shown
by showing that both functions agree on all streams. This is by definition true for
finite streams. So let s ∈ Dω be an infinite stream. First, I show that any prefix of
Repeat(K) is a prefix of Q. Let and v v Repeat(Q) and assume that i is the smallest
i such that v v Repeat(Q)(s≤i). But Repeat(Q)(s≤i) = Q(s≤i) ∈ Q(s≤i)D∞.
Hence, as Q fulfills (FP∞) it follows that there is w ∈ D∗ such that s≤i ∈ wD∞ ⊆
Q−1(Q(s≤i)D∞). Hence Q(s≤i) v Q(s). Now assume that v is a prefix of Q(s).
This means that f(s) ∈ vD∞. So, again using (FP∞), it follows that there is a w
such that s ∈ wD∞ ⊆ Q−1(vD∞). That is Q(wD∞) ⊆ vD∞ hence v v Q(ws′) for
any s′ ∈ D∞. In particular Q(w) ∈ vD∞, but Repeat(K)(w) = Q(w), so v is also a
prefix of Repeat(K)(s) (because w v s).

Proof of Theorem 5.4

The proof that AC functions Q : Dω −→ Dω fulfill (FPω) proceeds in the same way
as for functions Q : D∞ −→ D∞ in the proof of Theorem 5.3.

For the other direction assume that Q : Dω −→ Dω fulfills (FPω).

APPENDIX A. PROOFS 194

Let s be any infinite stream s ∈ Dω. Consider an ordering of all growing prefixes
ui of Q(s) with u0 = ε and ui = (Q(s))≤i. According to (FPω) there is, for each ui,
a w ∈ D∗ such that

s ∈ wDω ⊆ Q−1(uiDω)

One may assume that for each ui one chooses its w as the smallest such word w

w.r.t. the prefix order. We call the sequence of resulting words (wsi)i∈N. Because of
the minimality it follows that the sequence is increasing w.r.t. the prefix order. It
may be the case that wsi = wsi+1. So I consider the set of indexes H ⊆ N such that
for all j ∈ H it holds that wj v wj+1 but wj 6= wj+1, for short if wj < wj+1. Assume
that H is given as a family H = (ik)k∈Y where Y = N or Y = {1, . . . , n} for some
natural number n. Now we define the following function Ks for all words v v s.
The word v can be of the following form: It is some word where there is a proper
growth from wj to wj+1, i.e., it is a word of the form wik or it is a word of the form
wj where no change happens, than it has one of the form wik+1, wik+2, . . . , wik+1−1.
Or v is not represented as a wj.

Ks(wsj) =

 uik+1−1 if j ∈ {i0, i0 + 1, . . . , i0+1 − 1} and k ≥ 1
uik+1−1 −v K(wsik−1

) if j ∈ {ik, ik + 1, . . . , ik+1 − 1} and k ≥ 1
Ks(wsju) = ε if u ∈ D∗ and wsj < wsju < wj+1

Then by definition we have that

Repeat(Ks)(s) = Q(s)

Of course this is still not the window K that is required because Ks still depends
on the stream s. So the question is whether for other streams s′ the generated Ks′

gives a different value for the same word w: Ks(w) 6= Ks′(w). But it is easy to show
that this cannot happen. First I show that

(*) for all words wsj and ws
′
k : If wsj = ws

′
k = w, then Ks(w) = Ks′(w).

Assume otherwise, i.e., assume that wsj = ws
′
k = w, then Ks(w) 6= Ks′(w). Let l be

the first position on which Ks(w) = ua . . . and Ks′(w) = ub . . . differ, with a 6= b

being the symbols at position l. But then the wsl v w and Q(wsl) = Ks(wsl) = ua.
On the other hand ws′l v w and Q(ws′l) = Ks′(ws′l) = ub. But either ws′l v wsl or
wsl v ws

′
l . In the first case Q(wsl ◦ s) = ub . . . for any s due to the definition of ws′l .

APPENDIX A. PROOFS 195

But Q(wsl ◦ s) = ua . . . due to the definition of wsl which gives a contradiction. In
the other Q(ws′l ◦ s) = ua . . . for any s due to the definition of wsl , giving again a
contradiction. This proves (*).

The only thing left to show is that no word wsi on stream s can be the same as a
“non-aligned” ws′j u on stream s′ with ws′j < ws

′
j u < ws

′
j+1. But if wsi = ws

′
j u were the

case then w.lo.g we may assume that i is a minimal such one. But now for all i′ < i

it can not be the case that wsi′ = ws
′
j′u
′ due to the minimality of i. So it must hold

that wsi′ = ws
′
j′ for some j′. Due to what was shown this leads to Ks(wsi′) = Ks′(ws′j′).

Because ws′j < wsi we get that for i′ = i− 1 we have ws′j = wsi−1 and so j = i− 1 or
j + 1 = i. But this cannot be the case as ws′j+1 6= ws

′
j u.

Proof of Proposition 5.5

By Theorem 5.3 Q is AC, hence the following chain of equations can be derived:

Q(s) = ©|s|j=0K(s≤j) =©|s
′|

j=0K(s≤j) ◦©|s|k=|s′|+1K(s≤k)

= ©|s
′|

j=0K((s′)≤j) ◦©|s|k=|s′|+1K(s≤k) = Q(s′) ◦©|s|k=|s′|+1K(s≤k)

so Q(s′) v Q(s).

Proof of Proposition 5.6

Assume first that s is finite. The proof is by induction on length of s. Case |s| =
0, i.e., s = ε. Then s=0 = ε. Now assume |s| = n + 1, say s = s′a. Then
Q(s′a) = Q(s′) ◦ Q(a) = ©|s

′|
i=0Q((s′)=i) ◦ Q(a) = ©|s|i=0Q(s=i). Now assume that

s is infinite. We show that for all n-prefixes s” of s = s′′ ◦ s′ it is the case that
Q(s′′ ◦ s′) = ©|s

′′|
i=0Q((s′′)=i) ◦ Q(s′). But this is proven in the same way as for the

finite case.
Now AC membership follows easily: One can setK(ε) = Q(ε) andK(wa) = Q(a)

for any w ∈ D∗ and a ∈ D.

Proof of Proposition 5.9

1. K(u ◦ ε) = K(u) = K(ε) for all u ∈ D∗.

APPENDIX A. PROOFS 196

2. Let K be an i window. Let |w| = j ≥ i and u ∈ D∗. Then

K(uw) = K((uw=1 . . . w=j−i−1)w=j−iw=j−i+1 . . . wj)

= K(w=j−iw=j−i+1 . . . wj) = K((w=1 . . . w=j−i−1)w=j−iw=j−i+1 . . . wj)

= K(w)

3. One can set K(ε) = ε and K(wu) = Q(u) for all w ∈ D∗, u ∈ D. If, conversely,
K(ε) = ε, then Repeat(K)(ε) = ε and

Q(s ◦ s′) = Repeat(K)(s ◦ s′) =©|s◦s
′|

j=0 K((s ◦ s′)≤j)

= K(ε) ◦©|s|j≥1K((s ◦ s′)=j) ◦©|s◦s
′|

j=|s|+1K((s ◦ s′)≤j)

= ©|s|j≥1K((s)≤j) ◦©|s
′|

j=1K((s′)=j)

= ©|s|j≥1K((s)≤j) ◦©|s
′|

j=1K((s′)≤j)

= Q(s) ◦Q(s′)

Proof of Proposition 5.11

Let s ∈ D∗ and |s| ≥ 1. Then, by induction, Q(s) is a subsequence of s, hence also
a finite word. So the first condition of (DISTRIBUTION) is fulfilled. Now let also
s′ ∈ D∞. Let s = wu for some w ∈ D∗ and u ∈ D. Then Q(s◦ s′) = Q(wus′). Then
either Q(s ◦ s′) = Q(wus′) = Q(w) ◦ u ◦ Q(s′). But one has also Q(wu) = Q(w)u
(taking s′ in (TI-FILTER), so Q(s ◦ s′) = Q(w) ◦ u ◦ Q(s′) = Q(wu) ◦ Q(s′) =
Q(s) ◦ Q(s′). Or, in the other case, Q(s ◦ s′) = Q(wus′) = Q(w) ◦ Q(s′). But
again using (TI-FILTER) with s′ = ε one also gets Q(wu) = Q(w) and hence
Q(s ◦ s′) = Q(w) ◦Q(s′) = Q(wu) ◦Q(s′) = Q(s) ◦ s′.

Proof of Proposition 5.12

Assume Q : D∞ −→ D∞ fulfills (Factoring-n). If |s| < n, this is what is stated
in (Factoring-n). So |s| ≥ n and let s = r ◦ s′ with |r| = n. Then Q(r ◦ s′) =
Q(r) ◦ Q((r ◦ s′)≥2). On the right factor one can apply again the factorization
according to (Factoring-n). Applying this repeatedly (using induction) gives the

APPENDIX A. PROOFS 197

desired representation:

Q(s) = Q(r ◦ s′)

= Q(r) ◦Q((r ◦ s′)≥2)

= Q(r) ◦Q((r ◦ s′)[2,n+1]) ◦Q(((r ◦ s′)≥2))≥3

= Q(r) ◦Q((r ◦ s′)[2,n+1]) ◦Q(((r ◦ s′)≥3))

= Q(r[1,n]) ◦Q((r ◦ s′)[2,n+1]) ◦Q(((r ◦ s′)≥3))

= Q(s[1,n]) ◦Q(s[2,n+1]) ◦Q(((r ◦ s′)≥3))

= Q(s[1,n]) ◦Q(s[2,n+1]) ◦Q(s[3,n+2]) ◦Q(((r ◦ s′)≥4))

= . . .

= Q(s[1,n]) ◦Q(s[2,n+1]) ◦Q(s[3,n+2]) ◦ · · · ◦Q(s[|s|−n,|s|])

= ©|s|−n+1
j=1 Q(s[j,n+j−1])

For infinite s the assertion follows for that from finite s.

Proof of Proposition 5.13

Let n ≥ 1. Assume that Q fulfills (Factoring-n). Define K by K(w) = ε for
|w| < n. For w ≥ n let K(w) = Q(w≥|w|−n+1) = Q-value of n-suffix of w. Then
Q(s) =©|w|j=0K(s≤j) = ε for words s with |s| < n by definition of K. For s ≥ n one
has by proposition 5.12

Q(s) = ©|s|−n+1
j=1 Q(s[j,n+j−1]) =©|s|−n+1

j=1 K(s≤n+j−1)

= ε ◦©|s|j=nK(s≤j) =©n−1
j=1K(s≤j) ◦©|s|j=nK(s≤j)

The other direction (namely, n-window induced functions fulfill (Factoring-n)
and monotonicity) is clear.

Proof of Theorem 5.22

Clearly, the range of each function f in Mbinc is length-bounded, i.e., there ism ∈ N
such that for all w ∈ D∗ : |f(w)| ≤ m. But then, according to [gurevich07theory],
f can be computed by a bounded-memory sAsm. As the Repeat functional does
(nearly) nothing else than the repeat-recursion rule, we get the desired representa-

APPENDIX A. PROOFS 198

tion.
The other direction is more advanced but can be mimicked as well: All basic

rules, i.e., update rules can be modelled by Accu functions (as one has to store
only one symbol of the alphabet in each register; the update is implemented as accu-
recursion). The parallel application is modelled by the parallel recursion principle in
window-recursion. The if-construct can be simulated using cond. And the quantifier-
free formula in the if construct can also be represented using cond as the latter is
functionally complete.

APPENDIX A. PROOFS 199

Proofs for Chapter 6

Proof of Theorem 6.6

In preparing the proof, I transform, for every n ∈ N, the formulas in L∃HCL into
formulas (depending on n) that do not contain any quantifiers over the states of the
sequence but may contain constants ιj (for j ∈ [n]) denoting the states. Denote the
rewriting by τnιj with parameters ιj, n.

τnιj(GRAPH i α) = GRAPH j α; τnιj(φ1 AND φ2) = τnιj(φ1) AND τnιj(φ2)
τnιj(φ1 OR φ2) = τnιj(φ1) OR τnιj(φ2); τnιj(φarAt) = φarAt

τnιj(EXISTS i φ) = τn0 (φ) OR τn1 (φ) OR . . . OR τnn (φ)
τnιj(FORALL i φ) = τn0 (φ) AND τn1 (φ) AND . . . AND τnn (φ)
τn(φ) = τnιn(φ) (for any φ)

So the resulting formula τn(φ) is equivalent to φ and it is made up by atoms of
the form GRAPH ιj ψ for ψ being a CQ and ιj a constant denoting j ∈ [n].

Without loss of generality I may assume that on either side of a conjunction the
same set of variables occur. A semantic preserving transformation (adding identities)
is possible. Let the resulting language be denoted L∃,=HCL. If O = 〈(Ai)i∈[n], T 〉 is
not consistent, then we assumed that certh(φ,O) = NIL = certsep(φ,O). So in the
following I may assume that O is consistent which means that for all i ∈ [n] the
local ontologies 〈Ai, T 〉 are consistent.

I first verify that for all atoms φ that certsep(φ,O) = certh(φ,O) holds. This
is trivial if φ is not a state atom. If φ is a state atom of the form GRAPH ιi α

with a CQ α, then certsep(φ,O) = certsep(φ, 〈Ai, T 〉) = cert(φ, 〈Ai, T 〉). Now
cert(φ, 〈Ai, T 〉) = certh(φ,O) holds due to the definitions of satisfaction relation
in the case for state atoms and due to Proposition 6.4.

Now I show that certh can be pushed through to the atoms by showing that
it distributes over AND and OR. Let first φ = φ1 AND φ2 where the conjuncts have
the same set of free variables, say x1, . . . , xn. Then the following chain of equali-
ties holds: certh(φ1 AND φ2,O) = ⋂

Î|=O answh(φ1 AND φ2, Î) = ⋂
Î|=O ans(φ1, Î) ∩⋂

Î|=O answh(φ2, Î). The latter is certh(φ1,O)∩ certh(φ2,O). Now let φ = φ1 OR φ2

with free variables x1, . . . , xn. It holds that

certh(φ1,O)) ∪ certh(φ2,O)) ⊆ certh(φ1 OR φ2,O)

APPENDIX A. PROOFS 200

For the other direction assume that ~c ∈ certh(φ1 OR φ2,O); assume that ~c /∈
certh(φ1,O) ∪ certh(φ2,O). Then there must be models Î1, Î2 |= O such that
~c /∈ ans(φ1, Î1) and ~c /∈ ans(φ2, Î2). It follows that Î1 |= φ2(~c) and Î2 |= φ1(~c). Now,
~c is also in the answer set for the canonical model can(O) [calvanese09ontologies],
i.e., ~c ∈ ans(φ1 OR φ2, can(O)), so either can(O) |= φ1(~c) or can(O) |= φ2(~c). But
as can(O) is a universal model there is a homomorphism into every model of O, in
particular for Î1 and Î2. As homomorphisms preserve positive existential clauses
(see Proposition 2.1) one must have either ~c ∈ ans(φ1, Î1) or ~c ∈ ans(φ2, Î2), con-
tradicting the assumption.

APPENDIX A. PROOFS 201

Proofs for Chapter 7

The following space saving abbreviations for p ∈ P are used throughout the proofs
in this section: ←→p = p ↔ p′, −→p = p → p′ and ←−p = p′ → p. Remember also the
abbreviations Bimpl = {←→p | p ∈ P} and Impl = {−→p ,←−p | p ∈ P}.

Proof of Theorem 7.7

Let (Imi)i∈I be the set of all implication-based consistent belief-change extensions
for B and {α}. First note that the maximality of the Imi has the effect that for
every p ∈ P at least one of p→ p′, p′ → p is contained in Imi. Because, suppose that
neither of −→p ,←−p is contained in Imi. The maximality of Imi entails B′∪Impli∪{α} |=
¬−→p ∧¬←−p and so B′∪ Imi∪{α} |= ⊥, which contradicts the fact that B′∪ Imi∪{α}
is consistent.

Now I start the proof of the theorem by assuming that B is a formula in DNF.
Let c(I) = k. I show that B′∪Imk∪{α} ≡P dBe→k ∪{α} by proving the two implicit
directions.

‘Right to left’: Let B′ ∪ Imk ∪ {α} |= β for β ∈ sent(P). We have to show
dBe→k ∪{α} |= β. Let be given a model I |= dBe→k ∪{α}. Then there is a dual clause
cl in dBe→k such that I |= cl. (Remember: that a dual clause is just a conjunction
of literals). For every literal li in cl one of the cases mentioned in Table A.1 holds.

So there are 6 different types of literals in cl. This justifies the following repre-

case form form implications
in dBe→k in B in Implk

I p p p′ → p, p→ p′

II p p p′ → p
III p ¬p p′ → p
IV ¬p ¬p p′ → p, p→ p′

V ¬p ¬p p→ p′

VI ¬p p p→ p′

Table A.1: Cases for literals

APPENDIX A. PROOFS 202

sentation of cl in dBe→k .

kl = p1
1 ∧ · · · ∧ p1

n1 ∧ p
2
1 ∧ · · · ∧ p2

n2 ∧ p
3
1 ∧ · · · ∧ p3

n3

∧¬p4
1 ∧ · · · ∧ ¬p4

n4 ∧ ¬p
5
1 ∧ · · · ∧ ¬p5

n5

∧¬p6
1 ∧ · · · ∧ ¬p6

n6

Define a new interpretation I′ in the following way:

• I′(p′1i) = I′(p1
i) = 1 = I(p1

i);

• I′(p′2i) = I′(p2
i) = 1 = I(p2

i);

• I′(p′3i) = 0 6= I(p3
i) = 1; I′(p3

i) = I(p3
i) = 1;

• I′(p′4i) = I′(p4
i) = 0 = I(p4

i);

• I′(p′5i) = I′(p5
i) = 0 = I(p5

i);

• I′(p′6i) = 1 6= I(p6
i) = 0; I′(p6

i) = I(p6
i) = 0;

• if r is a propositional symbol in P with r 6= pji and r′ 6= p′ji , let I′(r′) = I(r);

From the construction of I it follows that I′�P = I�P and I′ |= B′ ∪ Imk ∪ {α}. So
I′ |= β and hence I |= β.

‘Left to right’: Now suppose that dBe→k |= β and let I |= B′ ∪ Imk ∪ {α}. That
is, there is a dual clause cl′ in B′ of the form

p′11 ∧ · · · ∧ p′1n1 ∧ p
′2
1 ∧ · · · ∧ p′2n2 ∧ ¬p

′3
1 ∧ · · · ∧ ¬p′3n3

∧¬p′41 ∧ · · · ∧ ¬p′4n4 ∧ ¬p
′5
1 ∧ · · · ∧ ¬p′5n5

∧p′61 ∧ · · · ∧ p′6n6

It follows that I(p1
i) = I(p2

i) = 1 and I(p2
i) = I(p5) = 0. (Because of the types of the

literals and the fact that the bridging axioms are made true.) Moreover, as p3
i → p′3i

and p′6i → p6
i are not in Imk, the maximality of Imk entails B′∪Imk∪{α} |= p3

i ∧¬p′3i
and B′ ∪ Imk ∪ {α} |= ¬p6

i ∧ ¬p′6i . Therefore we also have I(p3
i) = 1 and I(p6

i) = 0.
Finally, this entails I |= dBe→k ∧ α, hence I |= β.

APPENDIX A. PROOFS 203

Proof of Proposition 7.8

Every formula can be transformed into CNF. Therefore clause(B) ≡ B and so it
is sufficient to show prime(B) ≡ clause(B). Clearly, prime(B) ⊆ clause(B) and so
trivially clause(B) |= prime(B). In order to show prime(B) |= clause(B) we show
that for every clause β ∈ clause(B) there is a pr ∈ prime(B) fulfilling pr |= β.
If β is a tautology, then ∅ |= β. Therefore suppose that β is not tautological. If
β ∈ prime(B), then set pr = β. If β /∈ prime(B), there is a β′ ∈ clause(B), s.t.
β′ is a proper subclause of β. Because β is finite, it has only finitely many proper
subclauses s.t. a minimal subclause β′ can be chosen. There is a β′ ∈ clause(B)
with: β′ is a proper subclause of β and there is no proper subclause β′′ ∈ clause(B)
of β′. In the end, β′ ∈ prime(B).

Proof of Proposition 7.9

Assume for contradiction, e.g., prime(B1) * prime(B2). (The other case is proved
similarly.) Then there is a prime implicate pl of B1 that is not a prime implicate
with respect to B2. But B2 |= pl, so there must be a prime implicate pl′ (pl of B2.
In particular B2 |= pl′, but then also B1 |= pl′, which results in the contradicting
assertion that pl cannot be a prime implicate of B1.

Proof of Proposition 7.13

Because primeP(Bρ) ⊆ primeP∪P ′(Bρ) it follows that for every β ∈ sent(P): If
primeP(Bρ) |= β, then primeP∪P ′(Bρ) |= β. In order to show the other direction
assume that β ∈ sent(P) and primeP(Bρ) 6|= β. I introduce the following abbre-
viations: ΓA = primeP∪P ′(Bρ) and ΓB = primeP(Bρ). It needs to be shown that
primeP∪P ′(Bρ) 6|= β. There is a model I |= ΓB ∪ {¬β}. So one has to show that
there is a model I′ of ΓA ∪ {¬β}, too. The intended model can be constructed

APPENDIX A. PROOFS 204

inductively by constructing interpretations Ii such that:

I = I0 |= ΓB ∪ {¬β}

I1 |= primeP∪{p′1}(Bρ) ∪ {¬β}

. . .

I′ = In |= primeP∪{p′1,...,p′n}(Bρ) ∪ {¬β}

= ΓA ∪ {¬β}

The interpretation Ii is constructed from Ii−1 just by modifying only the inter-
pretation of p′i in a minimal way. Let X denote all prime consequences in the set
primeP∪{p′1,...,p′i}(Bρ) that do contain p′i at most positively. If Ii−1(p′i) = 1, then
Ii(p′i) = 1. Otherwise Ii−1(p′i) = 0. If there is an α ∈ X such that Ii−1 |= ¬α, then
define Ii(p′i) = 1. Else let Ii(p′i) = 0. Clearly Ii−1 |= ¬β (as only the interpretation
of p′i may have changed). By definition Ii |= X. So the only thing to show is that
Ii |= pr for all prime implicates in primeP∪{p′1,...,p′i}(Bρ) with a negative occurrence
of p′i. Let pr = ¬p′i ∨ M where M is a disjunction of literals not containing p′i.
Assume that Ii |= p′i, i.e., Ii(p′i) = 1. I have to show Ii |= M . There are two
cases: Ii−1(p′i) = 1, then Ii−1 |= M and hence Ii |= M . Otherwise Ii−1(p′i) = 0
and there is a α = p′i ∨N ∈ X (where N denotes a disjunction of literals) such that
Ii−1 |= ¬α, i.e., Ii−1 |= ¬p′i ∧ ¬

∧
N and so Ii |= ¬N . Resolving α with pr gives

the clause cl = N ∨M that does not contain p′i. So there is a prime clause pr′′ in
primeP∪{p′1,...,p′i}(Bρ) that is a subclause of cl. But Ii−1 |= pr′′ and so Ii |= pr′′. As
Ii |= ¬N , one concludes Ii |= M .

Proof of Proposition 7.14

The proof rests on a lemma (see below), which I mention only in the context of this
proof due to its technicality. The lemma refers to the function g(·, ·) which is defined
in the following way: Let im be an implication of the form −→p or ←−p . Let α be a
formula. If im = −→p , then g(im, α) stands for the assertion “p occurs semantically
negative or not at all in α”. If im = ←−p , then g(im, α) stands for the assertion
“p occurs semantically positive in α or not at all”. An occurrence is semantically
positive (negative, resp.) in α iff for all interpretations I : If I[p/0] |= α (I[p/1] |= α,
resp.), then I[p/1] |= α (I[p/0] |= α, resp.).

APPENDIX A. PROOFS 205

Lemma. Let S = {p1, . . . , pn} and let Sn = P ∪P ′ \ {p′1, . . . , p′n}. Let U ⊆ S be the
symbols pi ∈ S, such that {−→pi ,←−pi } ⊆ Im. For all pi ∈ (S ∩ symb(Im)) \U let im(pi)
denote the implication (either −→pi or←−pi) contained in Im. Let Z = clauseSn(Bρ∪Im)
for short. Then:

Z = {β ∈ clauseSn(B) | There is a clause ε with: epsilon ∈ clauseSn(Bρ ∪ Im)

and ε |= β and ε does not contain any symbol of S \ symb(Im)

and for all pi ∈ (S ∩ symb(Im)) \ U : g(im(pi), ε)}

Proof. It may be assumed that for all implications in Im there is no implication
of the other direction, so U = ∅. Let Im = {im1, . . . , imk}. Proof of ⊇: Let
β ∈ clauseSn(B) and let ε be a clause, s.t.: ε ∈ clauseSn(Bρ ∪ Im), ε |= β, ε has
no symbol in {pk+1, . . . , pn} and for 1 ≤ i ≤ k it holds that g(ba(pi), ε). Hence
β ∈ clauseSn(Bρ ∪ Im).

Proof of ⊆: Let β ∈ clauseSn(Bρ ∪ Im). Because β ∈ sent(Sn), (Bρρ−1 ∪
(Im)ρ−1 |= β follows, so B |= β; hence β ∈ clauseSn(B). It has to be shown that
an ε ∈ clauseSn(Bρ ∪ Im) exists that fulfills the mentioned conditions. Let Ĩm be
an equivalent CNF of Im and let B̃ be an equivalent CNF of B and let ˜(Bρ ∪ Im)
be the formula B̃ρ ∧ Ĩm. Assume β has the form β = (li1 ∨ · · · ∨ liq). Because

˜(Bρ ∪ Im) |= β, ˜(Bρ ∪ Im)∪ {¬β} is inconsistent. So B̃ ∧ Ĩm ∧¬li1 ∧ · · · ∧ ¬liq can
be resolved to the empty clause.

If β is already the clause ε which fulfils the desired conditions, then set ε = β.
Else β contains a symbol p for which (i) p ∈ {pk+1, . . . , pn} or there is i, 1 ≤ i ≤ k,
s.t. p = pi and not g(imi, β). I call such a symbol p a bad symbol. Let r denote
the number of bad symbols in β. By induction on the number j of bad symbols one
can construct a sequence (βj)0≤j≤r of clauses βj ∈ clause(Bρ ∪ Im) such that:

Bρ ∪ Im |= βr |= . . . |= β1 |= β0 = β

and every βj has exactly r− j bad symbols; in particular, βr has no bad symbols so
that βr is the desired ε. Assume that βj are already constructed and in particular
assume Bρ∪ Im |= βj. Let p be a bad symbol of βj. W.l.o.g it may be assumed that
βj is not a tautology. I first consider the case that p ∈ {pk+1, . . . , pn}. No literal ¬lij

APPENDIX A. PROOFS 206

containing p, can be resolved with B̃ρ ∧ Ĩm; resolving ¬lij with a complementary
clause in (¬li1 ∧ · · · ∧ ¬liq) would be possible only if βj were a tautology. Similarly
clauses with p are not used for the derivation of the empty clause. So there is a
clause βj+1, which is obtained from βj by eliminating literals containing p and for
which Bρ ∪ Im |= βj+1 and βj+1 |= βj. Moreover βj+1 has exactly r − j − 1 bad
symbols.

In the second case βj contains a symbol pi, 1 ≤ i ≤ k for which g(imi, βj) does not
hold. W.l.o.g. assume imi = pi → p′i. So βj does not contain p semantically negative.
In particular βj contains a literal lij that contains pi syntactically positively. Again
Bρ∪ Im ∪ {¬βj} is inconsistent and so a derivation of the empty clause exists. The
clause ¬lij contains pi negatively. It cannot resolve with a clause in (B̃ρ ∧ Ĩm).
A resolution with a clause in ¬li1 ∧ · · · ∧ ¬liq is not possible either—otherwise βj
would be a tautology. The clause βj+1 is obtained from βj by removing the literal
pi. Again βj+1 |= β and Bρ ∪ Im |= βj+1 and βj+1 r − j − 1 bad symbols.

Now to the proof of the proposition. Let pr ∈ primeP(Bρ ∪ Im). Then pr ∈
clauseP(B). It has to be shown that pr ∈ primeP(B). Assume that not pr ∈
primeP(B). That would mean that there is a clause cl ∈ clauseP(B) that is a
proper subclause of pr. There are two cases: (a) cl ∈ clauseP∪P ′(Bρ ∪ Im). (b)
cl /∈ clauseP∪P ′(Bρ∪ Im). Both cases result in a contradiction. Case (a) contradicts
the fact that pr is prime with respect to (Bρ ∪ Im). In case (b) it holds that
Bρ∪ Im 6|= cl and cl |= pr. The first assertion and the lemma entail the fact that cl
contains a symbol p (i) for which no bridging axioms is contained in Im or (ii) for
which a bridging axiom is contained in the false direction.

Case (i): The lemma entails that there is a clause cl′ such that cl′ ∈ clauseP(Bρ∪
Im); p does not occur in cl′ and cl′ |= pr. Let pr′ be a clause resulting from pr by
removing all literals containing p. Then Bρ ∪ Im |= cl′ |= pr′. But this contradicts
the primeness of pr w.r.t. Bρ ∪ Im.

Case (ii): W.l.o.g. assume that p′ → p ∈ Im. Then cl contains a syntactically
negative occurrence of p. Because of the lemma there is a clause cl′ ∈ clauseP(Bρ∪
Im) such that cl′ contains p only positively and Bρ ∪ Im |= cl′ |= pr. The symbol p
can occur in pr at most positively. Otherwise, it would be the case that the clause
pr′, which results from pr by eliminating all literals ¬p, is entailed by Bρ ∪ Im—
contradicting the primeness of pr w.r.t. Bρ ∪ Im. But as cl |= pr, also cl[p/⊥] |=

APPENDIX A. PROOFS 207

pr[p/⊥]. As p occurs syntactically negative in cl, cl[s/⊥] is a tautology; but then
pr[s/⊥] is a tautology, too—contradicting the primeness of pr w.r.t. Bρ ∪ Im.

Proof of Theorem 7.15

Due to Proposition 7.9 it holds that B′ ∪ Im ≡P∪P ′ primeP∪P ′(B′ ∪ Im). Now, in
order to use Proposition 7.13 one has to represent (B′ ∪ Im) as a set B1ρ. The
problem is that ρ will substitute all occurrences of the same symbol in B1, so one
cannot set B1 = B ∪ Im, as then also the non-primed symbols of Im would be
substituted. So I proceed in the following way: For all symbols s in B I take
a completely new symbol s′′. Consider substitutions τ1(s) = s′′, τ2(s′) = s′′ for
symbols s in B. Now define the set B1 = Bτ1 ∪ Imτ2. Let ρ be the substitution
such that any s′′ is substituted by s′. Then B1ρ = B′ ∪ Im. Now because of
Proposition 7.13 one gets primeP∪P ′(B1ρ) ≡P primeP(B1ρ). But primeP(B1ρ) is
primeP(B′ ∪ Im) and according to Proposition 7.14 this is a subset of primeP(B).
Hence I set X = primeP(B′ ∪ Im) which is easily seen to be a uniform set.

Proof of 7.16

‘Left to right’: Let B,α be given. Clearly ∗c,→DS fulfils (R1) and (R2). Let Imk denote
the set of implications underlying the bc extension chosen by c and let Hk be the set
of prime implicates corresponding to Imk according to Theorem 7.15. The fulfilment
of (R3) follows by letting H = {Hk}. (R4) is fulfilled because B uk α |= Hk and
for all other uniform sets H the maximality of Hk implies B uk α |= ¬

∧
H. (R5)

holds because if α and β are consistent with the same set of uniform sets, they
are consistent with same set of implications. The definition of selection function
guarantees that for bc-extensions w.r.t. α and w.r.t. β the same set of consistent
implications and thus the same uniform set is entailed.

‘Right to left’: Let B,α be given. Let (Impli)i∈I be the set of bc extensions to the
given bc scenario. I show, there is a selection function c s.t. B ∗α ≡ B ∗c,→DS α. It can
be assumed that B,α is consistent. According to (R3’) there is H ∈ U Impl(B) such
that B∗α ≡ H∧α or B∗α ≡ H. As (R2) is fulfilled, B∗α |= α and so B∗α ≡ H∧α.
The set of implications (Impli)i∈I induces a set (Hi)i∈I of uniform sets w.r.t. B. This
follows from Theorem 7.15. Because B∗α is consistent (according to (R1)) it follows
that ∧H ∧ α is consistent. Hence there is a Hk such that H ⊆ Hk, because all Hi

APPENDIX A. PROOFS 208

are maximal uniform sets consistent with α. Because of tenacity B ∗ α |= Hk or
B ∗α |= ¬∧Hk. But in the last case one would have H∧α |= ¬∧Hk or equivalently∧
H∧∧Hk |= ¬α or equivalently Hk |= ¬α, contradicting the consistency of Hk with

α. Therefore B ∗α |= ∧
Hk∧α and ∧Hk∧α |= B ∗α. So one can set c(I) = k. Then

B ∗α ≡ B ∗c,→DS α. Now if β is such that it leads with B to the same set (Impli)i∈I of
bc extensions, then one has to guarantee that one chooses again Implk. Here comes
uniformity to the rescue: The set of uniform sets w.r.t. B that are consistent with
B ∗ β and the set of uniform sets consistent with B ∗ α are the same. Therefore the
logical uniformity postulate (R5) entails that the same Hk is chosen.

Proof of Theorem 7.18

I define γ as follows:

γ(H) = { X ∈ H | X ∩ Bimpl is maximal in {X ′ ∩ Bimpl | X ′ ∈ H} }

γ selects from H those sets for which the intersection with the set of bi-implica-
tions Bimpl is maximal. Note, that this definition is completely independent of B,
and hence the content of the theorem is stronger than to say that for any B one
may define a selection function γ such that the representation holds. Let (Bim∨j)j∈J
be the family of sets in γ(Bimpl>(B′ ∪ {α})). Because of the definition of the
disjunctive closure and of the remainders it holds that for all i ∈ I there is a j ∈ J
s.t. Bimi ⊆ Bim∨j ,Bim∨j ∩ Bimpl = Bimi and

Bim∨j ⊆ Cn(()Bimi) (A.3)

Conversely, because of the definition of γ one has for every j ∈ J an i ∈ I such that

Bim∨j ⊇ Bimi (A.4)

Proof of B ∗DS α ⊇ CnP(Bimpl ∗γ (B′ ∪{α})): Let β ∈ Cn(P)Bimpl ∗γ (B′ ∪ {α}),
i.e., β ∈ sent(P) and (⋂j∈J Bim∨j) ∪ B′ ∪ {α} |= β. So, for all j ∈ J it holds that
Bim∨i ∪B′∪{α} |= β and so Bim∨j |= (∧B′∧α)→ β. Together with (A.3) it follows
that for all i ∈ I: Bimi |= (∧B′ ∧ α) → β, hence (∧B′ ∧ α) → β ∈ Cn(Bimi) ⊆
Cn(Bimi∪B′∪{α}) = Ei for all i ∈ I. Consequently, β ∈ Ei for all i ∈ I and lastly

APPENDIX A. PROOFS 209

β ∈ ⋂i∈I Ei = B ∗DS α.

Proof of B ∗DS α ⊆ CnP(Bimpl ∗γ (B′ ∪ {α})): Let β ∈ B ∗DS α = ⋂
i∈I Ei, i.e.

β ∈ sent(P), and for all i ∈ I: Bimi∪B′∪{α} |= β and hence Bimi |= (∧B′∧α)→ β.
Because of the compactness property of propositional logic one has for every i ∈ I
a finite subset Bimf

i ⊆ Bimi such that Bimf
i |= (∧B′ ∧α)→ β. Because B is finite,

so is the set I, which is the index set of all bc extensions Ei. Let I = {1, . . . , k}.
There are only finitely many maximal sets of bridging axioms Bimi and finitely many
extensions Ei. So the disjunction ∨i∈I Bimf

i is defined and the following holds:

∨
i∈I

Bimf
i |= (

∧
B′ ∧ α)→ β (A.5)

For all i ∈ I let ni = |Bimi| be the number of elements in Bimf
i and Ni = {1, . . . , ni}.

Every set Bimi, i ∈ I, is representable as Bimi ≡
∧ni
j=1(pij ↔ p′ij). Applying the

distribution law ∨
i∈I Bimf

i is transformable in a conjunction of disjunctions of bi-
implications: ∨

i∈I
Bimf

i ≡
∧

(j1,...,jk)∈N1×···×Nk

k∨
i

(pji ↔ p′ji) (A.6)

Because of (A.4) for every j ∈ J there is an i ∈ I with Bim∨j ⊇ Bimi. Now for every
(j1, . . . , jk) ∈ N1 × · · · × Nk it holds that (pji ↔ p′ji) ∈ Bimi and hence for every
(j1, . . . , jk) ∈ N1× · · · ×Nk also ∨ki (pji ↔ p′ji) ∈ Bim∨j holds. Hence for every j ∈ J
it is true that Bim∨j |=

∧
(j1,...,jk)∈N1×···×Nk

∨k
i (pji ↔ p′ji). With (A.6) it follows that

for every j ∈ J that Bim∨j |=
∨
i∈I Bimf

i and with the entailment in (A.5) it further
follows that Bim∨j |= (∧B′ ∧ α)→ β. In the end: β ∈ CnP(Bimpl ∗γ (B′ ∪ {α})).

Proof of Proposition 7.20

Let (Ei)i∈I be the set of bc extensions for B and α and let (EQi)i∈I be the set of bi-
implications on which the Ei are based. Let γ be defined by γ(EQ>(B′ ∪ {α})) =
{EQi} for i = c(I). Then by definition: EQ ∗γ (B′ ∪ {α}) = ⋂(

γ(EQ>(B′ ∪
{α}))

)
∪ B′ ∪ {α} = EQi ∪ B′ ∪ {α}. Hence CnP(EQ ∗γ (B′ ∪ {α})) = Cn(EQ ∗γ

(B′ ∪ {α})) ∩ sent(P) = Ei = B uc α.

APPENDIX A. PROOFS 210

Proof of Proposition 7.21

The proof for the equivalent representation of ∗→DS by a disjunctively closed implication-
based reinterpretation operator uses the same construction as in the proof of The-
orem 7.18, as the construction does not use the special property of bi-implications.
With this also the representation for weak Satoh follows due to Theorem 7.23.

Proof of Theorem 7.23

With Theorem 7.7 Theorem 7.23 is an immediate corollary: Assume that b is given
in complete disjunctive normal form. I |= dBe→ ∧ α iff I |= dBe→i for some i. Now,
in dBe→i all propositional variables p for which either −→p or←−p does not occur in Imi

all associated occurrences in the dual clauses (which correspond actually to models)
are flipped into the other polarity so that all dual clauses have for each occurrence of
p the same polarity. But this means that there is a model J |= B which differs from
I exactly in the corresponding polarities for the ps with missing bridging axioms in
Imi; this is the same as saying that I∆±J ∈ ∆min

± (B,α)J.

Proof of Theorem 7.24

For the proof of this theorem I use an alternative characterization of Weber revision
with the forgetting operator ΘS (see Chapter 2).

JB ∗W αK = JΘΩ(B,α)(B) ∧ αK

According to definition B ◦Bimpl α =
⋂

(Bimpl>(B′ ∪ α))︸ ︷︷ ︸
=:X

∪B′ ∪ {α}. Due to

interpolation it holds that CnP(X ∪B′∪α) = CnP(CnP(X ∪B′)∪α). Now one can
verify that

CnP(X ∪B′) = CnP(Θ{p∈P|←→p /∈X}(B))

(Because, for example, Θp′,q′(B′∪p′ ↔ p)) =(B′[p′/1, q′/0]∧p)∨(B′[p′/1, q′/1]∧p)∨
(B′[p′/0, q′/0]∧¬p)∨(B′[p′/0, q′/1]∧¬p)≡P (B′[p′/p, q′/0]∨B′[p′/p, q′/1] = Θ{q}(B).)
Now {p ∈ P | ←→p /∈ X} = Ω(B,α). Hence due to JB ∗W αK = JΘΩ(B,α)(B) ∪ {α}K,
the assertion follows.

APPENDIX A. PROOFS 211

Proof of Theorem 7.25

The proof works in the same way as the proof of Theorem 7.24. For this I use the
alternative characterization of weak Weber as

JB ∗W αK = JΘpr1(Ω±(B,α))∪pr2(Ω±(B,α))(B) ∧ αK

Proof of Theorem 7.26

The core of the proof is to find the correct definition of the selection function γ. Let
Ψ := {p′,¬p′ | p ∈ P}.

γ(Z) = {X ∈ Z | X ∩Ψ is inclusion maximal within all X ′ ∩Ψ ∈ Z and

X ∩ Bimpl is inclusion maximal within all X ′′ ∩ Bimpl

for which there is X ′′′ ⊆ Bimpl with X ′′ = (X ∩Ψ) ∪X ′′′}

This selection function first selects maximal sets of primed literals from Ψ. These
maximal sets correspond just to the models of B′. Then it chooses maximal sets of
the disjunctive closure of the bi-implications. But as was shown for the represen-
tation of Satoh revision by disjunctively closed bi-implications, this corresponds to
considering minimal symmetrical difference.

	Introduction
	Role of Logics
	Problem: Need for Representations
	Contribution: Representation Theorems
	Overview of Chapters

	Preliminaries
	Logics
	First-order Logic
	Propositional Logic
	Description Logics

	Ontology-based Data Access
	Notion of Representation
	The Region Connection Calculi (RCC)

	Representing Spatial Relatedness
	Partitions and Spatial Relatedness
	Spatial Relatedness vs. Proximity
	The Upshift Operator
	Main Axioms
	Spatial Relatedness is Grounded
	Alignment of Upshift Close-ups
	Isolated Points
	Splittings

	Representation Theorem for Spatial Relatedness
	Dynamics of Partition Chains
	Spatial Relatedness for Region Based Calculi
	Related Work
	Résumé

	 Scalable Spatio-thematic Query Answering
	Weak Combinations of DL-Lite with RCC
	Example Scenario
	Strong Combinations of DL-Lite with RCC
	Related Work
	Résumé

	Stream Processing
	Preliminaries
	Stream Queries in the Word Perspective
	Constant-Size Windows
	Considering Time in the Word Model
	Memory-Bounded Queries
	Related Work
	Résumé

	High-level Declarative Stream Processing
	The STARQL Framework
	Example
	Syntax
	Semantics
	Properties of STARQL
	Rewritability of HAVING Clauses

	Separation-based versus Holistic Semantics
	Comparison with TCQs
	Related Work
	Résumé

	Representation for Belief Revision
	Preliminaries
	Reinterpretation Operators
	A Representation Theorem for Implication-Based Choice Revision
	Prime Implicates and Uniform Sets
	Postulates for Implication-Based Choice Revision

	Model-Based Belief Revision
	Equivalence Results
	Related Work
	Résumé

	Conclusion
	Proofs

