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Abstract Recent approaches for knowledge-graph embeddings aim at connecting quanti-
tative data structures used in machine learning to the qualitative structures of logics. Such
embeddings are of a hybrid nature, they are data models that also exhibit conceptual struc-
tures inherent to logics. One motivation to investigate embeddings is to design conceptually
adequate machine learning (ML) algorithms that learn or incorporate ontologies expressed in
some logic. This paper investigates a new approach to embedding ontologies into geometric
models that interpret concepts by geometrical structures based on convex cones. The ontolo-
gies are assumed to be represented in an orthologic, a logic with a full (ortho)negation. As
a proof of concept this cone-based embedding was implemented within two ML algorithms
for weak supervised multi-label learning. Both algorithms rely on cones but the first ad-
dresses ontologies expressed in classical propositional logic whereas the second addresses a
weaker propositional logic, namely a weak orthologic that does not fulfil distributivity. The
algorithms were evaluated and showed promising results that call for investigating other
(sub)classes of cones and developing fine-tuned algorithms based on them.

Keywords Concept Learning · Knowledge Graph Embedding · Support-Vector Machine ·
Multi-Label Learning · Orthologic

1 Introduction

Recent approaches to knowledge-graph embeddings (KGE) [28] aim at linking quantitative
data structures used in machine learning (ML), such as (low-dimensional) Euclidean spaces,
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to the qualitative structures of logics. The benefit of this linkage is twofold as expressed by
the following desiderata for ML algorithms:

(QC) Learnt models should adhere to Qualitative Constraints stated in a background knowl-
edge base or in an ontology.

(LR) It should be possible to identify on top of the learnt models emergent logic-qualitative
structures, thereby enabling Logic-based Reasoning.

A well-known example of an embedding-based approach fulfilling (LR) is TransE [3].
TransE interprets concepts as vectors and functional relations as vector translations in Eu-
clidean space. Reasoning can then be performed by geometric operations, for example the
translation representing “female form of” that links concepts “queen” and “king” can be
applied to identify the female form of “man”.

While TransE and similar embedding approaches present an important step towards link-
ing logics with ML, they fall short of being fully expressive in the sense of [19], i.e., they
expose serious shortcomings w.r.t. the logic of compound concepts that can be expressed
alongside atomic concepts. In case of TransE [3] limitations arise from the fact that transla-
tions are functions and thus only functional relations can be expressed. Recent embedding
approaches [19,14,16] try to remedy this by exploring a more logic-like embedding of con-
cepts in the following sense: Embeddings correspond to logical structures in the Tarskian
style semantics—with the exception that the domain is fixed to some continuous spaces and
the extensions of relations and concepts are geometrically-shaped sets in this space, i.e., ge-
ometrical objects of a specific class. In the case of [14] the class of geometric objects is that
of convex sets, which allows a fragment of Datalog to be represented; [16] use hyperspheres
and obtain the lightweight description logic E L

++.
Those recent embedding approaches (and also to some extent TransE [3]) are considered

to present a tremendous progress towards finding and exploiting emergent logical structures
in the data in comparison to classical ML algorithms and classifiers based on neural net-
works or support vector machines (SVMs). But is this really the case? Is an explicit refer-
ence to logics and/or logical structures really necessary to enable logical constraining and
reasoning as expressed by (QC) and (LR)? Maybe, classical approaches such as SVMs im-
plicitly exhibit logical structures that could be used to fulfill (QC) and (LR)? The answer we
want to justify in this paper is “No!” and rests on the following working hypothesis:

(WH) One needs to account for a logic with an appropriate class of logico-geometrical
structures during the training phase in order to design a learning algorithm that fulfils
(QC) or (LR).

In this paper we argue for (WH) along two lines and sketch those two lines in the rest of
this introduction: First, if one tries to interpret a trained classifier by means of logical struc-
tures, counter-intuitive results with respect to (QC) and (LR) emerge. Second, by choosing a
specific class logico-geometrical structure we are able to construct an approach that fulfills
(QC) and (LR). The majority of paper addresses the second line by extending our previ-
ous work [20,17] to develop a logico-geometric approach to classification that ensures prior
logic information to be respected. Such approach can be particular useful where classifiers
need to be geared towards avoiding false positives. Before we embark on the technicalities
of our approach, we explain why the first line of arguments—problematic grounding of log-
ical reasoning in trained classifiers—presents a serious shortcoming we must overcome in
order to achieve hybrid AI approaches capable of learning and reasoning.

Let us consider the task of multi-label learning. Any approach to multi-label learning
must implicitly capture the inherent logic structure underlying the training data. Classical
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Fig. 1 SVM classification by hyperplanes as an example of missing homogeneity in classifiers

multi-label learning proceeds by setting the label yi = 1 for an instance a if label i is relevant
for a and yi = 0 if it is not relevant [12]. Clearly, such approach cannot cope with negative
information in the sense of the absence of a label is indicative for some class. To incorpo-
rate this kind of information, a classifier is required that differentiates yi = +1 (definitive
in class), yi =�1 (definitive not in class) and yi = 0 (not relevant). We refer to this kind of
negation as atomic. If negation can be applied to arbitrary terms like ¬(A_B), we speak of
full negation While atomic negation can be accomplished with simple techniques such as
SVM with a neutral class in-between positive and negative instances, full negation cannot
be achieved and severe limitations remain. Let us consider a simple example depicted in
Figure 1 showing a classification achievable when using a neutral class. For ease of presen-
tation we assume the classifier is a SVM using a simple linear kernel. The actual problem
also arises with complex kernels and also with other classifiers.

Figure 1 shows two concepts C and D with the hyperplanes determined by a SVM
(dashed lines) that separates the positive and negative training data for the individual con-
cepts. Data points labeled with + belong to C, labels enclosed by a circle belong to D. A
point labeled � thus is within C and outside D. Consider the conjunction of concepts C
and D which is naturally represented by the set intersection of the concepts C and D. The
geometrical structure of half-spaces as used by linear kernel SVMs lacks homogeneity in
the sense that it is not closed under logic operations, i.e., it cannot represent C^D. Clearly,
we could construct a specific kernel to single out C^D, but this will only shift the problem
towards other logic combinations which cannot be represented. In other words, classifiers
whose geoemtric structures lack homogeneity show shortcomings when trying to learn mul-
tiple concepts which are interrelated by an underlying logic structure. Note that in order to
support arbitrary concept conjunctions and disjunctions, full negation is required as both are
tied together by DeMorgan’s law.

The problem discussed above applies to any form of classifier in which geometric and
logic structures are not balanced. Limitations exist with a wide range of approaches that
embed logic structures geometrical since full negation, which is an important building block
in most logics, is hardly supported. Contemporary approaches either completely lack the
treatment of negation (such as TransE [3] and its successors) or provide only atomic negation
[30,8,16] or only go little beyond, for example by supporting disjointness constraints [14].
We note that already Gärdenfors [10, p. 202] considered the representation of negation (and
quantification) as particularly difficult.
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As for the second line of argument for the working hypothesis we are going to show that
cone-based models feature homogeneity and show how cone-based models can be learnt in
algorithms that fulfil (QC) and (LR). Cone-based models allow representing logics within
the band from classical propositional logic at one extreme (having say distribution of “and”
over “or”); minimal orthologic [13] (missing distribution) at the other extreme, and much in
between (in particular quantum logics [22] supporting a weakening of distributivity, namely
orthomodularity).

Because cone-based models induce orthologics they support full (ortho)negation of or-
thologics, i.e., a negation that fulfills antitonicity (contraposition), the intuitionistic absurdity
principle (anything follows from a sentence stating A and its negation) and double negation
elimination. Moreover, weaker orthologics (i.e. those weaker than classical Boolean logics)
allow modeling uncertainty and partial information. This is a clear benefit for multi-label
learning scenarios as typically many entities are undetermined w.r.t. a given label. For ex-
ample, one would like to refrain from assigning a class label like “can swim” or its negation
“cannot swim”, if neither evidence is given in the training data.

The rest of the paper is structured as follows: In Sect. 2 we recap necessary fundamentals
of lattice theory, orthologics, and convex cones. Sect. 3 is the main theoretical contribution:
it introduces the cone structure on which our embedding is based. Sect. 4 develops the main
embedding algorithms and Sect. 5 presents an evaluation. After a discussion of related work
in Sect. 6 we conclude the paper in Sect. 7.

2 Preliminaries

The class of logics that are in the focus of this paper are orthologics [13]. These characterize
the class of ortholattices and thus motivate us to develop the theory of cones based on or-
tholattice ground. Therefore, we now give a short introduction to lattices and ortholattices.
This is followed by the necessary bits on orthologics. We draw a link of orthologics to de-
scription logics (DL), which are the favoured class of logics to represent ontologies. Further
we discuss the geometrical notions, in particular that of cones, that we are going to use as
interpretations of the logics for embeddings.

2.1 Lattices

A lattice (L,) is a structure with a partial order  such that for any pair of elements
a,b 2 L there is a smallest upper bound a_b and a largest lower bound a^b. It is bounded
if it contains a smallest element 0 and a largest element 1. A lattice is called distributive iff
for all a,b,c 2 L: a^ (b_ c) = (a^b)_ (a^ c) (and dually: a_ (b^ c) = (a_b)^ (a_ c)).

The binary modularity relation on a lattice [9], (L,) is defined for all a,b 2 L as fol-
lows: M(a,b) :,8c a : a^ (b_c) = (a^b)_c. A pair (a,b) is said to be a modular pair
iff M(a,b) holds. A lattice is called modular iff M(a,b) for all a,b. The modularity relation
generalises the property of distributivity.

In a lattice an element a⇤ is called a complement of a iff a^ a⇤ = 0 and a_ a⇤ = 1. A
lattice is said to be complemented (uniquely complemented) iff each a has a complement
(has exactly one complement). A bounded lattice L is called an ortholattice iff it has an
orthocomplement ·?, i.e., a function such that for all a,b 2 L the following three conditions
hold:

– a b entails b?  a? (antitonicity)
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Axioms

Rules

A ` A A & B ` A A & B ` B A a`ssA
A & sA ` B A _ B a`s(sA & sB)

A ` B, B `C
A `C

A ` B, A `C
A ` B & C

A ` B
sB `sA

Fig. 2 Minimal Orthologic Omin

– a?? = a (double negation elimination)
– 0= a^a? (intuitionistic absurdity)

Any ortholattice satisfies de Morgan’s laws, i.e., for any a,b 2 L it holds that (a^b)? =

a? _ b? (and dually: (a_b)? = a? ^ b?). Roughly, ortholattices can be understood as
Boolean algebras without the distributivity rule. An ortholattice is called orthomodular iff
the following condition [22, pp. 35] holds:

(OMr) If a b and a?  c then a_ (b^ c) = (a_b)^ (a_ c). (orthomodularity)

Clearly any modular ortholattice is also orthomodular.

2.2 Orthologics

The class of logics that are in the focus of this paper are orthologics [13]. Let P= {Pi | i2N}
be a set of proposition symbols and assume that we have logical symbols for binary con-
junction &, unary negation s, and binary disjunction _. The set of propositional formulae
Fml(P) over P is defined as usual. A,B,C stand for propositional formulae in Fml(P).

We consider a deduction calculus with a derivability relation `. We use the short nota-
tion A a` B for A ` B and B ` A. Moreover, for a finite set of formulae G = {B1, . . . ,Bn}
the notation G ` A is a shorthand for B1 & · · · & Bn ` A. The calculus of minimal orthologic
Omin according to Goldblatt [13] is given in Fig. 2. Any logic extending Omin is called
an orthologic. Minimal orthologic Omin can be shown to exactly characterize the class of
ortholattices (= the class of lattices with an orthonegation) as formally described in Proposi-
tion 1: this proposition states that an entailment holds in Omin if and only if it holds for the
class of all ortholattices. A typical instance of the family of orthologics is classical proposi-
tional logic, which has a Boolean negation operator and fulfills the law of distributivity of the
and-junctor over the or-junctor (and vice versa). Other prominent orthologics are quantum
logics, which fulfill a weakening of distributivity, the orthomodularity rule.

Any logic L containing the rules of Fig. 2 is called an orthologic. For any orthologic
the well-known Lindenbaum-Tarski construction leads to an ortholattice: The binary relation
a` can be shown to be an equivalence relation inducing for each formula C an equivalence
class [C]. Define operations ^, _, ? on the equivalence classes by setting [C]^ [D] = [C & D],
[C]_ [D] = [C _ D] and [C]? = [sC]. These yield an ortholattice.

Goldblatt [13] defines the semantics of orthologics based on a structure (X ,?) called an
orthoframe. It consists of a domain/carrier X and a binary orthogonality relation?✓ X⇥X ,
i.e., a relation that is irreflexive and symmetric. An orthoframe induces an operation (·)⇤ over
subsets Y ✓ X defined by Y ⇤ = {x 2 X | x?Y} = {x 2 X | x?y for all y 2 Y}. Observe the
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Table 1 Syntax and semantics for Boolean A L C for an interpretation I

Name Syntax Semantics

top >̇ D
bottom ?̇ /0
conjunction C u̇ D (C u̇ D)I = I (C u̇ D) =CI \DI

disjunction C ṫ D (C ṫ D)I = I (C ṫ D) =CI [DI

negation ¬̇C (¬̇C)I = I (¬̇C) = DI \CI

correspondence to polarity of cones. A set Y ✓ X is called ?-closed iff Y = Y ⇤⇤. This says
that if x /2 Y then there is a z such that not x?z, and for all y 2 Y : z?y.

An orthomodel for a logic L over Fml(P) is defined as a structure I = (X ,?,(·)I )
such that (X ,?) is an orthoframe and (·)I assigns to each Pi 2 P a ?-closed set over X .
In a natural way one can extend the assignment function to arbitrary formulae (A & B)I =
(A)I \ (B)I , (sA)I = ((A)I )⇤. (_ is treated by de Morgan’s law). The semantical en-
tailment relation ✏ then can be defined as I : A ✏ B iff (A)I ✓ (B)I . If U is a class of
orthoframes, then A ✏U B means that I : A ✏ B for any orthomodel definable in any or-
thoframe in U .

Using a canonical-model construction, Goldblatt establishes the following (soundness
and) completeness result for the class q of all orthoframes:

Proposition 1 ([13]) G `Omin A iff G ✏q A.

2.3 Description Logics

The family of description logics (DLs) is a family of variable-free fragments of FOL that
are designed, in particular, for the representation of ontologies. Hence, any DL vocabulary
(signature) contains a set of constants Nc in order to talk about individuals, a set of concept
names NC to talk about concepts, i.e., unary predicates and role names (corresponding to
binary relations). Then any DL defines how to construct (complex) concepts based on this
vocabulary, how to set up a terminology relating those concepts in inclusion axioms and
how to set up assertions about the instances of concepts and the roles.

In this paper, we will completely neglect roles. (For a discussion of full A L C we re-
fer the readers to [20]). As a result, the syntax that we consider is the propositional part
of the semi-expressive DL A L C [2] and we term A L C -concepts without roles Boolean
A L C -concepts. The set of Boolean A L C concepts C is defined according to the follow-
ing context-free grammar:

C! A |?̇|>̇|C ṫC |C u̇C | ¬̇C, (1)

with atomic concepts A 2 NC and an arbitrary concepts C. Note that A is meant as a meta-
variable for atomic concept symbols. We also allow B and indexed variants as atomic con-
cept symbols. Next to C we also consider D and indexed variants as meta-variables for
complex concepts.

An A L C interpretation (D , ·I ) consists of the domain D (the space of possible ele-
ments) and an interpretation function ·I = I (·) mapping constants to elements in D and
concept names to subsets of D . The semantics of arbitrary concepts is given in Table 1.

An ontology O is a pair (T ,A ). The terminological box (tbox) T contains general
concept inclusions of the form C v̇ D stating that C is a subconcept of D, for arbitrary
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concepts C and D. The assertional box (abox) A consists of facts of the form C(i), i 2 Nc,
which says that individual i is in the extension of C.

The link to orthologics that we exploit here is that the tbox can be read as entail-
ment relations in an orthologic. In detail: The tbox can be associated with some transfor-
mation a with an orthologic along the following lines. With each concept symbol A one
can associate a propositional symbol a(C) = PA. This association now can be extended to
arbitrary concepts by associating concept constructors with their corresponding proposi-
tional connectives. Concretely: a(C u̇ D) = a(C) & a(D); a(C ṫ D) = a(C) _ a(D); and
a(¬̇C) =sa(C). An inclusion axiom C v̇ D then is associated with an entailment relation
` by a(C v̇D) = a(C) ` a(D). For example, an inclusion axiom of the form A1 u̇ ¬̇A2 v̇ B
is associated with the entailment PA1 & sPA2 ` PB.

Propositional A L C with the semantics according to Table 1 then corresponds to clas-
sical propositional logic, i.e. the orthologic which allows for distributivity of & over _ and
vice versa. The main point in our paper is that we will allow other interpretations of the
Boolean A L C concept constructors that correspond to weaker orthologics: Whereas the
interpretation of the concept-and u̇ will still correspond to intersection, the interpretation of
the negation ¬̇ will not be that of set complement and the interpretation of the concept-or ṫ
will not be that of set union. The general definition of interpretation according to Definition
1 allows to embed concepts with nodes in an ortholattice. Concept inclusion v̇ as used in
tboxes then is associated with an entailment relation ` that fulfils the general axioms and
constraints of orthologics (see Figure 2) but not necessarily, say, the distributivity axiom.

Due to the correspondence with orthologics one may ask whether we choose to work
with DL concepts at all and not directly with orthologics? The main reason is the distinction
between the terminological box and the assertional box offered by DLs. With the asser-
tional box we have additional means to refer to elements in the domain and thereby require
concepts to contain some individuals. This is particularly useful for the supervised learning
scenarios where we want to learn concepts based on training examples which are known to
belong to specific concepts.

2.4 Cones

We consider geometric objects in finite dimensional Euclidean spaces Rn which are equipped
with a dot product h·, ·i. For any x = (x1, . . . ,xn), y = (y1, . . . ,yn) 2 Rn the dot product is
defined as hx,yi = S1inxi · yi. The dot product induces a norm for vectors ||x|| = hx,xi,
and hence a metric d(x,y) = ||x� y||. Based on a metric d one can define the open balls
Be,x = {y | d(x,y)< e}, which in turn lead to the notion of open sets O (for each x 2O there
is a ball B(e,x)✓ O contained in O) and closed sets (= complements of the open sets).

A face of a convex polytope P is defined either as the polytope P itself or as P\ h
where h denotes a hyperplane for which P is fully contained in one of the closed halfspaces
determined by h [18]. A (d � 1)-dimensional face of a d-dimensional polytope is called
facet [18]. In the following, the notion of a facet is used for not necessarily convex polytopes.
Therefore, it is slightly adapted: A facet of P is defined as P\h where h denotes a hyperplane
for which the greatest convex polytope X ✓ P containing P\ h is fully contained in the
closed halfspace determined by h. A convex cone a is a set such that from x,y 2 a it follows
that lx + µy 2 a for any l ,µ 2 R�0. We consider convex cones that are closed in the
canonical topology of Rn as defined above. One of the nice properties of closed convex
cones is that they allow a polarity operation that takes the role of an orthocomplement.
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The polar cone [23] a� for a is defined for Euclidean spaces with a dot product h·, ·i as
a� = {x 2Rn | 8y 2 a : hx,yi  0}.

Now consider the subset-relation v=✓ on closed convex cones in Rn as a partial order.
Closed convex cones are closed under set intersection, so \ is a meet operator ^ w.r.t. .
Closed convex cones are not closed under set union. Instead they have to be closed up by the
conic hull operator. The conic hull of a set b, for short conH(b), is the smallest convex cone
containing b. So, we can define the join operation _ by a_b = conH(a[b). Considering Rn

as the largest lattice element 1 and {0}, for 0 2 Rn, as the smallest lattice element 0 makes
the resulting structure a bounded lattice.

The polarity operator for closed convex cones fulfills the properties of an orthocom-
plement. Hence the set of all closed convex cones (over Rn) forms an ortholattice. As de
Morgan’s laws hold in any ortholattice, one gets in particular the following characterization
of the conic hull: conH(a[b) = (a� \b�)�. We denote the set of all closed convex cones in
Rn by Cn.

Proposition 2 For any n� 1, Cn is an ortholattice.

We use dedicated symbols for the signature of ortholattices when we talk about the
ortholattice of closed convex cones: v=✓ stands for the lattice order , u = \ stands for
lattice meet ^, t stands for lattice join _, and � stands for orthocomplement ?, ✏ = Rn

stands for the largest element 1 and ✏= {0} stands for the smallest element 0.
The following proposition shows that cones are structures that naturally arise when an

orthogonality relation is constrained to rely on an arbitrary symmetric positive semidefinite
bilinearform (e.g., scalar product) since ?-closure enforces cones.

Proposition 3 For a given vector space V (over R or any other field with an order) and a
symmetric positive semidefinite bilinearform h·, ·i let X =V \{~0} and define for all u,v2 X:
u?v iff hu,vi  0. Then: (X ,?) is an orthoframe and the ?-closed sets are closed convex
cones (without~0).

Proof Due to symmetry/positive semidefiniteness of h·, ·i the relation ? is symmetric/irre-
flexive. Now consider a ?-closed set Y. We have to show that for all l � 0 and y 2 Y also
x := ly 2 Y (or ly =~0) and with u,v 2 Y also u+ v 2 Y (or u+ v =~0). So let l � 0 and
y 2 Y . Further assume ly 6=~0, thus l 6= 0. Due to ?-closure there is a y0 with y0?Y and
y0 6? x. But this means in particular hy0,yi  0 and hy0,xi= hy0,lyi= l hy0,yi> 0. As l 6= 0
this is a contradiction. Now let u,v 2Y and l � 0 and assume that u+v 6=~0. So u is not�v.
Towards contradiction assume x := u+ v /2 Y . Due to ?-closure there is a y0 with y0?Y and
y0 6? x. The first means in particular we have hy0,ui  0 and hy0,vi  0; the latter means that
hy0,u+ vi= hy0,ui+ hy0,vi> 0, a contradiction.

3 Cone-Based Geometric Models

We are going to tackle the problem of multi-label classification by following the general
idea of knowledge graph embedding: interpreting labels (concepts) with geometric objects
in some continuous space and using the regularities in the geometric space to predict (new)
instances of a concept. To do so we define in this section the kinds of geometric objects
we are going to use. Thus, assume we have given DL vocabulary s without roles, i.e., only
concept symbols NC and individual constants Nc. We assume that there is some continuous
space E (such as Rn) and a class of geometric objects D defined over E and equipped with
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operations that lead to a bounded ortholattice: K = (D ,^,_, ·?,1,0) over D equipped with
three operators, two binary operators ^,_, a unary operator ·? (the latter used in postfix
notation) and two constants 1,0. Each member of K is some object defined over D and all
of them share some geometrically defined property. Moreover, we require this algebra to be
a bounded ortholattice so that we have the notion of an ortholattice order .

Definition 1 A geometric interpretation w.r.t. s and K is defined to be a structure I =
(DI ,(·I )) such that

– each i 2 Nc is mapped to an element in D
– each C 2 NC is mapped to an element in K

A geometric interpretation is extended to arbitrary concepts by
– (>̇)I = 1
– (?̇)I = 0
– (C u̇ D)I =CI ^DI

– (C ṫ D)I =CI _DI , and
– (¬̇C)I = (CI )

?.

We define satisfaction/modelling relation |= as follows for abox axioms: I |= C(i) iff
I (i) 2 I (C). For the interpretation of tbox axioms we exploit the order of the ortholat-
tice: I |=C v̇ D iff CI  DI .

Having the definition of a geometric interpretation we can define in a usual way what
it means that a geometrical interpretation I is a model of an ontology (T ,A ), namely
I |= (T ,A ) iff I |= ax for all ax 2T [A .

3.1 Geometric Interpretations based on Convex Cones

We consider the class of convex cones Cn =Kcc�n = (Rn,u,t, �, ✏ , ✏) as the basic class of
geometric objects with the order relation interpreted as subset relation✓ as defined above. A
geometric model of a tbox represents the inclusion axioms in a geometric way, in particular,
when AI v BI , then A is a subregion of B in the model. However, when we consider
geometric interpretations w.r.t. Cn in more detail, we see that they are quite different from
classical interpretations.

For example, assume that the signature s contains only the concept symbols A,B,C.
The geometric interpretation I1 gives the configuration of convex cones as illustrated on
the left of Fig. 3, where I1(A) = a and I1(B) = b. There are areas where according to I1
an object is neither in a nor in its polar a�, namely all those objects not contained in the
gray area. When representing negation with polarity, any point neither contained in a a nor
its polar cone a� represents an entity for which class membership of the class A is unknown.
This ability is a special feature of this geometric model. The geometric interpretation I2
illustrated on the right of Fig. 3, again with I2(A) = a,I2(B) = b and I2(C) = c illustrates
that distributivity does not hold: atb is the convex hull of a and b so cu (atb) = c. But on
the other hand cub = cua = ✏ and hence (cub)t (cua) = ✏ 6= c.

3.2 Geometric Interpretations Based on Axis-Aligned Cones

When the ontology is assumed to be classical, in particular to fulfill distributivity, the class
of convex cones has to be restricted. Thus, we consider also a special class of convex
structures—namely the class of axis-aligned cones (al-cones).
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a�

a

b
b�

a
c

b

b�

a�
c�

Fig. 3 Examples for geometric models based on convex cones. Left: model showing that excluded middle
does not hold. Right: Showing that distributivity does not hold

x� axis = a 6$ b

y� axis = a$ b

ba

b� a�

a� ubaub�

a
u

b
a�
u

b�

?

atb

a� tb�

✏

atb� a� tb

i1

i2

Fig. 4 Example of a geometric interpretation based on axis-aligned cones. For better reading we used a 6$ b
for (aub�)t (a� ub) and a$ b for (aub)t (a� ub�)

Definition 2 An al-cone in the n-dimensional space is of the form

a = (a1, ...,an) where each ai 2 {R,R+,R�,{0}}. (2)

For better readability, subsequently R,R+,R�,{0} are replaced by u,+,�,0.
For the purpose of embedding, every concept of an ontology is assigned to an al-cone as

defined in (2) with respect to the tbox axioms of the ontology. Due to the simple form of al-
cones geometric operations can be done dimension-wise. So, e.g., the intersection of (+,�)
and (+,+) reduces to considering the intersection of the first components + and + (giving
+) and the intersection of the second components� and +, giving 0. In the embedding with
al-cones, constants are placed in a region were the corresponding abox axioms are valid.
Special cases are the top concept >̇, represented as {u}n which thus covers the whole space
and the bottom concept ?̇, which is represented as the point of origin {0}n.

Figure 4 gives an example of a geometric model for an empty tbox and two concepts A
and B. The abox consists of B(i1),B(i2) and ¬A(i2). The element i1 is in a region where it
is neither in A nor in ¬A and thus represents partial information.

The geometric model for a given tbox is constructed based on the set K of all possible
fully specified concepts k in the ontology. A concept is fully specified when it contains
every atomic concept or its negation. The geometric model has the dimension d =

l
|K|
2

m
.

A conjunction between fully specified concepts is not possible, so every k is placed on one
half-axis. The al-cone for each atomic concept can be determined by constructing the union
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of all k in which it appears positively. The corresponding negative concept can be found by
negating the positive concept. With an empty tbox with n concepts this results in 2n fully
specified concepts and thereby in a geometric model with d = 2n�1 dimensions.

With a non-empty tbox the number of possible k decreases, but it is still exponential
in the most cases. The construction of the model is similar to the empty case (using the
Lindenbaum-Tarski algebra induced by the tbox). Real world ontologies could be of large
scale, therefore the exponentiality could be problematic. However, it is possible to find di-
mension reduction strategies, e.g. considering only a subset of the possible atomic concepts
is most times adequate, as many of them are unlikely to appear. This allows for approximat-
ing the geometric model in a non-exponential dimension.

For example, the construction of the geometric model with an empty tbox is conducted
as follows: The fully specified concepts are A u̇ B,A u̇ ¬̇B,¬A u̇ B, and ¬̇A u̇ ¬̇B. The
geometric representation of each of this fully specified concepts is placed on an individual
half axis. Thus, the geometric representation I (·) is for example

I (A u̇ B) = (0,+) (3)
I (A u̇ ¬̇B) = (�,0) (4)
I (¬̇A u̇ B) = (+,0) (5)
I (¬̇A u̇ ¬̇B) = (0,�). (6)

The representations of the other concepts are unions of the representations of the fully spec-
ified concepts and thus the resulting model is the one shown in Figure 4.

3.3 The Geometric Model of Pairs of Unions of Convex Cones

Convex cones are useful structures because they are appropriate for logical reasoning with
partial information, and al-cones can be used for a multi-label-learning approach as demon-
strated in the next section. However, there is a catch with using al-cones: As stated in [17]
the dimension of the embedding space increases exponentially in the number of concept
symbols used in the ontology. We consider this not as a problem of the approach itself but
as the problem of what could be considered in ML speak a wrong bias, namely, assuming
that a classical propositional logic such as propositional A L C is the right ontology lan-
guage. So, in this paper we additionally consider a second implementation, which is again
based on SVMs. But rather than using axis-aligned cones (corresponding to propositional
A L C ) we use the broader class of pairs of unions of convex cones, for short: puccs. These
structures lead to a weaker logic, namely a weak orthologic which can appropriately handle
uncertainties in the data (see below).

But why do we not rely directly on convex cones and, instead, use pairs of unions of
convex cones? It turns out that directly learning convex cones in the feature or kernel space
based on underlying SVMs is difficult. The reason is that for an SVM that learns with (ordi-
nary) cones but without a kernel, the positive instances of a concept have to be perpendicular
to the negative ones. It may be the case that this perpendicular configuration already holds
in the data—but it is not necessarily the case. However, using an SVM that learns with (or-
dinary) cones and applies the kernel trick, it is necessary to find a kernel that maps the data
into a space in a way yielding this perpendicular configuration. On the one hand, this can
be accomplished by a kernel that maps the instances in a way that each instance is perpen-
dicular to each other instance, as then cone separability is trivially given. But this leads to
an extremely high-dimensional space and thus results in overfitting and loss of information.
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One the other hand it is possible to use a kernel which results in a greater angle between pos-
itive and negative than between positives. However, for this kernel it is necessary to know
beforehand the ideal separation to choose the kernel in a way which reproduces this ideal
separation. Therefore, the separation is needed to be known beforehand which contradicts
the SVM-approach. To sum up: Having suitable data, learning with convex cones is possi-
ble, however, using arbitrary data, the restriction to polarity-based negation is too strong.
Nonetheless, the SVMs should be used as an efficient basis algorithm as they allow for the
kernel trick and thus the dimension of the solution could be kept small, and they guarantee
a maximum-margin classifier.

As a consequence of the considerations above we can see that a generalization of convex
cones is necessary that on the one hand keeps the expressiveness of the cone model but on
the other hand is learnable by using SVMs. This is accomplished by softening the definition
of the negation operation. In the following, structures are considered which are still based
on convex cones but which allow also set-unions of them to be constructed.

In more technical terms, we use structures that are pairs of set-theoretic unions of convex
cones, named puccs for short. The reason to use pairs is that for unions of convex cones per
se it is difficult to define a negation as some geometric operation. The second component
in a pucc is to be thought as a dual of the first component: every natural operation on the
first argument is mimicked by its dual operation on the second argument, e.g., intersection
on the first argument becomes some form of union on the second argument. So, considering
pairs eases to handle a (complex) class and its negation in parallel. A pucc is defined in the
following way:

Definition 3 A structure (S ,S 0) with S ,S 0 ✓ Rn is called a pair of unions of convex
cones, pucc for short, if it fulfills the following constraints:

1. Let X 2 {S ,S 0}. Then for all x 2 X and all l � 0 it holds that lx 2 X .
2. (S ,S 0) =Cnk((S ,S 0)) (Cnk((S ,S 0)) as defined in Equation (7) below)
3. S \S

0 = {0} (where \ denotes set intersection)
4. Let X 2 {S ,S 0}. Then there is no x 62 X such that hx,yi  0 for all y 2 X 0.

The closure operator Cnk(·) is motivated by the conic hull operator for convex cone. As
the structures contained in the pucc are not necessarily convex or connected, it can’t be used
in its original form and therefore is adapted.

Cnk((S ,S 0)) =
�
{conH(x1[ x2) | conH(x1[ x2)\S

0 = {0} for facets x1,x2 2S }[S ,

{conH(x1[ x2) | conH(x1[ x2)\S = {0} for facets x1,x2 2S
0}[S

0�
(7)

where conH(·) describes the classical conic hull. The basic idea is that the convex hull is
added if it is not in conflict with the third constraint.

Using this definition of a pucc, it is possible to directly translate the geometric model
based on these puccs into a lattice.

Definition 4 The translation of the geometric model into a lattice:

– Each pucc (S ,S 0) is an element a of the lattice.
– The orthocomplement a? of a lattice element a is denoted using the ·0 notation again

and is defined by permuting the elements of the pucc:

(S ,S 0)0 = (S 0,S )
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– The intersection of two lattice elements a^ b is defined by closing up the pair with set
intersection in the first argument and set-union in the second argument:

(A ,A 0)u (B,B0) =Cnk((A \B,A 0 [B
0))

– The disjunction of two lattice elements a_b is defined via intersection and De Morgan:

(A ,A 0)t (B,B0) =Cnk((A [B,A 0 \B
0))

Note that by definition of Cnk it follows that it commutes with the orthocomplement:
Cnk((S ,S 0))0 =Cnk((S ,S 0)0).

– The bottom element 0 of the lattice is given as follows

0= ({0},Rn)

– the top element 1 of the lattice is dually defined as

1= (Rn,{0})

Note that—due to the definition of puccs as pairs— two elements of the lattice are identical
iff identity in both arguments holds: (A ,A 0) = (B,B0) iff A = B and A

0 = B
0.

Having this definition, the question arises, whether the puccs are closed regarding the
definition of negation, conjunction and disjunction, meaning whether using these operations
always results again in a pucc. The following proposition shows that this is indeed the case.

Proposition 4 Puccs are closed under conjunction, disjunction, and negation.

Proof
– All constraints are trivially closed under negation.
– Conjunction and disjunction are related via De Morgan, meaning proving closure w.r.t.

one of them is sufficient. In the following it is proven that if (A ,A 0) and (B,B0) are
puccs, then Cnk((A \B,A 0 [B

0)) is a pucc, too.
The considerations are done per constraint of Definition 3:
1. By Cnk() only convex hulls are added, meaning the convexity is kept.
2. The second condition is (S ,S 0) =Cnk(S ,S 0):

This means Cnk((A \B,A 0 [B
0)) = Cnk(Cnk((A \B,A 0 [B

0))). A \B is
not changed by Cnk(). This is the case as A and B are parts of puccs. If for the
intersecting parts of the puccs Cnk() would add any elements, this would mean that
they haven’t been structures beforehand.
The remaining question is, whether using Cnk() two times will change the result.
Assume there is a facet x1 2 Cnk((·,A 0 [B

0)), which is not in A
0 [B

0 and for
which for another facet x2 it is valid that conH(x1 [ x2)\S

0 = {0}. But as x1 is
based on the conic hull of some x3 and x4 in A

0 [B
0, this means that conH(x1[x2)

will be included in conH(x3 [ x2) and conH(x4 [ x2). Therefore, using Cnk() two
times will not change the result and the constraint is valid.

3. It needs to be tested, whether S \S
0 = {0}. Following the argumentation of 2. it

follows that S = (A \B) and S
0 = {conH(x1[x2) | conH(x1[x2)\ (A \B) =

{0} for facets x1,x2 2 A
0 [B

0}[ (A 0 [B
0). As every element of S

0 does not
intersect with S and (A ,A 0) and (B,B0) are puccs, the union of the elements
does not intersect, too.
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4. Let x 62S and for all y 2S
0 (S and S

0 as defined above) hx,yi  0. This means
that x 2A \B (or B\A ) as (A ,A 0) and (B,B0) are puccs. But as x 2A \B, and
x 62S

0, therefore x 62B, x 62B
0 and therefore (B,B0) does not fulfill the constraint.

A contradiction.

Therefore, the geometric model is closed under these operations. This fact justifies our talk
of “translating the geometric model into a lattice” as done in Definition 4. Having this trans-
lation, the question arises which logical structure is represented by this geometric model.

The logic induced by pairs of unions of convex cones The resulting logic is an orthologic
and hence rule of De Morgan is fulfilled.

Proposition 5

The lattice Lpucc induced by the geometric model of puccs has the following properties:

1. Lpucc fulfills the rule of De Morgan.
2. Lpucc is an ortholattice.

Proof
1. The rule of De Morgan is fulfilled by definition of the union and only mentioned here

for completeness.
2. The ortholattice-rules are considered case by case:

(a) a^a? =?. Translated into the geometric model, this means the equality (A ,A 0)\
(A 0,A ) = ({0},Rn) should hold. Thus, (A ,A 0)\(A 0,A ) =Cnk((A \A

0,A 0 [
A )) and as discussed above (A \A

0,X ) with X = {conH(x1 [ x2) | conH(x1 [
x2)\(A \A

0) = {0} for facets x1,x2 2A [A
0}[(A [A

0). By definition 3.3, this
is ({0},{conH(x1[ x2) | facets x1,x2 2A [A

0}[ (A [A
0)). Thus the remaining

question is, whether {conH(x1[x2) | facets x1,x2 2A [A
0}[(A [A

0) =Rn and
therefore, whether conH(A [A

0) = Rn. This is the case by definition 3.4, as that
constraint forces the pucc to populate each dimension of the model.

(b) a b implies b?  a?: This can be reformulated to b = a_b implies a? = b?_a?.
Translated into the geometric model, this means (B,B0) =Cnk(A [B,A 0 \B

0).
It follows that B0 ✓A

0 and A ✓B and therefore (A 0,A ) =Cnk(A 0 [B
0,A \B)

and therefore a? = a? _b?.
(c) a?? = a. In the geometric model, this is (A ,A 0)00 = (A 0,A )0 = (A ,A 0).
Therefore, the resulting lattice is an ortholattice.

We note here that the class of puccs is a rich family of structures: it covers the class
of geometric models based on convex cones and hence also the restricted class of al-cones.
This motivates the usage of puccs as generalization of convex cones with polarity.

Proposition 6 There is a closed subclass of the puccs that represents a Boolean algebra.

Proof Consider puccs (A ,A 0) with A [A
0 =Rn. These puccs are obviously closed under

conjunction, disjunction and negation and they build up a Boolean algebra.

Proposition 7 A classical cone model is representable by a geometric model based on
puccs.

Proof Assume the geometric model consists only of puccs of the form (A ,A �), where A

is a convex cone and A
� is the polar of A . This actually is a pucc, as for the constraints in
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definition 3, (1.) and (2.) are fulfilled by convexity, (3.) is fulfilled as the cone lattice is an
ortholattice, (4.) is fulfilled by polarity. Having this puccs, they are closed under disjunction,
conjunction and negation (meaning assigning this operations lead to a convex cone and its
polar)

– negation: trivial
– conjunction: A \B is a convex cone, as A and B are convex cones. As the conic hull

between two arbitrary elements in A
0 [B

0 never intersects with A \B (because of the
ortholattice rules), this means, that it is exactly represented by the conic hull.

– disjunction follows by De Morgan.

4 Cone-Based SVMs

Now that we have defined and discussed two cone models, we can design learning ap-
proaches for multi-label classification based on al-cones on the one hand and puccs on the
other hand. Both approaches rely on SVMs as they are a widely used learning strategy for
binary decision problems because of their good generalization qualities. For an introduction
to SVMs see for example [4].

Both presented approaches have the aim to incorporate ontological information in the
training process. The fist approach is based on classical propositional logic (Boolean alge-
bra), the second one extends the usage area to a weak orthologic. Both approaches are based
on SVMs, the first one is based on al-cones and uses the ontological information to deter-
mine the instances used for training each classifier, the second approach is based on learning
the geometric model directly in the feature space.

The multi-label learning problem is stated as follows: Let X be a set of training in-
stances with numeric features. Each instance xi 2 X has labels yi, j 2 {�1,0,1} for each la-
bel j, meaning each instance could have assigned the label as positive, negative or unknown.
Hence the training set X can be treated as an abox. The (prediction) task is to determine the
labeling for a new element. For the first approach, additionally a tbox is given.

4.1 Multi-Label Classification with Al-Cones

The first approach relies on al-cones and thus can be used to embed A L C -ontologies. This
approach is based on the assumption that the ontology (the tbox and the abox) of the data is
given and so considers mainly the scenario (QC) mentioned in the introduction. The idea for
embedding A L C tboxes with al-cones is to incorporate the training data into the geometric
model and learn with the resulting spatial information.

In detail, the approach works as follows: Every element x of the training data is mapped
to a subspace of the vector space by creating a code vector cv(x) with cv(x) = {+,�,0,u}d

based on its labeling (its abox-information) and based on the geometric model of the given
tbox. In this way an element is not represented by an individual point in space but by an
al-cone. In every al-cone there could be several individuals. Thus the training elements are
embedded into the geometric model, and therefore into the ontology space.

The point is that elements that have the same annotation in one dimension of the geomet-
ric model have some similar attributes based on the ontology. The assumption is that these
attributes are actually modeled in the data. Therefore, it is assumed that for each dimension
a classifier can be trained that separates a (possibly latent) attribute of the feature space.
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Therefore, for each dimension 1  k  d all elements are separated into classes as fol-
lows:

X+,k = {x | cv(x)k =+} (8)
X�,k = {x | cv(x)k =�} (9)
X0,k = {x | cv(x)k = 0} (10)

A code-vector with a u at dimension k is ignored. Now, for each dimension a classifier is
trained. All classifiers are trained in the feature space, however, the belonging to the positive,
zero or negative class depends on the sign of the element in the specific dimension of the
geometric model.

We describe in the following in natural language the algorithm for training the classifiers.
The pseudo-code of the training is depicted in Algorithm 1, for the classifier in Algorithm
2. The algorithm gets the set of training instances X , the abox (thus the labels of the in-
stances) and the tbox-information as input. Based on the tbox, a geometric model is created
as depicted in section 3.2. Then, for each instance x 2 X , a code-vector cv is created, which
decodes the position of this instance in the geometric model. Then, for each dimension k
of the geometric model, the set of positive, negative and zero instances is determined based
on the respective code-vector and based on these, a SVM is trained for each dimension. For
the classification, the new instance x is classified with each classifier in the set of classifiers
Cl, thus for each dimension. This leads to its position in the geometric model and enables to
deduce the resulting labels based on the given geometric model.

Algorithm 1 al-cone-SVM(X ,abox,tbox)
GM = create geometric model(tbox) //generate the geometric model
Cl = [] //Initialize list of classifiers of size dimension of GM
for x 2 X do

cv(x) = get code vector(GM, abox(x)) //generate the code vector of an element based on its labeling
end for

for k in dimension of GM do

X+ = [];X� = [];X0 = [] //Initialize positive, negative and undetermined training set
for x 2 X do

if cv(x)[k] ==0 +0 then

X+.append(x)
else if cv(x)[k] ==0 �0 then

X�.append(x)
else if cv(x)[k] ==0 00 then

X0.append(x)
else

pass
end if

end for

Cl[k] = train SVM(X+,X0,X�) //Train a SVM for dimension k in the feature space based on the distri-
bution of elements in this dimension

end for

When only one of the three classes in dimension i is used, then training of the classifier
is not possible and all elements are assigned to the existing class. When in one dimension
there are only two of the three labels used, then a binary classifier is trained and the third
class is ignored. A special case appears when all three classes exists. In a geometric model,
an element x can be classified as + in one dimension either when it belongs actually to the
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Algorithm 2 Classify(x, Cl)
for k in dimension of GM do

cv(x)[k] = Cl[k].classify(x) //Get the classification result for each dimension of the geometric model
end for

classification = GM.get labels(cv(x)) //Deduce labels from code-vector

positive or when it consists of missing information and would be originally a zero. However,
an element which is classified as zero in this dimension actually is zero. Therefore, positive
and negative elements get more misclassified than zero ones. Therefore, two classifiers are
trained, one separating + from the rest, one separating � from the rest. For both classifiers
the misclassification cost of zero is increased to incorporate the above mentioned fact. Even
the elements which are classified as + only because of missing information add information
to the training process, as the probability is high that they share some attributes of the actual
positives.

For classification, the classification result for the test element is determined for each
dimension separately. The results of every dimension are concatenated and produce a code-
vector (an al-cone) for the test element. This code vector is then placed in the geometric
model. An element e is said to belong to a concept C if the code-vector of e is covered by
the representation of C.

Using al-cones, the ontology representable is restricted to the Boolean Algebra. To cir-
cumvent this restriction and thus to be able to represent weaker ontologies, in the following
first SVMs and then puccs are considered.

4.2 Multi-Label Classification with SVMs

To circumvent the restriction to propositional logic (Boolean algebras), we consider an ap-
proach that allows for more general structures than al-cones. In order to justify the intro-
duction of a new class of structures, we show that classical SVMs do not exhibit (even
implicitly) sufficiently rich logical structure. Therefore, in the next section, an extension of
the approach based on puccs is presented, which can serve the purpose of logical reasoning
(LR) (see introduction) based on a learnt ontology.

To incorporate a logic with negation, it is necessary to train a classifier that actually
has some form of negation, i.e., a classifier that considers not only statements regarding a
concept’s extension (what must be in its extension) but also statements about what is clearly
in the antiextension of the concept. Thus, as a simple multi-label learning approach, a SVM
can be trained for each label which separates the positive occurrences of the label from the
negated ones.

In a tri-class-SVM labels yi in the set {�1,0,1} are considered, where 0 denotes the
undetermined class. The approach in this paper is based on the one presented by Smieja and
colleagues in [24]. They proposed a method that forces the zero class to lie in the margin of
the classifier. This is done by incorporating an additional loss for the zero-elements, resulting
in the cost function

SV M[�1,1](w) = SV M(w)+C · Â
i:yi=0

F(wT xi)

where SV M(w) is the cost function of the classical SVM and F(wT xi) depicts the distance
of xi to the margin-space, thus, F(wT xi) = 0 when xi is inside the margin and F(wT xi) =
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�1+ |(wT xi)| else. Smieja and colleagues [24] showed that this approach is equivalent to
adding the neutral instances to both, the positive and the negative instances, i.e. equivalent
to setting X 0+ = X+ [ X0 and X 0� = X� [ X0. Having done this, a classical SVM can be
trained, where X+ is the set of positive labeled instances (X� the negative labeled and X0 the
undetermined ones).

This approach incorporates the information of the zero label only for improving the
positive and negative results, but does not allow for predicting zero labels. However, this is
necessary for the approach presented below, therefore, the tri-class-SVM is extended with
a simple prediction technique. For the (original) positive and negative class, the margin is
calculated, all elements inside the margin are classified as zero, all elements outside as plus
resp. minus. It is not necessary that the margin is equal for plus and minus.

Thus, each classifier calculates for a given instance whether the specific label is posi-
tively relevant, negatively relevant or undetermined (meaning irrelevant). Now, in order to
conduct any interesting form of logical reasoning, it is necessary to logically combine labels.
An intuitive approach for dealing with the conjunction and the disjunction of labels is this:
An element x is in A\B if x 2 A and x 2 B and x 2 A[B if x 2 A or x 2 B. The resulting
logical structure is that of a Boolean algebra.

However, instead of exploiting the knowledge on simple labels in the training data, it
is also possible to learn the label A[B directly by training a SVM which separates A[B
from ¬A\¬B. An (simplified) example is shown in Fig. 5. There, the deduced space of
A[ B is the set theoretic union, whereas the learnt A[ B denotes a larger area. This is
the case because the undetermined elements are either actually not determinable or they
are missing information. Therefore, it is possible that some undetermined instances can be
assigned to A[B. This is done in this case as the resulting structure is more general and
avoids overfitting and thus is more plausible than the set-theoretic union. Thus, the learned
region does not necessarily fulfill the rules of Boolean logic. There is no way to change the
deduction method to incorporate these union techniques because hyperplanes are generally
not closed under conjunction and disjunction.

¬A

¬B

A

B

A[B

Fig. 5 Labels A and B and A[B trained with a classical SVM. The deduced solution of A[B denotes the
set-theoretic union, whereas the learned solution (denoted in red) is more general and assigns some of the
undetermined data as belonging to A[B
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Fig. 6 Example for a cone-SVM. The positive elements are denoted by the black circle part, the negative
elements by the green part. The separating plane for the SVM is marked in blue, the learned pucc is in red.
The negative part of the pucc is omitted for better readability

This results in the fact, that the deduced logic is Boolean, the learned logic is not (neces-
sarily). Therefore, this approach can’t be used as a embedding approach, as logical reasoning
on the one hand and analytical reasoning on the other hand does not lead to the same results.

4.3 Multi-Label Classification with SVMs Using Pairs of Unions of Convex Cones

To circumvent the problems of the classical SVM-approach regarding interpretability as em-
bedding, an approach is needed which is able to define the logical operations on the concepts
in a way which mimics the operations directly done in the learning approach. Therefore, a
geometric structure is needed, which on the one hand can be learned by using SVMs, but
which on the other hand has a suitable structure to find a definition of its operations on a
logic perspective.

This is done by using puccs as geometric representation, as they are closed under con-
junction, disjunction, and negation. Thus, embedding based reasoning is possible. This can
be done by keeping the advantages of the SVM, the kernel trick and the maximum margin.
The general idea is to use not only one SVM to learn a separating hyperplane, but several
SVMs to learn a pucc.

The setting is the following: A multi-label learning problem is given. The instances
have numeric features and they are labeled with one or more positive or negative labels. The
labeling does not need to be exhaustive.

4.3.1 The Single-Label Case

First, the approach is explained for a binary problem, meaning having only one label and
no undetermined data. After that, it is extended to the general case. A set of instances X is
given, with xi 2 X and a label yi 2 {�1,1} for each xi.

For the binary case, a feature space is considered, where the instances are centered
around the origin of the Euclidean space, normalized and which can be separated in a pucc
as defined above. Consider therefore the simple example in Figure 6. A separation can be
found by using the classical SVM-approach (depicted in blue), or by learning the optimal
pucc (depicted in orange). This pucc is generated by learning several hyperplanes (based on
SVMs) and combining them. These seems to be a broad restriction to the usability of cones.
However, this is not the case, as the advantage of the SVM-approach the kernel-trick can be
used. The idea is not to model the puccs directly in the feature space, but to use the transition
into the kernel-space for representing puccs and thus the logical structure implicitly in there.
A kernel which directly leads to centralized data is the rbf-kernel.

A rbf-kernel is of the form K(x,y) = exp(� 1
2s2 ||x� y||2)[4]. It contains only normal-

ized elements, as K(x,y) = hf(x),f(y)i, meaning the kernel is the dot product of the trans-
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formations of x and y and K(x,x) = 1. Because of the normalization, the instances build a
hypersphere-part in the infinite dimensional space. As the rbf-kernel is based on an exponen-
tial, the value of the kernel is restricted to K(x,y) 2 (0,1]. This means that only an (infinite
dimensional) hyperoctant of the kernel-space is populated and the puccs are defined only for
this region. This simplifies the definition of puccs done in Definition 3.

Proposition 8 Considering rbf-kernels, the definition of puccs of Definition 3 can be sim-
plified to only consisting of constraints (2.) and (3.).

Proof Considering it point by point:

1. As only normalized instances are considered, it is possible to add the ray containing a
normalized element x without changing any classification result as unseen instances are
also mapped to a normalization. Therefore it could be assumed that instead of points,
rays are considered.

2.,3. Stay relevant as both could also appear in this restricted version.
4. By definition there are no x,y with hx,yi  0, therefore, this constraint is fulfilled triv-

ially.

Having this simplification, it is possible to show that a rbf-kernel-space which is linear
separable is also separable by a pucc and furthermore, this pucc has some nice properties.

Proposition 9 If a set of instances X is separable by a hyperplane (using a rbf-kernel), the
rbf-kernel-space is separable by using a pucc. Specifically, at least one structure in the pucc
is a convex cone.

Proof The first part is trivially true, as each element could be represented by a ray. This
would result in a pucc.

Cutting a hypersphere with a hyperplane results in a convex cutting edge and therefore,
at least one structure of the pucc is convex.

The presented approach is not restricted to rbf-kernels, as every kernel which results
in centralized data can be used. However, in the following the rbf-kernel is used, as it is a
widely used kernel in many areas.

The idea of the learning approach is to learn the facets of the puccs as hyperplanes of a
SVM. Thus, several SVMs need to be trained to learn one pucc.

As a pucc is centered around the point of origin, it is necessary to adapt the general
notion of a SVM-classifier. A classical SVM allows for a bias term b, which need to be
b = 0 for a centered hyperplane. The basic formulation of the SVM for the linear separable
case and without bias is

min ||w||,
so that yi(wT · xi)�1� 0 8i.

(11)

Using the kernel trick for a SVM without bias leads to

max Â
i

ai�
1
2 Â

i, j
aia jyiy jK(xi,x j)

so that 0 ai C 8i,

where ai are the Lagrange-multipliers and ai > 0 denotes that xi is a support vector, meaning
it has an influence on the creation of the hyperplane [4]. The kernel-function is denoted by
K(xi,x j). The parameter C is the error term which allows to separate non-separable data.
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It is not known beforehand which instance is a support-vector for which hyperplane.
This means, a technique is needed to find these influences.

Using classical clustering ideas is challenging because of the usage of the kernel-trick
and therefore the loss of spatial information. Therefore, a technique is used which is based
on the idea of incorporating spatial information by directly training hyperplanes and inter-
preting them.

The first idea is to train one hyperplane and consider all missclassified elements to train
the next one. However, this approach has several drawbacks: First, it is possible that all posi-
tive instances are classified correctly, but the negative ones are not. Then it is not possible to
train another hyperplane, however, considering the whole data, it could be possible to do so.
Second, it is not necessarily the case that the classification of new elements is unambiguous,
as correct classified elements in the first place are not considered anymore.

Therefore, the approach is enhanced to a hierarchical method. First, a centered SVM is
trained based on the whole dataset. This leads to one facet of the pucc. Then all positive
classified elements are considered. If the actual classification of these elements is positive,
then nothing happens. If some elements are misclassified, then another classifier is trained,
which separates actual positives and actual negatives. This is done stepwise (also for the
negative classified part) until the classification error is under a threshold and leads to a tree
of classifiers. For classification of a new element, this tree can be traversed until a leave is
reached. This leave then denotes the class of the new element.

The pseudo-code of the learning algorithm can be seen in Algorithm 3 and the pseudo-
code of the classifier in Algorithm 4. Based on the features X and their classification Y , a
SVM is used to determine a decision boundary. As separability needs not to be given, for
both sides of the decision boundary additional classifiers needs to be trained. Therefore, first
X is separated into the set left el which denotes the instances of X which are negatively clas-
sified by the classifier plane and in right el for the positive ones. Then it is determined how
many elements in left el (resp. right el) are misclassified. If this is above a given threshold,
then a new SVM is trained in the same way, using left el (resp. right el) and the labels of the
elements left el (resp. right el) as input. The new SVM is set as the left child (right child) of
the SVM trained before. If the number of misclassifications is smaller than the threshold, no
further training is necessary and left child (right child) is set to �1, i.e., they remain empty.
The algorithm terminates when all paths terminate in empty children.

A new element can be classified by traversing the tree of classifiers. For a new element
x, the root-classifier, thus, the first classifier trained, is used to predict a classification. Hav-
ing a classification as negative, the negative part of the tree is traversed, meaning the left
child of the classifier is considered. There are two possibilities: Either left child does not
exists (thus a �1 is returned), then the classification is the classification of the instance,
or left child is itself a classifier, then the classify-function is called for the left child. For a
positive classification and the right child it is analogue. This is done until a leaf is reached
and a classification is returned.

This hierarchical method is chosen, as it is on the one hand possible to enhance the
relevance of the given instances for training when going deeper in the tree and on the other
hand it is easily possible to find a stopping criterion by defining a minimum number of
instances left to avoid overfitting.

The incorporation of undetermined instances The presented approach is based on the as-
sumption of exhaustive labeled data. However, this is not always the case. As discussed
above, in the following the focus lies undetermined data. To handle this, an extension of the
above approach is proposed.
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Algorithm 3 Cone-SVM(X ,Y )
plane = SVM(X ,Y ) //Calculate a SVM (without bias and with a rbf-kernel)
for x 2 X do

if plane.classify(x) ==�1 then

left el = x //find the elements classified as positive/negative
else

right el = x
end if

end for

if incorrect classified el in left el > threshold then

left child = Cone-SVM(left el, class left el) //Set the child as a new classifier based on the elements
classified as positive, when the number of incorrect elements is high enough.

else

left child = -1
end if

if incorrect classified el in right el > threshold then

right child = Cone-SVM(right el, class right el) //Set the child as a new classifier based on the elements
classified as negative, when the number of incorrect elements is high enough.

else

right child = 1
end if

Algorithm 4 Classify(x, Cone SVM)
classification = Cone SVM.predict(x) //Traverse the tree by starting at the root node
if classification == -1 then

if Cone SVM.left child == -1 then

return -1
else

return Cone SVM.left child.classify(x)
end if

else

if Cone SVM.right child == 1 then

return 1
else

return Cone SVM.right child.classify(x)
end if

end if

These instances are assumed to lie in a region in between the positive and negative
instances. This restriction is necessary, as the learned structure should result in a pucc and
therefore needs to fulfill the closure properties.

The first step is to adapt the approach presented above by switching the binary SVMs
to tri-class-SVMs. This allows to find the regions classified as undetermined. The training
procedure is done as above, the only difference appears when a tri-class-SVM correctly
classifies an element as undetermined. These elements are not considered for the next train-
ing step (for the training of the children), as they are correctly classified and they do not
incorporate any additional information and would worsen the result.

The classification of new elements is done in a similar way than above. The only special
case is when one classifier results in zero. Then, it is possible that the instance actually is
classified as zero or not. Therefore, both children are considered. When both of them result
in the same classification, e.g. positive, then the instance is in between two positive regions
and thus classified as positive to satisfy the closure property of a pucc. When both classifiers
result in different classifications, then it is classified as zero, as it lies in between the positive
and negative.
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However, this is not sufficient to handle the undetermined instances. It is not necessarily
the case that the undetermined data lies inside the margin between positive and negative,
as the structure of puccs allows for a lot more shapes of the undetermined regions. There-
fore, the case could appear that at some point for example only positive and undetermined
elements are left. Then a binary classifier separating the two is learned.

In the following, it is argumented that this approach actually leads to a pucc. Introducing
the binary positive/zero- (resp- negative/zero)-classifiers could lead to a problem regarding
the closure with Cnk. This could appear when a undetermined region is in between two
positive regions and thus is not undetermined but only consists of incomplete knowledge.
Therefore, it is necessary to determine whether all the learned binary classifiers are actually
necessary. If one (known) instance is classified as zero and both children are classified as
zero with a binary +/0-classifier, then both +/0-classifiers can be deleted, as the resulting
structure would not be a pucc, as Cnk would not be valid.

Having this control mechanism, it can be concluded that each construct actually is a
pucc, thus the training approach is suitable for learning puccs. Additionally, each classical
separable problem (by using a rbf-kernel) is separable by a cone-SVM. The problem here is
that it is possible that it is necessary to train a classifier for each element of the training set,
thus, the number of SVMs could be large. However, this is only a special case. An advantage
of the cone-SVM is that it is not restricted to SVM-separable elements, it is also possible to
separate structures which are a lot more complicated.

Proposition 10

1. Each learned construct is a pucc.
2. Each problem classical separable (by using a rbf-kernel) is separable by a cone-SVM.

Proof 1. the constraints of a pucc out of Definition 3 are considered case by case. It is
sufficient to show the second and third condition, as the other ones are trivially fulfilled
(see Proposition 8)
ii. Assume that the constraint (S ,S 0) = Cnk((S ,S 0) is not fulfilled. Assume, it is

not fulfilled for S . This means, there are facets xa,x2 2 S not intersecting with
any element of S

0, but incorporates at least one element not in S . In the learning
setting this means that two hyperplanes are learned to separate the positive, having
no negative element in between. Therefore, the hyperplanes would not have been
learned and thus, this case can not happen. The only exception is the case where both
hyperplanes belong to binary +/0-classifiers. However, this case has been directly
considered in the learning approach.

iii. S \S
0 = {0} is the case by definition of the learning approach. Each element

is unambiguously classified. Elements lying directly on a hyperplane could be in
both classes, but this problem can be solved by defining those elements to be in the
positive.

2. Each problem classical separable is separable by a cone-SVM, when the number of
trained SVMs is not restricted. This is the case as it is possible to train a SVM for each
incorrect classified element until all of them are correct classified. This would lead to
overfitting, thus in reality, it is necessary to restrict the number of trained SVMs. In this
case, it is possible that cone-separability is not possible.

This approach is in the following extended to its main purpose of multi-label learning.



24 Leemhuis, Özçep, Wolter

4.3.2 The Multi-Label Learning Approach

The aim of our multi-label learning approach is to learn and represent the inherent logical
structure of the data based on the combination of several puccs. The interrelations of the
labels and thus the underlying ontology is assumed to be unknown.

The basic idea for this puccs based approach is to decompose the problem into several
ternary pucc-SVMs, a pucc-SVM for each label. Each of these have the same hyperparam-
eters in order to ensure the possibility of combining the resulting concepts.

Having learned the geometric representation of all labels, it is possible to do logical
reasoning or to determine relations between labels. Therefore, it is possible to deduce puccs
which result out of label combinations. For example, if one is interested in the geometric
representation of the label A\B, then it is necessary to deduce a pucc of the form (C ,C 0) =
Cnk((A \B,A 0 [B

0)).
To reach this, it is necessary to combine the trees of classifiers of A and B to have one

tree of classifiers for C. One computationally simple method is to combine the trees by
first using the first classifier of the tree of (A ,A 0), on the next level the first of (B,B0)
and so on. Each leaf where the classification of the A -tree and the B-tree is positive, is
classified as positive, in all other cases, the leaf is classified as negative. The undetermined
cases are implicitly defined as explained for the single-label case above. At the end, the
method for checking whether the binary classifiers fulfill the pucc-constraint has to be done.
Because of its computational simplicity, this approach only approximately depicts the hull
Cnk((A \B,A 0 [B

0)). With the same argumentation as in Proposition 10 it can be shown
that the resulting tree actually is a pucc, meaning that every undetermined element added to
Cnk is also added to the region determined by the new tree. We note that in the algorithm
sketched above the conic hull of two facets is not calculated but only the regions based on
the hyperplanes are combined. This might lead to the undesirable outcome that the resulting
region is greater than the original Cnk-closed one. This can be solved by complicating the
combination approach. However, it is assumed that the minor errors in the accuracy of the
union will not be worth the computational complexity of such an approach.

As a bottom line, the multi-labeling algorithm shows a main benefit of using puccs: the
hull Cnk of puccs can be approximately modeled via simple combinations of well-known
and ML-proven data structures such as decision trees. The algorithm, on the one hand, learns
the geometric representation of each label(-combination) and, on the other hand, allows us
to deduce each geometric representation based on some learned labels. As deducing and
learning both result in a pucc, it is—in contrast to the classical SVM-approach—possible to
interpret the achieved embedding as one that allows for logical reasoning. As stated above,
there are cases where both are only approximately equivalent. However, even for these cases,
the closure property of puccs is fulfilled and therefore the equivalence can be approximated.
This fact shows that, in contrast to classical SVMs, our approach ensures that, theoretically,
deduced compound concepts and learned compound concepts are the same.

5 Experiments

5.1 Evaluation of the Multi-Label Classification Algorithm Based on Al-Cones

The proposed approach is evaluated in two areas that involve multi-label classification. In
a first setting, we consider the classical multi-label learning scenario. In a second second
setting, we consider Zero-Shot Learning which is a closely related and challenging task.
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5.1.1 Multi-Label Learning

Implementation As approach for doing the binary classification, a support vector machine
with a polynomial kernel is used, because it is an established method for handling bioinfor-
matic datasets like the one used. For the test of the method the assumption is used that not
having a positive label means that it could be contained or not.

Data The method can be used for any ontology expressed in Boolean A L C . Here the
Gene Ontology (GO) [1] is used. It does not contain negation or union and is hence a di-
rected acyclic graph. The relations of GO have not been considered. The data set for the
experiments is that of Saccharomyces cerevisiae [26]. First the concepts of the training ele-
ments are extended in the way that all ancestor concepts of the given concepts are contained.
Then every concept without enough elements representing it was deleted to facilitate the
training process. The number of concepts was reduced to eight and for every element the
most specific concepts were determined. With these concept labels the training and testing
was conducted. This results in a size of the training set of 1000 instances and 200 instances
in the test set. The smallest concept has 58 instances, the biggest 314, with an average of
160 instances.

For comparison purposes we implemented the approach of Wan and Xu [27]. The ap-
proach presented in [27] does not use ontology information. It is based on a variant of the
1-vs-1-classifier. Any two concepts are compared to one another in a ternary way. A sep-
aration of elements of concept A, of concept B, and of concept Au B is learned for all
concepts A,B. Via a voting-scheme and a threshold the concepts of an element are obtained.
We have chosen this approach as baseline as it is very similar to the method proposed in
this paper. The main difference is that in the baseline ontology information is not used. The
experiments thus allow us to study the utility of exploiting ontology information. For better
comparability—instead of the Tri-class SVM as used in the approach by Wan and Xu—we
use in our implementation the SVM-architecture presented above. The execution time is
heavily dependent on the number of dimensions, in this scenario, it takes a few minutes.

Results and Discussion Using a six-fold cross validation, classification of the test set yields
the data shown in Table 2. Accuracy, recall and precision are determined by reducing both
predicted and test labels to the most basic concepts and evaluate them with standard multi-
class metrics. As can be seen, performance measures for the presented approach are similar
to the baseline. An advantage of the presented approach is that it can only yield ontolog-
ically correct results, while the baseline may lead to classifications that do not agree with
the ontology. One example would be classifying an instance with a child concept without
classifying it with the parent concept. In every dimension, more training elements and thus
more pieces of information can be used as compared to the usual 1-vs-1 case as not only
elements with the same concept, but also with some similar attributes are used in the same
class for training.

The similarity in the results of both approaches is caused by the simple structure of GO,
which incorporates no negation or disjunction—only concept subsumption occurs. Without
negated elements or negated concept inclusions there is no knowledge about concept exclu-
sions and therefore the space of possible concepts per element cannot be restricted. Another
reason could be the choice of the binary classifier and a different classifier could perhaps
improve quality of generalization. The presented approach has improvement potential w.r.t.
the error tolerance. Concepts at the bottom of the tree have only a small al-cone where the
elements could be placed. This means, that even a small misclassification in one dimension
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Table 2 Results for the presented method and the approach of Wan and Xu [27]

Accuracy Precision Recall
This approach 0.185±0.03 0.190±0.02 0.164±0.03
Wan, Xu [27] 0.197±0.03 0.199±0.03 0.278±0.08

could prevent the correct classification. One possible solution is to incorporate knowledge of
the certainty of the classification for each dimension. For a test element an uncertain result
in a dimension could be changed to 0 to reduce its influence.

In a second experiment our method was tested with an empty tbox. This resulted in
an accuracy near to zero and demonstrates the usefulness of the ontology information for
training. Without this information the knowledge about dependencies of elements cannot be
used and elements which have similar attributes can not be separated from elements without
similar attributes. With an empty tbox impossible separations are tried to be learned as well.
Therefore classifying a test element results in a code-vector not containing any information
and thus no assigned concept. This shows that the approach can actually use the knowledge
represented in the ontology.

5.1.2 Zero-Shot Learning

Zero-Shot Learning (ZSL) is a multi-class learning task in which each instance has to be
assigned exactly one label. The distinct feature of ZSL is that instances to be classified by
a label not seen during training [29]. To be able to label previously unseen classes, some
auxiliary information is needed. This can be done in form of per-class-attribute information,
meaning for each class a set of attributes is given and specified whether one is positive
or negative. For example, a ZSL task may require a previously unseen class ‘zebra’ to be
identified, provided the information that zebras exhibit the featured ‘striped’. A ZSL learner
would need to identify an instance of the zebra class, robustly discriminating it from horses
(which share many attributes of zebras but being striped) and tigers (which are striped but
unlike zebras otherwise). Formally, {(xi,yi)|i = 1 . . .n} are the training instances xi denoted
with labels yi 2 Y

tr that belong to the training classes. Test instances {(x j,y j)| j = n . . .n+
m} with labels y j 2 Y

ts constitute test classes, where Y
tr and Y

ts are disjoint.
One prominent approach for solving the ZSL problem is EXEM, presented in [6], which

is based on the insight that instances of unseen labels will cluster around the semantic em-
bedding of that class. Therefore, based on the seen classes, a predictive function is learned
to predict the semantic embeddings (called exemplars) of the unseen classes. The approach
works in detail as follows: A transformation function f is learned, which is able to map for
each class c the attribute vector ac to the visual exemplar in the feature space vc, therefore,
f(ac)⇡ vc. Vector vc of a known class is the mean of all instances of that class obtained by
performing a class-unspecific PCA projection computed of training data from seen classes.
Then, d Support Vector Regressors (SVR) with rbf-Kernel are learned, where d is the di-
mension of the PCA. For more details, see [6]. Using these regressors, the visual exemplars
of unseen classes can be predicted based on its attribute vector. For a test instance, 1-nearest
neighbor (1NN) is used to select the nearest visual exemplar based on (standardized) Eu-
clidean distance.

Whereas [6] is solely based on Euclidean distance, it is possible to extend the approach
to use the given attribute knowledge not only for distance-based but also for geometric rea-
soning. The attribute representation of each unseen class is interpreted as tbox-information
and each label as atomic concept. Therefore, a geometric model of dimension |Y te|/2 can
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be created that associates an atomic concept (a label) with each half-axis. This is done by
predicting not only the visual exemplars of the unseen classes but also visual exemplars of
unseen superclasses, e.g., A or B. Thus, an attribute vector can be determined which could be
A or B with the same probability. This vector would have positive (resp. negative) attributes,
when both A and B have this attribute (positive, resp. negative). When A and B differ in an
attribute, this would be set to zero. Then, based on both types of visual exemplars and the
geometric model, the implementation of the geometric model as stated above can be used
for training. Introducing superclasses for training leads on the one hand to the advantage
of increasing the number of training instances and gives more information on the geometry
of the trained classes. On the other hand, it enables information about the certainty of the
classifier’s decisions to be obtained (we discuss this features in the result section further
below).

Dataset For evaluation, we consider a standard dataset for ZSL, the Animals with Attributes
(AWA2) dataset proposed in [29]. AWA2 comprises 40 classes for training and ten for test-
ing, each class having 85 either positive or negative attributes. In total 37,322 instances of
animals are contained. The classes have 746 images on average, the least populated class
100 and the most populated class 1645 images [29]. As feature space the embedding of the
images as 2048-dim top-layer pooling unit of the ResNet are used [29]. As train/test split,
the standard split is used, as is done in the baseline approach [6].

Implementation For the baseline approach, we use the implementation1 provided alongside
[6] for their approach EXEM. For adaption to AWA2 we changed the kernel used to a poly-
nomial kernel because of better classification properties on this dataset. The approach is
evaluated by using a class-based five-fold cross-validation (thus, all instances of one class
are either completely in the training or completely in the validation set to ensure ZSL also
for the cross validation) to determine the best hyperparameters and tested on the proposed
test split. The hyperparameters of the regressor have been taken based on the minimization
of the Euclidean distance, as done in [6]. Based on this, the hyperparameters of the SVM
have been tuned as a trade-off between overall recall and recall for returning one label, as
the result should be as specific as possible by being able to return labels to as many instances
as possible. Execution time of the training is very short (few seconds on standard laptop),
due to consideration of visual exemplars as representants of the class.

Result and Discussion Figure 7 presents precision and recall obtained for our approach in
comparison to the baseline and is accompanied by Table 3 which presents the numerical
values and their variance. Individual marks in the plot show precision and recall obtained
for a classifier output containing 1, 2, 3, . . . possible class labels.

For example, the best class label obtained in the baseline approach achieves about 0.75
precision and 0.75 recall, whereas a single class label obtained by our approach achieves 0.9
precision and 0.15 recall. As can be seen, the baseline outperforms our approach in terms
of recall as it can potentially generate any class label, even those not agreeing with the aux-
iliary information. By contrast, our approach is restricted to labels agreeable with auxiliary
information given, which in case of sparse and noise training data may inhibit perfect re-
call. With respect to precision our approach outperforms the baseline, both in terms of the
maximal precision achievable and in terms of the precision relative to the number of class

1 https://github.com/pujols/Zero-shot-learning-journal
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Table 3 Precision and recall with respect to the amount of labels returned for classification with negated
attribute vectors

# returned labels Precision Recall
our approach EXEM our approach EXEM

1 0.895±0.059 0.710±0.048 0.094±0.041 0.710±0.048
2 0.465±0.043 0.443±0.014 0.549±0.092 0.885±0.028
3 0.399±0.039 0.317±0.005 0.816±0.112 0.950±0.016
4 0.378±0.045 0.243±0.003 0.926±0.064 0.973±0.012
5 0.373±0.047 0.020±0.001 0.955±0.031 0.987±0.007
6 0.372±0.048 0.166±0 0.959±0.015 0.995±0.002
7 0.372±0.048 0.1425±0 0.960±0.013 0.998±0
8 0.372±0.048 0.125±0 0.960±0.013 0.999±0
9 0.372±0.048 0.111±0 0.960±0.013 0.999±0
10 0.372±0.048 0.100±0 0.960±0.013 1±0

labels generated. In other words, the proposed method is well-suited to reject classifier deci-
sions that are not agreeable with background information. Such feature can be important in
applications where wrong decisions must be avoided. This is accomplished by an approach
capable of respecting the inherent structure of the feature space.

The results with respect to the proposed approach can be explained based on the fact
that it splits the feature space into subspaces representing the areas of the geometric model.
The region close to the visual exemplar is represented by a half-axis of the geometric model,
further away from the visual exemplars (near the partial information visual exemplar), the
union of several half-axes can be found. Thus, is is possible to determine the certainty of a
classification result simply by counting the number of possible labels (for illustration, com-
pare the horizontal lines in Figure 7 with the marks). Considering the baseline, it is possible
to increase the recall rate simply by changing from 1-nearest neighbor to also include the 2-
nearest, 3-nearest, and so one. Such an approach does however provide no information about
which distance is still agreeable with the auxiliary information. By contrast, our approach
has the ability to state which labels are definitely incorrect for a given instance.

To demonstrate the ability of rejecting label that are not agreeable, we conduct an ad-
ditional experiment involving incorrect attributes. We negate the attribute representation of
the test set (meaning a0c = �ac). Based on this, kNN is executed, resp. the SVMs of our
geometric model are trained. The change has the effect that the stated visual prototype is
not associated with the original label center. As expected, both approaches show a recall
and precision near zero. However, with our approach one is able to recognize the problem
as it returns for no element less than four labels, as can be seen in Table 4. As explained
above, the amount of class labels is indicative for the uncertainty of our classifier. Using the
capabilities of modeling negation, it can be stated which labels are definitely not correct for
an instance. Therefore, the ability of the geometric model to model negation and disjunction
is used.

5.2 Evaluation of the Multi-Label Classification Algorithm Based on Pairs of Unions of
Convex Cones

In the following, a single-label data set is used and the classification result is compared
with that of a classical SVM. This is done, as the first step is to show the functionality
of the approach independent of any reasoning capabilities. As the multi-label approach is
based on a combination of many single-label classifiers, it is sufficient to show the general
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Fig. 7 Accuracy and Precision for our approach (black) and the other approach (white), based on the proposed
test set. Numbers representing the number of labels returned.

Table 4 Uncertainty in classification of maliciously crafted AWA2 variant: percentage of instances labeled
with exactly i labels

.

number of returned labels instances with i labels (in %)
0 0
1 0
2 0
3 0
4 0
5 0.032
6 0.236
7 0.441
8 0.258
9 0.032
10 0.001

functionality for one single-label classifier. To ensure comparability with the classical SVM-
approach, a binary learning problem (not a ternary) has been used and both approaches have
been trained with a rbf-kernel.

Implementation Both approaches have been implemented in python2. As there isn’t a SVM
implementation without a bias-term available, the quadratic programming solver cvxopt3
has been used to solve the dual of the SVM directly. For comparison, the SVM-implemen-
tation of python scikitlearn4 has been used.

Data As a data set, the rna-dataset of Uzilov et al [25] is used. It has eight features and a
binary outcome, whether an element is a specific rna or not. As the implementation at this
stage is based on quadratic programming, only a subset of the size of 2500 elements is used
for training, because of time constraints. However, this is not a general restriction of the

2 https://www.python.org/
3 http://cvxopt.org/
4 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html based on

[5]
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Table 5 Results for the pucc-SVM and the standard SVM

Accuracy Precision Recall F1-score
Pucc-SVM 0.877±0.01 0.823±0.03 0.812±0.03 0.818±0.02
Standard SVM 0.885±0.02 0.849±0.04 0.806±0.02 0.827±0.03

presented approach, as it is possible to adapt the known optimization strategies for SVMs
for SVMs without bias.

Results and Discussion For evaluating the quality of the approach, the standard F1-score
is used and a six-fold cross-validation has been performed. In addition, accuracy, precision
and recall are reported. Performance of both approaches are subject to the choice of the
kernel parameter s and the misclassification cost C, which has been tuned independently
both approaches. All results are given in Table 5. For the pucc-SVM, the parameters are
s = 5 and C = 10, for the classical SVM, s = 0.0001 and C = 100.

As can be seen from the data, both approaches lead to a comparable result. Something
that is noticeable about the parameters of both approaches is that they differ substantially.
For the parameter C, the result of the pucc-SVM with C = 100 is with a f1-score of 0.799±
0.03 only slightly worse than the result for C = 10. However, for the parameter s , a small
value of s used with the pucc-SVM (a large value of s for the classical SVM, respectively)
will worsen the results significantly. To understand this, it is necessary to recap that the
rbf-kernel models the distance between elements. Using a high value for s increases these
distances. The pucc-SVM has its strength in fitting several hyperplanes. This is especially
useful if the distribution of elements is more sparse.

The result shows that the approach of learning puccs is suited for learning as it leads to
results comparable to the classical SVM with a rbf-kernel. As the multi-label case is based
on a separation in single-label problems, this means that also the multi-label case should
result in at least comparable results.

However, the main advantage lies not in the general classification accuracy but in the
ability to model the underlying logic. Fine-tuning of learning performance and investigation
of multi-label problems are aim of further research.

6 Related Work

Only recently investigations have started that—in logical terms—shed light on the expres-
sivity of concept hierachies that result from embedding algorithms. These investigate use-
ful contributions for finding the right balance in the overall expressivity versus feasibility
dilemma. Earlier approaches to KGE were motivated by efficient learning algorithms, hence
resolving the dilemma strictly in favour of feasibility. In those approaches including the
well-known TransE [3], heads and tails of KGE triples are represented as real-valued vectors
and relations as vectors, matrices or tensors, i.e., geometric operations. In many occasions,
the geometric operations lead to relations that are functional or are constrained by other
means. Hence, those operations provide not much expressivity from a logical point of view.
In the following we discuss only those KGE approaches that explicitly mention the kind of
geometric objects used for embedding concepts and relations and the logic that character-
izes them. A logic characterization of the approaches discussed is summarized in Tab. 6. For
other relevant literature on KGE the reader is referred to the overview of [28].
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Geometrical Structure Logic Concept lattice Negation Approach/Reference
Convex sets Quasi-chained distributive atomic [14]

Datalog±
Hyperspheres E L

++ distributive atomic [16]
Axis-aligned Cones A L C distributive full Boolean [20]
Closed Subspaces Minimal orthomodular orthonegation [11]
in Hilbert Space Quantum Logic

Table 6 Comparison of approaches for embedding w.r.t. the geometric objects and the induced logics

The authors of [14] identify a fragment of existential Datalog (fulfilling the quasi-
chainedness property) as an appropriate logic for arbitrary convex regions in euclidean
spaces. The authors of [16] find a correspondence for hyperspheres and the lightweight de-
scription logic E L

++. [20] identifies axis-aligned cones as an appropriate geometrical class
for the semi-descriptive logic A L C . While [14,16] do not allow for full negation of con-
cepts to be represented, [20] defines negation for the model of axis-aligned cones that uses
polarity, which possibly gives rise to some interesting logic structure. On the other hand, in
[20] binary relations are allowed to be arbitrary pairs of vectors, whereas [14] models also
relations (of any arity) by convex regions.

In all three approaches the expressible concept hierarchy fulfills distributivity of con-
junction over disjunction. The approach of [11] considers minimal quantum logic which
does not fulfill distributivity but (only) a weakening: orthomodularity (see preliminaries for
a technical definition). But, as argued for in [7], the ability to express non-distributive con-
cept hierarchies means a benefit, as it enables modelling uncertainty w.r.t. the extensions of
concepts. In fact, in many ML learning tasks, concepts do not have a crisp boundary, but
rather have areas of uncertainty and as such provide partial information only.

The need to deal in a learning scenario with many interrelated concepts instead of a
single concept marks also the main motivation for the now-rich research on multi-label
learning. In this learning scenario, during training, instances are assigned to one or more
labels (alias concepts). In contrast to the multi-classification case, the correlations of the
labels may be different form being (just) pairwise disjoint and jointly exhaustive. The most
intuitive idea for multi-label learning is to reduce it (or how it is called sometimes: apply
problem-transformation on it [21]) to the problem of learning each label independently (by
a SVM, say) and then try to regain the dependencies/correlations by some further consid-
erations. There are different ways known in the literature for the method of reduction (one
versus one, one versus all, say [12]), and also different ways to regain the dependencies
of the concepts such as that of binary relevance [31]. But there are also approaches such
as that of [15] that try to account for the possible dependencies of the labels directly from
the beginning—unfortunately those approaches prove to work only for very small datasets
according to [21].

Though all those different approaches to multi-label learning account for the dependen-
cies of concepts in a concept hierarchy, they do not handle those dependencies in a logic
disguise—in contrast to the KGE approaches discussed above and also in contrast to the
approach developed in this paper.

7 Conclusion

In view of the two cone-based embedding approaches presented in this paper and in view
of their promising evaluations we would like to conclude here with the statement of our
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initial working hypothesis: learning algorithms that aim at providing means to integrate
logical constraints formulated in an ontology (QC) or that aim at producing results that
are suited for logical reasoning (LR) have to account for geometric logical structures in
the training phase (and not in a post-processing phase, say). In particular, in justifying the
working hypothesis, we showed that the first approach reaches this goal by creating an ex-
ternal geometric model based on the ontological knowledge and learns under its constraints.
The fact that this approach is restricted to propositional logic and that it leads to the problem
of an exponential blow-up of the geometric model motivated introducing a wider class of
geometric-logical objects: pairs of unions of convex cones, puccs. We showed how to extend
an SVM-based training approach to account for puccs such that the learning results can be
considered as concepts in an orthological terminology—thereby providing means to apply
logical reasoning.

Future works concerns strengthening the justification of the working hypothesis along
the following lines of research: showcase in realistic scenarios how to apply logical reason-
ing based on the learned embeddings; extend the embedding approaches to handle logics
that also incorporate (n-ary) relations (along the line of [20], say); combine cones with other
classical machine learning approaches and compare them with the SVM-based ones devel-
oped in this paper; and last but not least, develop a ML embedding approach tailored towards
cones—i.e., from scratch, without relying on classical ML approaches.
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26. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label
classification. Machine Learning 73(2), 185 (2008). DOI 10.1007/s10994-008-5077-3

27. Wan, S.P., Xu, J.H.: A multi-label classification algorithm based on triple class support vector machine.
In: 2007 International Conference on Wavelet Analysis and Pattern Recognition, vol. 4, pp. 1447–1452
(2007). DOI 10.1109/ICWAPR.2007.4421677

28. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and Data Engineering 29(12), 2724–2743 (2017). DOI
10.1109/TKDE.2017.2754499

29. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a comprehensive evaluation of the
good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 2251–
2265 (2017)

30. Yih, W., Zweig, G., Platt, J.C.: Polarity inducing latent semantic analysis. In: J. Tsujii, J. Hender-
son, M. Pasca (eds.) Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14,
2012, Jeju Island, Korea, pp. 1212–1222. ACL (2012). URL http://www.aclweb.org/anthology/
D12-1111

31. Zhang, M.L., Li, Y.K., Liu, X.Y., Geng, X.: Binary relevance for multi-label learning: an overview.
Frontiers of Computer Science 12(2), 191–202 (2018). DOI 10.1007/s11704-017-7031-7. URL https:
//doi.org/10.1007/s11704-017-7031-7


