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Abstract
Analogical proportions are quaternary relations of the form “𝑎 : 𝑏 :: 𝑐 : 𝑑”, read as “𝑎 is to 𝑏 as 𝑐 is to 𝑑”, that are prominently
used for analogical reasoning. The special case of continuous analogical proportions “𝑎 : 𝑏 :: 𝑏 : 𝑑”, where the second
and third argument are identified, naturally leads to a (ternary) betweenness relation. In case the inputs of the relations are
concepts, continuous analogical proportions prove to be relevant for ideas of concept blending from cognitive science. In this
paper we embark on a study on the relation between these two fundamental structures focusing on the question how to define
analogical proportions based on betweenness relations. We show how to define prominent analogical proportions discussed
in the literature with minimal assumptions on the betweenness relation. Furthermore we show how to extend the results if
the definitions are required to be inverse in the sense that the continuous version of the defined analogical proportion is the
betweenness relation. Last we give a first result on decomposability, showing that with a sufficiently strong betweenness relation
an analogical proportion is definable that can be naturally decomposed in a binary relation denoted by “::” and a binary function
denoted by “:”.
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1. Introduction
Analogical reasoning has found and continues to attract
the interest of researchers in the intersection of philoso-
phy, logic, cognitive science, and computer science. Espe-
cially in the artificial intelligence (AI) community various
practical as well as theoretical challenges of analogical
reasoning were tackled [1]. Analogical reasoning can
be described as reasoning over so-called analogical pro-
portions, i.e., quaternary relations “𝑎 : 𝑏 :: 𝑐 : 𝑑” with
the intended reading “𝑎 is to 𝑏 as 𝑐 is to 𝑑”. Roughly,
analogical reasoning consists of deriving one of the ar-
guments “𝑎, 𝑏, 𝑐, 𝑑” given the others. For example, from
“uncle:aunt :: man:𝑑” one would infer that “𝑑” must be
woman. Analogical reasoning can also be used for deriv-
ing properties of instances. For example, when 𝑠 and 𝑡
share property 𝑃 and 𝑠 has property 𝑄, it can be derived
that 𝑡 has property 𝑄 (the so-called analogical jump) [2].

Analogical proportions have been approached and ana-
lyzed from various angles and with various mathematical
and logical tools [3]. This paper focuses on an equally
simple and general approach, namely an axiomatic treat-
ment of analogical proportions as described by Prade and
Richard [3]. Treating “𝑎 : 𝑏 :: 𝑐 : 𝑑” as a quaternary rela-
tion, the authors describe three basic axioms in First Order
Logic (FOL) that any analogical proportion should fulfill.
Already from these axioms further relevant properties of
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analogical proportions can be deduced.
However, the set of possible analogical proportions (ful-

filling the basic axioms) is large and quite diverse. And so
the question arises how to tame this large set of models.
Usually, analogical proportions are used in some specific
reasoning setting. Hence, from a practical point of view,
the inputs 𝑎, 𝑏, 𝑐, 𝑑 of analogical proportions are known
to have a specific structure, i.e., are elements of a specific
domain. For example, Prade and Richard [3] consider the
case where the domain is the set of Boolean values {1, 0}.
Already in this case, a bunch of models of analogical
proportions, concretely: eight models, can be identified.
(We will describe these models in the section on prelim-
inaries). The authors further develop their approach to
handle the domain of vectors of Boolean values which
allows a fine-grained description of domain objects by
a bunch of (Boolean) features, each feature being repre-
sented by a component of the vector. And even more, the
authors show that if the features are continuous or if con-
fidence values are associated with them, then analogical
proportions over vectors of real numbers (in [0,1]) can be
handled.

In this work we take a different approach to taming
the plethora of models of analogical proportions: We
assume that the domain is equipped with a (ternary) be-
tweenness relation. The motivation to do so is that we
can naturally bootstrap an analogical proportion to reach a
simple betweenness relation 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) by identifying
the second and third argument of an analogical propor-
tion: 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) = 𝑎 : 𝑏 :: 𝑏 : 𝑑. Prade and Richard
[3] call this relation a continuous analogical proportion.
So, instead of arbitrarily choosing a specific domain on
which to consider analogical proportions we work with
a domain equipped with a general structure in form of

mailto:leemhuis@ifis.uni-luebeck.de
mailto:oezcep@ifis.uni-luebeck.de
https://orcid.org/0000-0003-1017-8921
https://orcid.org/0000-0001-7140-2574
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


betweenness. The commitment to betweenness is not due
to a specific application scenario. Rather it can be justified
on grounds of the analogical proportions themselves. In
fact, this form of bootstrapping can be understood as a
transformation known as forgetting in category theory.

Another reason to consider betweenness for analogical
proportions is that both structures are considered quite of-
ten in geometrical settings. In particular, many analogical
proportions such as those induced by knowledge-graph
embeddings are defined in a geometric space. A typical
representative is the classical approach TransE [4], where
analogical reasoning amounts to applying a translation in
a vector space.

This paper contributes with foundational considerations
on the relation between two theoretically fundamental and
practically relevant structures mentioned above: analog-
ical proportions and betweenness relations. In all our
considerations we are interested in defining some given
analogical proportion based on a betweenness relation.
In the first part of the paper (after the preliminaries) we
work with a very weak notion of betweenness and then
answer the question how to define a given analogical pro-
portion with it. In that first part of the paper there are no
restrictions on the allowed constructions for defining an
analogical proportion from the betweenness relation. As
a result of the fact that the presumed betweenness relation
is quite a weak notion of order, it is possible to define
nearly any weak analogical proportion—independently
of the structure of the space and further assumptions on
the betweenness relation. In particular, we discuss how
to define each (of appropriate generalizations; see pre-
liminaries) of the conditions in order to satisfy the eight
models of analogical proportion of Prade and Richard [3].
In fact, we can show that the chosen betweenness relation
is as weak as possible: it relies only on properties that are
necessary to ensure the definability of the given analogical
proportion.

In the second part of the paper we again consider the de-
finability of analogical proportions based on betweenness,
but now we require the construction used in the defini-
tion to act as an inverse of the forgetting operation on
analogical proportions. That is, the betweenness relation
𝐵(𝑎, 𝑏, 𝑑) is now required to be identical to the continu-
ous analogical proportion 𝑎 : 𝑏 :: 𝑏 : 𝑑 induced by the
given analogical proportion 𝑎 : 𝑏 :: 𝑐 : 𝑑. So in the sec-
ond half of the paper we describe how to define analogical
proportions— on the same foundations—but leading to a
generalization of continuous analogical proportions.

In the last part of the paper (before the related work and
the conclusion) we make even further restrictions on the
analogical proportion induced by a betweenness relation,
namely requiring the analogical proportion to allow for a
compositional semantics in the sense explicated in formal
linguistics [5]. The motivation for this restriction is due to
the observation that the notation of analogical proportions

suggests a decomposition of the analogical proportions
into a binary relation :: and two occurrences of a binary
function :. The question we tackle is whether analogical
proportions that are defined via betweenness relations can
be read in this way 𝑎 : 𝑏 :: 𝑐 : 𝑑, i.e., whether we can give
“:” and “::” natural interpretations such that the analogical
proportion holds iff 𝑎 : 𝑏 :: 𝑐 : 𝑑. We give a positive
answer to this problem for an analogical proportion for
the special case where the betweenness relation is the one
induced by the euclidean metric.

At the bottom line, the introduction of betweenness to
the considerations on analogical proportions helps to grasp
the axioms of analogical proportions also in an algebraic
sense. Furthermore, the properties of complex analogi-
cal proportions can be determined by reducing them to
their properties regarding betweenness. Last but not least,
betweenness lays the foundation for the definition of ana-
logical proportions exactly with the desired strength by
combining the constraints of the desired axioms of the
proportion.

The rest of the paper is structured as follows: Section 2
contains preliminaries on the basic axioms of analogical
proportions, the eight models of analogical proportions in
the Boolean case and the basic betweenness axioms. In
Section 3, for each of the conditions on analogical propor-
tions, an interpretation based on betweenness is presented,
leading to the definition of analogical proportions for the
eight models for arbitrary domains. After that, in Sec-
tion 4, an interpretation of the analogical proportion with
the help of betweenness relations is shown that has the
continuous analogical proportion as a special case. Sec-
tion 5 considers a different definition of an analogical
proportion, though still based on betweenness, and it is
shown how a decomposition of this proportion is possi-
ble. The paper ends with a discussion of related work in
Section 6 and a conclusion in Section 7.

2. Preliminaries
The basic axioms 𝐵𝑎𝑥 of analogical proportions according
to Prade and Richard [3] are the following:

∀𝑎∀𝑏 (𝑎 : 𝑏 :: 𝑎 : 𝑏) (reflexivity)

∀𝑎∀𝑏∀𝑐∀𝑑(𝑎 : 𝑏 :: 𝑐 : 𝑑→ 𝑐 : 𝑑 :: 𝑎 : 𝑏) (symmetry)

∀𝑎∀𝑏∀𝑐∀𝑑(𝑎 : 𝑏 :: 𝑐 : 𝑑→ 𝑎 : 𝑐 :: 𝑏 : 𝑑)
(central permutation)

The authors consider (in the first place) the domain
of Boolean values {0, 1}. In that case 𝑎 : 𝑏 :: 𝑐 : 𝑑
represents a Boolean function 𝑓(𝑎, 𝑏, 𝑐, 𝑑) of arity four.
As Prade and Richard [3] show, there are eight different
Boolean functions that fulfill the three axioms of analogi-
cal proportions. These functions form a Boolean algebra
given in Fig. 1. We will identify a Boolean function 𝑓 on



propositional variables 𝑎, 𝑏, 𝑐, 𝑑 with the set of truth as-
signments over {0, 1}4 which are mapped to 1 and write
those assignments as bit vectors of length four. Following
the naming convention of Prade and Richard the lattice
elements are the following:

Ω0 = {0000, 1111, 0101, 1010, 0011, 1100}
𝐾𝑙 = {0000, 1111, 0101, 1010, 0011, 1100} ∪

{0110, 1001}
𝑀3 = {0000, 1111, 0101, 1010, 0011, 1100} ∪

{1110, 1101, 1011, 0111}
𝑀4 = {0000, 1111, 0101, 1010, 0011, 1100} ∪

{0001, 0010, 0100, 1000}
𝑀5 = 𝑀3 ∪ {0110, 1001} = 𝑀3 ∪𝐾𝑙

𝑀6 = 𝑀4 ∪ {0110, 1001} = 𝑀4 ∪𝐾𝑙

𝑀7 = 𝑀3 ∪ {0001, 0010, 0100, 1000}
= 𝑀3 ∪𝑀4

Ω = {0, 1}4 = {0000, 0001, 0010, . . . , 1111}

The lattice structure (actually it is even a Boolean alge-
braic structure) is cited here on the left of Fig. 1.

Next to the basic axioms of analogical proportions, we
will also consider the following axioms, the first of which
is also mentioned by Prade and Richard [3] (there it is
called unicity, here we prefer the term universal anti-
neutrality to clarify the connection to other related ax-
ioms). The other ones are our additions. The intention
of these axioms is to give an individual axiomatization of
each of the eight analogical proportions and thereby pave
the way for considering analogical proportions for arbi-
trary domains. In the following, all variables are assumed
to be (implicitly) universally quantified.

𝑎 : 𝑎 :: 𝑏 : 𝑐→ 𝑏 = 𝑐 (universal anti-neutrality)

𝑎 : 𝑏 :: 𝑏 : 𝑎 (ratio symmetry)

𝑎 : 𝑏 :: 𝑏 : 𝑎→ 𝑎 = 𝑏 (ratio anti-symmetry)

𝑎 : 𝑎 :: 𝑏 : 𝑐 (universal neutrality)

0 : 0 :: 𝑎 : 𝑏 (0-neutrality)

0 : 0 :: 𝑎 : 𝑏→ 𝑎 = 𝑏 (0-anti-neutrality)

1 : 1 :: 𝑎 : 𝑏 (1-neutrality)

1 : 1 :: 𝑎 : 𝑏→ 𝑎 = 𝑏 (1-anti-neutrality)

𝑎 : 𝑏 :: 𝑐 : 𝑑 (universality)

Prade and Richard [3] consider the case of analogical
proportions where the domain 𝑋 of the quantifiers range
over 𝑋 = {0, 1} and the generalized case where 𝑋 are
𝑛-bit vectors. For betweenness considerations the domain
𝑋 is going to be a general structure and so we generalize

the eight models to arbitrary domains. Hence, in Fig. 1 we
present axiomatizations of the generalization of the eight
models w.r.t. the (new) axioms introduced above. It is
readily checked that these axiomatizations uniquely iden-
tify the eight models over the domain 𝑋—so that, indeed,
they can be considered as properties of generalizations of
the eight models to arbitrary domains. The easy part is to
check (just by going through 4-bit assignments) that the
eight models fulfill the corresponding axioms. That those
axiom sets exclude each other can be verified by checking
each pair of axiom sets 𝐹𝑚, 𝐹𝑚′ and noting that there is
always a pair of complementary axioms (over domains
with at least two elements). For example, in case of 𝐹Kl

and 𝐹Ω0 we have the axioms of ratio symmetry and ratio
antisymmetry.

Continuous analogical proportions as introduced by
Prade and Richard [3] are defined as analogical propor-
tions where the second and third arguments are identified.
So, given an analogical proportion 𝑅(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 : 𝑏 ::
𝑐 : 𝑑 the ternary relation 𝐵𝑡𝑤𝑅 is defined as

𝐵𝑡𝑤𝑅(𝑎, 𝑏, 𝑑) iff 𝑅(𝑎, 𝑏, 𝑏, 𝑑)

Continuous analogical proportions can be considered
as betweenness relations. The whole point of this paper
is to investigate the relationship between (properties of)
analogical proportions and betweenness relations.

There are several axioms of different strength defining
betweenness. In the following, the most basic ones are
presented. As it will turn out later on, not all of the
axioms have to be fulfilled for the intended definitions
of analogical proportions. (𝑎 ̸= 𝑏 ̸= 𝑐 denotes in the
following that 𝑎, 𝑏 and 𝑐 are pairwise unequal)

Definition 1. The axioms we consider are those discussed,
e.g, by Huntington and Kline [6] and [7].

If 𝐵𝑡𝑤(𝑎, 𝑏, 𝑐), then 𝑎, 𝑏, 𝑐 are distinct (B0)

If 𝐵𝑡𝑤(𝑎, 𝑏, 𝑐), then 𝐵𝑡𝑤(𝑐, 𝑏, 𝑎) (B1)

If 𝐵𝑡𝑤(𝑎, 𝑏, 𝑐) and 𝑎 ̸= 𝑏 ̸= 𝑐, then not 𝐵𝑡𝑤(𝑏, 𝑎, 𝑐)
(B2)

If 𝐵𝑡𝑤(𝑎, 𝑏, 𝑐) and 𝐵𝑡𝑤(𝑏, 𝑐, 𝑑) and 𝑏 ̸= 𝑐,

then 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) (B3)

If 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) and 𝐵𝑡𝑤(𝑏, 𝑐, 𝑑), then 𝐵𝑡𝑤(𝑎, 𝑏, 𝑐)
(B4)

When (B0) is valid, the ternary betweenness relation
𝐵𝑡𝑤 is called open betweenness [8] or sometimes also
strict betweenness. Without (B0), the betweenness is
called closed betweenness. We will focus in the following
on closed betweenness. (B1) expresses commutativity of
betweenness w.r.t. the outer points. (B2) expresses the
constraint that if a point is between two points it cannot
have one of those two points in between itself and the other
point. (B1) and (B2) are the two fundamental axioms of
betweenness which should be fulfilled. (B3) is sometimes
called outer transitivity and (B4) inner transitivity.



Ω

𝑀5

𝑀7
𝑀6

𝑀3 𝑀4
𝐾𝑙

Ω0

{ univ }

{ r. sym, 1-neut, 0-a.-neut } { r. sym, 0-neut, 1-a.-neut }

{ r. a-sym, u-neut }

{ r. a-sym, 1-neut, 0-a.-neut } { r. a-sym, 0-neut, 1-a.-neut }

{ r. sym, u-a-neut }

{ u-a-neut, r. a-sym }

Figure 1: The Boolean algebra of analogical proportions 𝑚 over {0, 1} and its axiomatizations 𝐵𝑎𝑥 ∪ 𝐹𝑚. In the
figure we only give 𝐹𝑚, it being understood that 𝐵𝑎𝑥 has always to be taken into account.

3. Eight Models via Betweenness
The eight axiomatizations given in Fig. 1 are motivated by
the Boolean case. Now, we take a different perspective on
these axiomatizations by assuming a betweenness relation
which is a sufficiently weak and thus general notion. It
allows for a definition of the several axioms as specific
as possible in the sense that each restriction should be
minimal, thus should represent exactly the given axioms
for a model. The goal of this section is to define analogical
proportions based on betweenness for each of the eight
models, i.e., to give for each model a definition fulfilling
the three basic axioms of analogical proportions and the
additional axioms mentioned in Fig. 1.

Assume an arbitrary domain 𝑋 equipped with a be-
tweenness relation is given and the analogical proportions
to be defined are determined on element-level, thus each
input is an element of 𝑋 . As 𝑋 can be an arbitrary space
equipped with a betweenness relation, the following defi-
nitions are widely applicable.

First of all, we discuss how to define in general an ana-
logical proportion from a betweenness relation. However,
for a better understanding of the discussion, it is useful
to think of a concrete betweenness relation such as Eu-
clidean betweenness which is defined with the Euclidean
distance 𝑑 as follows.

𝐵𝑡𝑤𝑑(𝑎, 𝑏, 𝑐) iff 𝑑(𝑎, 𝑐) = 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐),

According to this definition, 𝑏 is in between of 𝑎 and 𝑐 if
it is on the line segment connecting 𝑎 and 𝑐.

A first idea for defining an analogical proportion
𝑅(𝑎, 𝑏, 𝑐, 𝑑) is to enforce the inputs 𝑎, 𝑏, 𝑐, 𝑑 to be com-
parable w.r.t. the betweenness relation by, e.g., enforcing
𝐵𝑡𝑤(𝑎, 𝑏, 𝑐). But already here it becomes obvious that
such a definition is too strong to save as a general template
for arbitrary models of analogical proportion because it
would enforce 𝑎, 𝑏 and 𝑐 (and depending on the other
constraints also 𝑑) to be on a line.

So instead, for a general notion, we consider only be-
tweenness constraints that contain at most two elements

out of {𝑎, 𝑏, 𝑐, 𝑑}. As (B1) and (B2) can be considered as
fulfilled by the betweenness relation (as these are the most
basic betweenness axioms), it remains to consider a defini-
tion based on arbitrary combinations of 𝐵𝑡𝑤(𝑥, 𝑢, 𝑦) and
𝐵𝑡𝑤(𝑣, 𝑥, 𝑦) for some 𝑥, 𝑦 ∈ {𝑎, 𝑏, 𝑐, 𝑑} and 𝑢, 𝑣 ∈ 𝑋 .
Obviously, it is also possible to consider more complex
connections—which we saved for future work.

Especially for analogical proportions the interplay of
the elements is of importance. Hence we focus here
on a definition based on 𝐵𝑡𝑤(𝑥, 𝑢, 𝑦) for some 𝑥, 𝑦 ∈
{𝑎, 𝑏, 𝑐, 𝑑} and 𝑢 ∈ 𝑋 chosen arbitrarily.

Before going into detail regarding the different models,
we first discuss how definitions of analogical proportions
based on these betweenness relations could look like in
general. An analogical proportion must fulfill the basic
axioms, independently of its construction. Especially sym-
metry and central permutation enforce restrictions on the
construction, as they change the order of elements in the
analogical proportion. Thus, postulated conditions need
some sort of symmetric behavior to cover the changed
order. We will capture this with the notion of a substi-
tution of subformulas. For a FOL formula 𝐹 we denote
by 𝐹 [𝐺/𝐻, 𝐽/𝐾] the result of substituting in parallel all
occurrences of subformula 𝐺 (if contained in 𝐹 ) with
subformula 𝐻 and all occurrences of subformula 𝐽 (if
contained in 𝐹 ) with 𝐾. This notion is generalized canon-
ically to the case of more than two subformulas being
substituted in parallel. Here and in the following, for
simplicity, we use the following shortcut ((𝑎, 𝑏), (𝑐, 𝑑)):

((𝑎, 𝑏), (𝑐, 𝑑)) iff there is 𝑢, 𝑣 ∈ 𝑋 with

𝐵𝑡𝑤(𝑎, 𝑢, 𝑏) and 𝐵𝑡𝑤(𝑐, 𝑣, 𝑑).

With these notions, a first result on a sufficient and neces-
sary condition for quaternary relations fulfilling symmetry
and central permutation can stated.

Proposition 1. Assume a quaternary relation 𝑅
(𝑅(𝑎, 𝑏, 𝑐, 𝑑)) is defined with a first order logic formula
𝐹𝑎𝑝 over 𝐵𝑡𝑤 containing atoms of the form 𝐵𝑡𝑤(𝑥, 𝑢, 𝑦)



with distinct 𝑥, 𝑦 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, 𝑢 ∈ 𝑋 . Then 𝑅 fulfills
symmetry and central permutation iff:

1. for all distinct 𝑤, 𝑥, 𝑦, 𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝑑}: for
any subformula 𝐶(𝑖, 𝑘) of 𝐹𝑎𝑝 of the form
𝐵𝑡𝑤(𝑖, 𝑗, 𝑘) or 𝐵𝑡𝑤(𝑘, 𝑗, 𝑖) with a variable
𝑗 it holds that 𝐹𝑎𝑝 ⊨ 𝐹𝑎𝑝[𝐶(𝑤, 𝑥)/𝐶(𝑦, 𝑧),
𝐶(𝑦, 𝑧)/𝐶(𝑤, 𝑥)] and

2. for any subformula 𝐶(𝑖, 𝑘) of 𝐹𝑎𝑝 of
the form 𝐵𝑡𝑤(𝑖, 𝑗, 𝑘) or 𝐵𝑡𝑤(𝑘, 𝑗, 𝑖)
with a variable 𝑗 it holds that 𝐹𝑎𝑝 ⊨
𝐹𝑎𝑝[𝐶(𝑎, 𝑏)/𝐶(𝑎, 𝑐), 𝐶(𝑐, 𝑑)/𝐶(𝑏, 𝑑),
𝐶(𝑎, 𝑐)/𝐶(𝑎, 𝑏), 𝐶(𝑏, 𝑑)/𝐶(𝑐, 𝑑)]

Proof. →: (1.) (i) Assume 𝑅(𝑎, 𝑏, 𝑐, 𝑑) is defined based
on an arbitrary constraint on 𝐵𝑡𝑤(𝑎, 𝑢, 𝑏) but not on
𝐵𝑡𝑤(𝑐, 𝑣, 𝑑) for arbitrary 𝑢, 𝑣 ∈ 𝑋 . Then with symme-
try it follows 𝑅(𝑐, 𝑑, 𝑎, 𝑏) and thus, the constraint needs
to be valid on 𝐵𝑡𝑤(𝑐, 𝑣, 𝑑) (for arbitrary 𝑣 ∈ 𝑋), a con-
tradiction. (ii) Assume 𝑅(𝑎, 𝑏, 𝑐, 𝑑) based on an arbi-
trary constraint on 𝐵𝑡𝑤(𝑎, 𝑢, 𝑐) but not on 𝐵𝑡𝑤(𝑏, 𝑣, 𝑑).
With central permutation, symmetry and central permu-
tation follows: 𝑅(𝑎, 𝑏, 𝑐, 𝑑),𝑅(𝑎, 𝑐, 𝑏, 𝑑), 𝑅(𝑏, 𝑑, 𝑎, 𝑐),
𝑅(𝑏, 𝑎, 𝑑, 𝑐) and thus 𝐵𝑡𝑤(𝑏, 𝑣, 𝑑) need to be constrained,
a contradiction. (iii) For a constraint on 𝐵𝑡𝑤(𝑎, 𝑢, 𝑑) and
all other cases, analogous arguments apply. (2.) Needs to
be the case because of central permutation.
←: Symmetry is valid, as 𝑅(𝑎, 𝑏, 𝑐, 𝑑) leads to con-

straints on ((𝑎, 𝑏), (𝑐, 𝑑)) and ((𝑎, 𝑐), (𝑏, 𝑑)) and inde-
pendently constraints on ((𝑎, 𝑑), (𝑏, 𝑐)). With (B1) and
(1.) it follows that the constraints can be reformulated
to constraints on ((𝑐, 𝑑), (𝑎, 𝑏)) and ((𝑐, 𝑎), (𝑑, 𝑏)) and
constraints on ((𝑐, 𝑏), (𝑎, 𝑑)) and thus 𝑅(𝑎, 𝑏, 𝑐, 𝑑) iff
𝑅(𝑐, 𝑑, 𝑎, 𝑏). Central permutation can be shown analo-
gously.

As the axioms for the (eight) models of analogical pro-
portion are motivated by the binary case, it is necessary
to make some adaptation before using it in the general
case. In particular, two questions arise: (i) how can 0 and
1 be defined and (ii) when are two elements considered
equal, e.g., when should 𝑎 : 𝑏 :: 𝑐 : 𝑑 be interpreted as
𝑎 : 𝑎 :: 𝑐 : 𝑑 to apply the specific conditions?

The first question is only relevant for some of the con-
ditions and thus considered later on. So we consider now
the second question. As we assume that a general space 𝑋
and a betweenness relation on it, but that no other informa-
tion is provided, the idea is to interpret two elements of 𝑋
to be the same (or similar) if they behave the same regard-
ing the betweenness relation. In setting up the conditions
on compared elements as before (now for similarity) this
can be restricted to those mentioned in the inputs. For
example, 𝑎 is considered similar to 𝑏 if both behave the
same regarding 𝑐 and 𝑑, i.e., intuitively, if the elements

share the properties relevant for exactly this analogical
proportion.

Formally, 𝑎 is the same as 𝑏 regarding the set
{𝑎, 𝑏, 𝑐, 𝑑} iff for all 𝑥 ∈ 𝑋 the following assertion holds:
(𝐵𝑡𝑤(𝑎, 𝑥, 𝑐) ↔ 𝐵𝑡𝑤(𝑏, 𝑥, 𝑐)) and (𝐵𝑡𝑤(𝑎, 𝑥, 𝑑) ↔
𝐵𝑡𝑤(𝑏, 𝑥, 𝑑)). This leads to the definition of the condi-
tion y-same((𝑎, 𝑏), (𝑐, 𝑑)) stating that (at least) one ele-
ment of {𝑎, 𝑏} is equivalent to (at least) one element of
{𝑐, 𝑑} (regarding the set {𝑎, 𝑏, 𝑐, 𝑑}):

y-same((𝑎, 𝑏), (𝑐, 𝑑)) iff

y-all((𝑥, 𝑣), (𝑦, 𝑣)) & y-all((𝑥,𝑤), (𝑦, 𝑤))

for distinct 𝑣, 𝑥 ∈ {𝑎, 𝑏}, 𝑤, 𝑦 ∈ {𝑐, 𝑑},

with y-all((𝑎, 𝑏), (𝑐, 𝑑)) stating intuitively that all ele-
ments in between 𝑎 and 𝑏 should be also in between 𝑐
and 𝑑 (and vice versa):

y-all((𝑎, 𝑏), (𝑐, 𝑑)) iff ∀𝑥(𝐵𝑡𝑤(𝑎, 𝑥, 𝑏)↔ 𝐵𝑡𝑤(𝑐, 𝑥, 𝑑))

Note that for the case of Euclidean betweenness this con-
dition reduces to the fact that two elements are equivalent
if they are at the same point in the vector space.

We aim at a general construction of analogical propor-
tions from a betweenness relation that is easy to grasp
and that works also for analogical proportions outside the
set of eight models. Hence we define fragments of an
analogical proportion based on betweenness where each
fragment fulfills exactly the desired constraint. These con-
straints can then be combined to create each of the eight
models, but can also be arbitrarily combined with each
other or other constraints and thus can serve as basis for
an arbitrary analogical proportion based on betweenness
that fulfills the desired constraints.

In general there are two types of constraints, existential
constraints and filter constraints. Having a bunch of poten-
tial conditions to be used in the definition, the conditions
of the first type are connected via a disjunction, thus not
interfering with the other constraints, whereas constraints
of the latter type are connected via conjunction to exist-
ing constraints, as they need to restrict each analogical
proportion where they are applicable.

In the following, the axioms of analogical proportions
are considered case by case. In this context, we introduce
a (weak) new betweenness axiom (B0’) stating that in
case of closed betweenness the only element between 𝑥
and 𝑥 itself is 𝑥 again.

∀𝑥, 𝑦 ∈ 𝑋(𝐵𝑡𝑤(𝑥, 𝑥, 𝑥) & 𝐵𝑡𝑤(𝑥, 𝑦, 𝑥)→ 𝑥 = 𝑦)
(B0’)

We start by considering each of the basic axioms. In
fact, out of these only reflexivity needs to be considered,
because the other two are already fulfilled when using
the construction principles mentioned in Proposition 1.
Though, it would have been possible to create conditions
which are minimal in the sense that they allow exactly for



the condition mentioned, but in the following, it has been
assumed that symmetry and central permutation are such
basic axioms that they could (and should) be incorporated
into the definition of the constraints. Thus, not only the
constraints are fulfilled but also all permutations of it
regarding symmetry and central permutation.

Reflexivity is represented based on betweenness
straightforwardly, stating that the analogical proportion
must be valid in case of 𝑎 : 𝑏 :: 𝑎 : 𝑏 (and permutations
of it).

Proposition 2. Reflexivity (∀𝑎∀𝑏(𝑎 : 𝑏 :: 𝑎 : 𝑏)) is valid
iff there is an arbitrary (possibly empty) constraint 𝐶 such
that the following equivalence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff
𝐶 ∨ (y-same((𝑎, 𝑑), (𝑏, 𝑐)) & y-all((𝑎, 𝑑), (𝑏, 𝑐))).

Proof. →: Let 𝑎 : 𝑏 :: 𝑎 : 𝑏 be valid. Then
y-same((𝑎, 𝑏), (𝑏, 𝑎)) and y-all((𝑎, 𝑏), (𝑏, 𝑎)) are trivially
fulfilled.
←: Let y-same((𝑎, 𝑑), (𝑏, 𝑐)) and y-all((𝑎, 𝑑), (𝑏, 𝑐))

and let 𝐶 be empty. Then 𝑎 = 𝑏, 𝑎 = 𝑐, 𝑑 = 𝑏 or
𝑑 = 𝑐 are possible. Let 𝑎 = 𝑐, the other cases follow
with Proposition 1, central permutation and symmetry.
Then y-all((𝑎, 𝑑), (𝑏, 𝑎)) and thus ∀𝑥 : 𝐵𝑡𝑤(𝑎, 𝑥, 𝑑) ↔
𝐵𝑡𝑤(𝑏, 𝑥, 𝑎)↔ 𝐵𝑡𝑤(𝑎, 𝑥, 𝑏) (with (B1)). Thus, by defi-
nition of equality of elements, 𝑏 = 𝑑.

The next constraint considers ratio symmetry, i.e.,
∀𝑎, 𝑏(𝑎 : 𝑏 :: 𝑏 : 𝑎). It states a symmetry condition
on the analogical proportion, namely that the ratio of 𝑎
and 𝑏 is the same as the ratio of 𝑏 and 𝑎.

This leads to a definition of the constraint similar to the
case of reflexivity, only considering different elements.

Proposition 3. Ratio symmetry (∀𝑎∀𝑏(𝑎 : 𝑏 :: 𝑏 : 𝑎)) is
valid iff there is an arbitrary (possibly empty) constraint
𝐶 such that the following equivalence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑
iff 𝐶 ∨ (y-same((𝑎, 𝑏), (𝑐, 𝑑)) & y-same((𝑎, 𝑐), (𝑏, 𝑑)) &
y-all((𝑎, 𝑏), (𝑐, 𝑑)) & y-all((𝑎, 𝑐), (𝑏, 𝑑))).

Proof. Proof similar to the proof of Proposition 2.

The direct opposite to ratio symmetry is ratio-
antisymmetry, stating that the ratio of 𝑎 and 𝑏 is in no
case the same as the ratio of 𝑏 and 𝑎 (except 𝑎 = 𝑏).

Proposition 4. Ratio-antisymmetry (∀𝑎∀𝑏(𝑎 : 𝑏 :: 𝑏 :
𝑎) → 𝑎 = 𝑏) is valid iff there is an arbitrary (possibly
tautological) constraint 𝐶 such that the following equiva-
lence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff 𝐶 & (y-same((𝑎, 𝑏), (𝑐, 𝑑))
& y-same((𝑎, 𝑐), (𝑏, 𝑑)) & y-all((𝑎, 𝑏), (𝑐, 𝑑)) &
y-all((𝑎, 𝑐), (𝑏, 𝑑))→ y-all((𝑎, 𝑑), (𝑏, 𝑐))).

Proof. Proof similar to the proof of Proposition 3.

The next restriction is universal neutrality, stating that
the ratio of an element to itself is similar to the ratio
of arbitrary elements. This can be satisfied in terms of
betweenness by stating that the analogical proportion 𝑎 :
𝑏 :: 𝑐 : 𝑑 must be fulfilled when 𝑎 = 𝑏.

Proposition 5. Universal neutrality (∀𝑎∀𝑏∀𝑐(𝑎 : 𝑎 ::
𝑏 : 𝑐)) is valid iff there is an arbitrary (possibly empty)
constraint 𝐶 such that the following equivalence holds:
𝑎 : 𝑏 :: 𝑐 : 𝑑 iff 𝐶 ∨ y-same((𝑎, 𝑑), (𝑏, 𝑐)).

Proof. ←: Let y-same((𝑎, 𝑑), (𝑏, 𝑐)). Then 𝑎 = 𝑏 or
𝑎 = 𝑐 or 𝑑 = 𝑏 or 𝑑 = 𝑐. With Proposition 1 and by
applying central permutation and symmetry, this leads to
the case that (𝑎 : 𝑎 :: 𝑐 : 𝑑) is valid.
→: Let 𝑎 : 𝑎 :: 𝑏 : 𝑐 be valid and 𝐶 be empty. Then,

y-same((𝑎, 𝑐), (𝑎, 𝑏)) is valid.

In the following, different types of neutrality and anti-
neutrality are considered. In contrast to the other con-
ditions, these conditions are not only based on arbitrary
elements but also on elements of type 0 and 1. As the
model 𝐾𝑙 can be represented as conjunction of 𝑀5 and
𝑀6, it is necessary that the restriction of 0-anti-neutrality
and 1-anti-neutrality behave in combination as (general)
anti-neutrality. Thus, it is not sufficient to define one 0-
and one 1-element but to partition the space into 0- and
1-elements. As 𝑀3 and 𝑀5 are analogue to 𝑀4 and 𝑀6,
0 and 1 could be defined interchangeably. Therefore, in
the following we assume that all elements of type 0 are
universal in the sense that they have a betweenness re-
lation to any other element, thus for all 𝑥 ∈ 𝑋 , there
is 𝑦 ∈ 𝑋 with 𝐵𝑡𝑤(0, 𝑦, 𝑥). Elements are of type 1 if
they do not fulfill this condition. As for the validity of an
analogical proportion only the elements contained in this
proportion are directly considered, an element 𝑥 has type
0 regarding 𝑎, 𝑏, 𝑐, 𝑑 (for 𝑎 : 𝑏 :: 𝑐 : 𝑑), if 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑}
and 𝑥 is universal regarding {𝑎, 𝑏, 𝑐, 𝑑}. As 0 and 1 depict
no special element but a type of element, it is possible to
have 0𝑥 : 0𝑦 :: 𝑎 : 𝑏, thus two different elements of type
0. On such an analogical proportion, e.g., the condition
of 0-neutrality would not be applicable.

Universal neutrality considered in Proposition 5 ac-
counts for the general case, considering all elements. Be-
side that, there are models incorporating 0-neutrality and
1-neutrality, thus neutrality based on a special type of
elements.

First, 0-neutrality is considered. This adds to the gen-
eral case the restriction of ((𝑎, 𝑑), (𝑏, 𝑐)), stating that 𝑎
and 𝑏 have a betweenness relation with 𝑐 and 𝑑 thus not
only being equal but also of type 0.

Proposition 6. 0-neutrality (∀𝑎∀𝑏(0 : 0 :: 𝑎 : 𝑏)) is valid
iff there is an arbitrary (possibly empty) constraint 𝐶 such
that the following equivalence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff
𝐶 ∨ (((𝑎, 𝑑), (𝑏, 𝑐)) & y-same((𝑎, 𝑑), (𝑏, 𝑐))).



Proof. The general case follows with Proposition 5, it
remains to show that the restriction on elements of type 0
is valid.
→: Let 0 : 0 :: 𝑎 : 𝑏. Then ((0, 𝑑), (0, 𝑐)) by definition

of 0.
←: Let 𝐶 be empty and ((𝑎, 𝑑), (𝑏, 𝑐)) and

y-same((𝑎, 𝑑), (𝑏, 𝑐)). Then with y-same, 𝑎 = 𝑏 (ana-
logue for the other cases). With ((𝑎, 𝑑), (𝑎, 𝑐)) and (B0’)
follows 𝐵𝑡𝑤(𝑎, 𝑥1, 𝑑), 𝐵𝑡𝑤(𝑎, 𝑥2, 𝑐) and 𝐵𝑡𝑤(𝑎, 𝑥3, 𝑎)
for 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 . Thus, 𝑎 (and 𝑏) are of type 0 and thus
0 : 0 :: 𝑐 : 𝑑.

This can be done analogously for 1-neutrality.

Proposition 7. 1-neutrality (∀𝑎∀𝑏(1 : 1 :: 𝑎 : 𝑏)) is valid
iff there is an arbitrary (possibly empty) constraint 𝐶 such
that the following equivalence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff
𝐶 ∨ (¬((𝑎, 𝑑), (𝑏, 𝑐)) & y-same((𝑎, 𝑑), (𝑏, 𝑐))).

Proof. Proof similar to the proof of Proposition 6.

The opposite of universal neutrality is universal anti-
neutrality: ∀𝑎∀𝑏∀𝑐: (𝑎 : 𝑎 :: 𝑏 : 𝑐→ 𝑏 = 𝑐). This means
intuitively that the ratio of an element to itself can not
be similar to the ratio of different elements, thus that two
elements are either the same or distinct enough to be not
comparable with equal elements.

Proposition 8. Universal anti-neutrality (∀𝑎∀𝑏∀𝑐: (𝑎 :
𝑎 :: 𝑏 : 𝑐 → 𝑏 = 𝑐)) is valid iff there is an ar-
bitrary (possibly tautological) constraint 𝐶 such that
the following equivalence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff
𝐶 & (y-same((𝑎, 𝑑), (𝑏, 𝑐))→ y-all((𝑎, 𝑑), (𝑏, 𝑐))).

Proof. →: Let 𝑎 : 𝑎 :: 𝑏 : 𝑐. Then y-same((𝑎, 𝑐), (𝑎, 𝑏)).
y-all((𝑎, 𝑐), (𝑎, 𝑏)) is only valid if 𝑏 = 𝑐.
←: Let y-same((𝑎, 𝑑), (𝑏, 𝑐)) be not valid. Then not

𝑎 : 𝑎 :: 𝑏 : 𝑐. Let y-same((𝑎, 𝑑), (𝑏, 𝑐)). Let 𝑎 = 𝑏 (other
cases analog). Then y-all((𝑎, 𝑑), (𝑎, 𝑐)) only if 𝑐 = 𝑑.
Thus universal anti-neutrality is fulfilled.

This can be again restricted to 0 and 1, following the
same principles as for neutrality:

Proposition 9. 0-anti-neutrality (∀𝑎∀𝑏(0 : 0 :: 𝑎 : 𝑏→
𝑎 = 𝑏)) is valid iff there is an arbitrary (possibly tau-
tological) constraint 𝐶 such that the following equiva-
lence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff 𝐶 & (((𝑎, 𝑑), (𝑏, 𝑐)) &
y-same((𝑎, 𝑑), (𝑏, 𝑐))→ y-all((𝑎, 𝑑), (𝑏, 𝑐))).

Proof. Proof similar to the proof of Proposition 6.

Proposition 10. 1-anti-neutrality (∀𝑎, 𝑏(1 : 1 :: 𝑎 : 𝑏→
𝑎 = 𝑏)) is valid iff there is an arbitrary (possibly tau-
tological) constraint 𝐶 such that the following equiva-
lence holds: 𝑎 : 𝑏 :: 𝑐 : 𝑑 iff 𝐶 & (¬((𝑎, 𝑑), (𝑏, 𝑐)) &
y-same((𝑎, 𝑑), (𝑏, 𝑐))→ y-all((𝑎, 𝑑), (𝑏, 𝑐))).

Proof. Proof similar to the proof of Proposition 6.

Having these fragments for all of the conditions, the
domain independent generalizations of the eight Boolean
models can be easily constructed. This construction is
illustrated here for the model Ω0 but of course analogous
constructions for all other models are possible.

Definition 2. The minimal analogical proportion 𝑅Ω0

based on a general betweenness relation 𝐵𝑡𝑤 is defined
as follows:

𝑅Ω0(𝑎, 𝑏, 𝑐, 𝑑) iff

(y-same((𝑎, 𝑏), (𝑐, 𝑑)) &

y-same((𝑎, 𝑐), (𝑏, 𝑑)) &

y-all((𝑎, 𝑏), (𝑐, 𝑑)) &

y-all((𝑎, 𝑐), (𝑏, 𝑑))→ y-all((𝑎, 𝑑), (𝑏, 𝑐))) &

(y-same((𝑎, 𝑑), (𝑏, 𝑐))→ y-all((𝑎, 𝑑), (𝑏, 𝑐)))

Due to the construction the following (intended) propo-
sition is easily proved.

Proposition 11. 𝑅Ω0 fulfills universal anti-neutrality and
ratio anti-symmetry.

When considering the definitions of betweenness men-
tioned above, it turns out that all of them are quite weak.
For most of the use cases they allow for too many analog-
ical proportions. That is true even for the model Ω0, the
most restricted model of the eight. However, they show
that with betweenness it is possible to define an analog-
ical proportion fulfilling the respective axioms without
introducing any unnecessary restrictions. These can be
used as basis and can be, e.g., combined with other ax-
ioms to define a analogical proportion that fits to the given
use-case.

A stronger analogical proportion based on betweenness
is demonstrated in the next section. There an analogical
proportion having the continuous analogical proportion as
special case is defined.

4. A Basic Analogical Proportion
over a Geometrical Space

Continuous analogical proportions as introduced by Prade
and Richard [3] are defined as analogical proportions
where the second and third arguments are identified. They
interpret the analogical proportion 𝑅(𝑎, 𝑏, 𝑏, 𝑑) directly
as betweenness relation. To recap:

𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) iff 𝑅(𝑎, 𝑏, 𝑏, 𝑑).

As 𝑅(𝑎, 𝑎, 𝑎, 𝑎) needs to be valid based on reflexiv-
ity, it is necessary that the betweenness relation fulfills
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Figure 2: Examples of the use of 𝑅𝑐𝑎𝑝 in the case of
Euclidean betweenness; 𝑎, 𝑏, 𝑐, 𝑑, 𝑦 are points in a two-
dimensional space, connected via lines (thus via between-
ness relations)

𝐵𝑡𝑤(𝑎, 𝑎, 𝑎) for all 𝑎 ∈ 𝑋 . Continuous analogical pro-
portions seem to be a good basis for an analogical propor-
tion, as they are widely used also in practical learning ap-
proaches, e.g., for enlarging a data set with new examples
[9]. Now the question arises whether it is possible to de-
fine an analogical proportion based on betweenness for the
general case of 𝑎 : 𝑏 :: 𝑐 : 𝑑, having the continuous ana-
logical proportion as a special case. To state it differently:
How does an analogical proportion 𝑅𝑐𝑎𝑝(𝑎, 𝑏, 𝑐, 𝑑) need
to look like such that 𝑅𝑐𝑎𝑝(𝑎, 𝑏, 𝑏, 𝑑) iff 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑)?
Assume in the following an arbitrary betweenness relation
fulfilling (B1), (B2) and (B0’). Then, a possible definition
would be

𝑅𝑐𝑎𝑝(𝑎, 𝑏, 𝑐, 𝑑) iff

y-ex((𝑎, 𝑑), (𝑏, 𝑐)) ∨ y-all((𝑎, 𝑑), (𝑏, 𝑐)),

where y-ex((𝑎, 𝑑), (𝑏, 𝑐)) states intuitively that there must
be at least one element in between 𝑎 and 𝑑 which is also
in between 𝑏 and 𝑐 (and vice versa):

y-ex((𝑎, 𝑑), (𝑏, 𝑐)) iff

∃𝑥 ∈ 𝑋(𝐵𝑡𝑤(𝑎, 𝑥, 𝑑) & 𝐵𝑡𝑤(𝑏, 𝑥, 𝑐)).

For an intuitive understanding, consider again Eu-
clidean betweenness in a two-dimensional space. The
graph on the upper left of Fig. 2 illustrates the intuition
behind y-ex((𝑎, 𝑑), (𝑏, 𝑐)). Basically, it states that the line
segment 𝑎𝑏 and the line segment 𝑐𝑑 must be in a specific
orientation to each other, as the lines 𝑎𝑑 and 𝑏𝑐 have to in-
tersect. The upper right graph is a counterexample. At the
bottom of Fig. 2 the special case of the continuous analog-
ical proportion can be seen. If 𝑏 = 𝑐, then 𝑏 plays the role
of the element existing in between of both 𝑎 and 𝑑 and of
𝑏 and 𝑐 (= 𝑏) and thus leads for Euclidean betweenness
to 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑).

The disjunct y-all((𝑎, 𝑑), (𝑏, 𝑐)) is necessary for the
general case to ensure reflexivity. It is not necessary
in the Euclidean case, because there is always an ele-
ment in between each two other elements and thus also
y-ex((𝑎, 𝑏), (𝑏, 𝑎)) is valid.

First, we show that 𝑅𝑐𝑎𝑝 is a correct analogical propor-
tion in the sense that it fulfills the basic axioms.

Proposition 12. 𝑅𝑐𝑎𝑝 fulfills the basic axioms 𝐵𝑎𝑥.

Proof. Symmetry and central permutation are fulfilled as
shown in Proposition 1. Thus, it remains to show reflex-
ivity. Consider 𝑅𝑐𝑎𝑝(𝑎, 𝑏, 𝑎, 𝑏), thus y-ex((𝑎, 𝑏), (𝑏, 𝑎))
or y-all((𝑎, 𝑏), (𝑏, 𝑎)). If there is 𝑥 ∈ 𝑋 with
𝐵𝑡𝑤(𝑎, 𝑥, 𝑏), then with (B1) also 𝐵𝑡𝑤(𝑏, 𝑥, 𝑎) and thus
y-ex((𝑎, 𝑏), (𝑏, 𝑎)). If there is no such 𝑥 ∈ 𝑋 , then there
is also no 𝑥 ∈ 𝑋 with 𝐵𝑡𝑤(𝑏, 𝑥, 𝑎) (with (B1)) and thus
y-all((𝑎, 𝑏), (𝑏, 𝑎)).

After having showed that 𝑅𝑐𝑎𝑝 is a correct analogi-
cal proportion fulfilling the basic axioms, we proceed by
showing that the continuous analogical proportion is in
fact a special case.

Proposition 13. 𝑅𝑐𝑎𝑝(𝑎, 𝑏, 𝑏, 𝑑) iff 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑)

Proof. →: 𝑅𝑐𝑎𝑝(𝑎, 𝑏, 𝑏, 𝑑) iff y-ex((𝑎, 𝑑), (𝑏, 𝑏)) or
y-all((𝑎, 𝑑), (𝑏, 𝑏)) and thus (i) there is 𝑥 ∈ 𝑋 with
𝐵𝑡𝑤(𝑎, 𝑥, 𝑑), 𝐵𝑡𝑤(𝑏, 𝑥, 𝑏). Because of (B0’), 𝑥 = 𝑏
and thus 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑). (ii) for all 𝑥 ∈ 𝑋: 𝐵𝑡𝑤(𝑎, 𝑥, 𝑑)
iff 𝐵𝑡𝑤(𝑏, 𝑥, 𝑏), but again there is exactly one 𝑥 fulfilling
it, namely 𝑥 = 𝑏 and thus 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑).
←: Let 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) be valid. 𝐵𝑡𝑤(𝑏, 𝑏, 𝑏) is valid by

definition and thus y-ex((𝑎, 𝑑), (𝑏, 𝑏)).

5. Decompositionality
Whereas in Section 3 the definition of an analogical pro-
portion based on a restriction as minimal as possible has
been examined, in this section, an analogical proportion
based on a stronger restriction is presented, namely (when
considering again the Euclidean betweenness) the restric-
tion that 𝑎 : 𝑏 :: 𝑐 : 𝑑 can be only valid if 𝑎, 𝑏, 𝑐 and 𝑑 are
on the same line and the line 𝑏𝑐 is part of 𝑎𝑑 or vice versa.
In the general case, the restriction is as follows:

𝑅𝐵𝑡𝑤
0 (𝑎, 𝑏, 𝑐, 𝑑) iff 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) & 𝐵𝑡𝑤(𝑎, 𝑐, 𝑑) or

𝐵𝑡𝑤(𝑏, 𝑎, 𝑐) & 𝐵𝑡𝑤(𝑏, 𝑑, 𝑐).

The analogical proportion defined in this way fulfills sym-
metry and central permutation. To gain the missing re-
flexivity, the betweenness is enforced to fulfill a specific
constraint, namely,

for all 𝑎, 𝑏: 𝐵𝑡𝑤(𝑎, 𝑎, 𝑏) (B6)

This definition can be brought to practice by consider-
ing a special type of betweenness relation, namely one
which allows for the definition of a line in the usual sense
(including, but not limited to the Euclidean betweenness
and a line in the Euclidean sense). On the basis of such
a betweenness relation we can define a notion of a line,
collinearity etc. For two points 𝑎, 𝑏 let ⟨𝑎𝑏⟩ denote the
closed section between 𝑎, 𝑏 on the line going through 𝑎, 𝑏



and containing 𝑎, 𝑏. Formally, we can define the closed
section on the basis of the betweenness relation and set
theoretical operations as follows:

⟨𝑎𝑏⟩ = {𝑥 ∈ 𝑋 | 𝐵𝑡𝑤(𝑎, 𝑥, 𝑏)} ∪ {𝑎, 𝑏}

For this making up a line in the usual sense, axioms (B0’)
and (B1) to (B4) are necessary (see [10]) and additionally
the axiom (B7)[6]:

If 𝐵𝑡𝑤(𝑎, 𝑥, 𝑏) and 𝐵𝑡𝑤(𝑎, 𝑦, 𝑏) (and 𝑎 ̸= 𝑏 ̸= 𝑥 ̸= 𝑦),

then 𝐵𝑡𝑤(𝑎, 𝑥, 𝑦) or 𝐵𝑡𝑤(𝑎, 𝑦, 𝑥) (B7)

Note that though we use the interval notation we do not
have an orientation so that ⟨𝑎𝑏⟩ = ⟨𝑏𝑎⟩. In the following
one may first think of a Euclidean space with betweenness
induced by the Euclidean distance.

We define a quaternary relation 𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑑) that

says the section ⟨𝑎𝑑⟩ contains ⟨𝑏𝑐⟩ or vice versa. In other
words: There is a line on which all of 𝑎, 𝑏, 𝑐, 𝑑 occur and
either the section from 𝑏 to 𝑐 occur in between of 𝑎, 𝑑 or
vice versa.

𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑑) iff ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ or ⟨𝑏𝑐⟩ ⊆ ⟨𝑎𝑑⟩

This is in fact a special case of the analogical proportion
𝑅𝐵𝑡𝑤

0 .

Proposition 14. If 𝐵𝑡𝑤 fulfills (B1)–(B4) and (B7),
then for all 𝑎, 𝑏, 𝑐, 𝑑 the following equivalence holds:
𝑅𝐵𝑡𝑤

0 (𝑎, 𝑏, 𝑐, 𝑑) iff 𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑑)

Proof. →: Let 𝑅𝐵𝑡𝑤
0 (𝑎, 𝑏, 𝑐, 𝑑) for arbitrary 𝑎, 𝑏, 𝑐, 𝑑

and thus 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) and 𝐵𝑡𝑤(𝑎, 𝑐, 𝑑) or 𝐵𝑡𝑤(𝑏, 𝑎, 𝑐)
and 𝐵𝑡𝑤(𝑏, 𝑑, 𝑐). Let 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) and 𝐵𝑡𝑤(𝑎, 𝑐, 𝑑)
be valid. If 𝑎 ̸= 𝑏 ̸= 𝑐 ̸= 𝑑, then with (B7) fol-
lows 𝐵𝑡𝑤(𝑎, 𝑏, 𝑐) or 𝐵𝑡𝑤(𝑎, 𝑐, 𝑏) and with (B3) follows
𝐵𝑡𝑤(𝑏, 𝑐, 𝑑) or 𝐵𝑡𝑤(𝑐, 𝑏, 𝑑). This is possible for all ele-
ments in between 𝑎 and 𝑑 and thus ⟨𝑏𝑐⟩ ⊆ ⟨𝑎𝑑⟩. If there
are no such elements not equaling 𝑎, 𝑏, 𝑐, 𝑑, then the con-
dition is trivially fulfilled. Analog for 𝐵𝑡𝑤(𝑏, 𝑎, 𝑐) and
𝐵𝑡𝑤(𝑏, 𝑑, 𝑐) being valid.
←: Follows trivially out of the definition of a line.

Proposition 15. For any ternary betweenness relation ful-
filling (B1) and (B6) (commutativity of 𝐵𝑡𝑤), the induced
relation 𝑅𝐵𝑡𝑤

0 fulfills the basic axioms of analogical pro-
portions.

Proof. Reflexivity: 𝑅𝐵𝑡𝑤
0 (𝑎, 𝑏, 𝑎, 𝑏) holds because it

holds if 𝐵𝑡𝑤(𝑎, 𝑏, 𝑏) and 𝐵𝑡𝑤(𝑎, 𝑎, 𝑏). This is the case
for all 𝑎, 𝑏 because of (B6).

Symmetry: 𝑅𝐵𝑡𝑤
0 (𝑎, 𝑏, 𝑐, 𝑑) iff 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) and

𝐵𝑡𝑤(𝑎, 𝑐, 𝑑) or 𝐵𝑡𝑤(𝑏, 𝑎, 𝑐) and 𝐵𝑡𝑤(𝑏, 𝑑, 𝑐) iff
𝐵𝑡𝑤(𝑏, 𝑎, 𝑐) and 𝐵𝑡𝑤(𝑏, 𝑑, 𝑐) or 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) and
𝐵𝑡𝑤(𝑎, 𝑐, 𝑑) (and with (B1) iff 𝐵𝑡𝑤(𝑐, 𝑎, 𝑏) and

𝐵𝑡𝑤(𝑐, 𝑑, 𝑏) or 𝐵𝑡𝑤(𝑑, 𝑐, 𝑎) and 𝐵𝑡𝑤(𝑑, 𝑏, 𝑎) iff
𝑅𝐵𝑡𝑤

0 (𝑐, 𝑑, 𝑎, 𝑏).
Central permutation: 𝑅𝐵𝑡𝑤

0 (𝑎, 𝑏, 𝑐, 𝑑) iff 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑)
and 𝐵𝑡𝑤(𝑎, 𝑐, 𝑑) or 𝐵𝑡𝑤(𝑏, 𝑎, 𝑐) and 𝐵𝑡𝑤(𝑏, 𝑑, 𝑐) iff
𝐵𝑡𝑤(𝑎, 𝑐, 𝑑) and 𝐵𝑡𝑤(𝑎, 𝑏, 𝑑) or 𝐵𝑡𝑤(𝑏, 𝑑, 𝑐) and
𝐵𝑡𝑤(𝑏, 𝑎, 𝑐) iff 𝑅𝐵𝑡𝑤

0 (𝑎, 𝑐, 𝑏, 𝑑).

Thus, also 𝑅𝐵𝑡𝑤
1 fulfills the basic axioms of between-

ness.
Prade and Richard use a notation for analogical pro-

portions that suggests a decomposition of the analogi-
cal proportions into a binary relation :: and two occur-
rences of a binary function :. The question is whether
𝑅𝐵𝑡𝑤

1 (𝑎, 𝑏, 𝑐, 𝑑) can be read in this way 𝑎 : 𝑏 :: 𝑐 : 𝑑, i.e.,
whether we can give “:” and “::” natural interpretations
such that 𝑅𝐵𝑡𝑤

1 iff 𝑎 : 𝑏 :: 𝑐 : 𝑑. Note that this problem
is known in the literature on linguistics and model the-
ory also as an extension problem for compositionality of
the first form [5, p.16]. A trivial one would be to treat
𝑎 : 𝑏 as the pair (𝑎, 𝑏) and allow in :: the use of projec-
tions operators, so that 𝑎 : 𝑏 :: 𝑐 : 𝑑 can be reduced to
𝑅(𝜋1(𝑎 : 𝑏), 𝜋2(𝑎 : 𝑏), 𝜋1(𝑐 : 𝑑), 𝜋2(𝑐 : 𝑑)). Here we
used the operators of left projection (projection on the first
argument) and right projection (projection on the second
argument) 𝜋1(𝑥, 𝑦) = 𝑥 and 𝜋2(𝑥, 𝑦) = 𝑦.We seek for
non-trivial decompositions where 𝑎 : 𝑏 fits to the idea of
a difference or quotient that can be used to do analogical
reasoning. The next proposition gives an affirmative an-
swer. For this we need the notion of orientation. Each
line 𝐿 has exactly one of two orientations [10, Theorem
40] which we call 𝑟𝐿 and 𝑙𝐿 (for from-left-to-right and
from-right-to-left on 𝐿). Such an orientation 𝑥 induces
a total order <𝑥

𝐿 and a dual order on the dual orientation
𝑥′ with 𝑢 <𝑥 𝑣 iff 𝑣 <𝑥′

𝑢. Each segment ⟨𝑎𝑏⟩ has
exactly one line 𝐿𝑎𝑏 going through it. In particular, each
orientation 𝑥 positions 𝑎, 𝑏 w.r.t <𝑥. Define 𝑠𝑖𝑔𝑛(𝑎, 𝑏) as
follows

𝑠𝑖𝑔𝑛(𝑎, 𝑏) =

⎧⎪⎨⎪⎩
+, iff 𝑎 <𝑙 𝑏

−, iff 𝑏 <𝑙 𝑎

0, otherwise

We denote by [𝑎, 𝑏] the interval w.r.t the left orientation
(where 𝑎 comes before 𝑏 reading from left to right). So
𝑠𝑖𝑔𝑛(𝑎, 𝑏) tells us whether under the left-to-right orienta-
tion the order chosen in the pair (𝑎, 𝑏) fits the order of the
induced order <𝑙 by left-to-right-orientation. The special
case of 𝑎 = 𝑏 is treated separately. Now we define on the
basis of this operation the following operation:

: 𝑋 ×𝑋 −→ segments× {+,−, 0}
(𝑎, 𝑏) ↦→ (⟨𝑎𝑏⟩, 𝑠𝑖𝑔𝑛(𝑎, 𝑏)) (1)

Note that we can consider 𝑎 : 𝑏 really as some form of
difference: If for example 𝑎 comes before 𝑏 then ⟨𝑎𝑏⟩ =
[𝑎, 𝑏] can be considered as the halfline starting from 𝑎 to



the right minus the half line to the right starting at 𝑏. For
any two closed proper segments on a line we consider the
following eight jointly exhaustive and mutually disjoint
relations known from the region connection calculus RCC
8 [11], applied to the 1-dimensional case of a line:

{𝐷𝐶,𝐸𝐶, 𝑇𝑃𝑃,𝑁𝑇𝑃𝑃, 𝑃𝑂,𝐸𝑄, 𝑇𝑃𝑃𝑖,𝑁𝑇𝑃𝑃𝑖}

Let be given closed proper sections 𝑥 = ⟨𝑎𝑏⟩ and 𝑦 =
⟨𝑐𝑑⟩ define

𝑥𝐷𝐶𝑦 iff 𝑥 ∩ 𝑦 = ∅ (“disconnected”)

𝑥𝐸𝐶𝑦 iff 𝑥 ∖ {𝑎, 𝑏} ∩ 𝑦 ∖ {𝑐, 𝑑} = ∅
𝑥 ∩ 𝑦 ̸= ∅
(“externally connected”)

𝑥𝑇𝑃𝑃𝑦 iff 𝑥 ⊊ 𝑦 and 𝑥 ̸⊆ 𝑦 ∖ {𝑐, 𝑑}
(“tangential proper part”);

𝑥𝑁𝑇𝑃𝑃𝑦 iff 𝑥 ⊊ 𝑦 ∖ {𝑐, 𝑑}
and all of 𝑎, 𝑏, 𝑐, 𝑑 are different.

(“ nontangential proper part”)

𝑥𝑃𝑂𝑦 iff 𝑥 ∖ {𝑎, 𝑏} ∩ 𝑦 ∖ {𝑐, 𝑑} ≠ ∅
and 𝑥 ̸⊆ 𝑦 and 𝑦 ̸⊆ 𝑥

𝑥𝐸𝑄𝑦 iff 𝑥 = 𝑦 (“equals”)

𝑥𝑇𝑃𝑃𝑖𝑦 iff 𝑦𝑇𝑃𝑃𝑥 (“contains tangentially”)

𝑥𝑁𝑇𝑃𝑃𝑖𝑦 iff 𝑦𝑁𝑇𝑃𝑃𝑥

(“contains non-tangentially”)

Note that we have defined those relations such that they
can be applied also to the case where 𝑥 or 𝑦 is improper.
In particular, if 𝑥 or 𝑦 is improper then it can never be the
case that 𝑁𝑇𝑃𝑃 or 𝑁𝑇𝑃𝑃𝑖 holds.

We use the usual set theoretical abbreviation to ex-
press a relationship out of a given set of relations. For
example ⟨𝑎𝑏⟩{𝐷𝐶,𝐸𝐶}⟨𝑐𝑑⟩ stands for: ⟨𝑎𝑏⟩𝐷𝐶⟨𝑐𝑑⟩ or
⟨𝑎𝑏⟩𝐸𝐶⟨𝑐𝑑⟩.

The following proposition is going to show that we
have to exclude the relations of non-tangential proper part
𝑁𝑇𝑃𝑃 and its inverse 𝑁𝑇𝑃𝑃𝑖 between ⟨𝑎𝑏⟩ and ⟨𝑐𝑑⟩
for the analogical proportion 𝑅𝐵𝑡𝑤

1 to hold and vice versa.

Proposition 16. 𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑑) iff

1. the lines through ⟨𝑎𝑏⟩ and ⟨𝑐𝑑⟩ is the same line 𝐿
and

2. 𝑠𝑖𝑔𝑛(𝑎, 𝑏) = 0 or 𝑠𝑖𝑔𝑛(𝑐, 𝑑) = 0 or
𝑠𝑖𝑔𝑛(𝑎, 𝑏) = 𝑠𝑖𝑔𝑛(𝑐, 𝑑) and

3. ⟨𝑎𝑏⟩{𝐷𝐶,𝐸𝐶, 𝑇𝑃𝑃, 𝑇𝑃𝑃𝑖, 𝑃𝑂,𝐸𝑄}⟨𝑐𝑑⟩.

Proof. →: Assume 𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑑). Then 𝑎, 𝑏, 𝑐, 𝑑

are on the same line. We prove the result con-
sidering case-wise. Case 1: 𝑎 = 𝑏. Then
𝑠𝑖𝑔𝑛(𝑎, 𝑏) = 0. Now 𝑅𝐵𝑡𝑤

1 (𝑎, 𝑏, 𝑐, 𝑑) in this case is

𝑅𝐵𝑡𝑤
1 (𝑎, 𝑎, 𝑐, 𝑑) which means ⟨𝑎𝑑⟩ ⊆ ⟨𝑎𝑐⟩ or ⟨𝑎𝑐⟩ ⊆
⟨𝑎𝑑⟩ which amounts to saying that the following holds:
⟨𝑎𝑑⟩{𝑇𝑃𝑃, 𝑇𝑃𝑃𝑖,𝐸𝑄}⟨𝑎𝑐⟩.

Case 2: 𝑎 ̸= 𝑏. a) Subcase 𝑐 = 𝑑. Then 𝑠𝑖𝑔𝑛(𝑐, 𝑑) = 0.
Now 𝑅𝐵𝑡𝑤

1 (𝑎, 𝑏, 𝑐, 𝑑) means in this case 𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑐)

which means ⟨𝑎𝑐⟩ ⊆ ⟨𝑏𝑐⟩ or ⟨𝑏𝑐⟩ ⊆ ⟨𝑎𝑐⟩ which amounts
to ⟨𝑎𝑐⟩{𝑇𝑃𝑃, 𝑇𝑃𝑃𝑖}⟨𝑎𝑏⟩.

b) Subcase 𝑐 ̸= 𝑑. That 𝑅𝐵𝑡𝑤
1 (𝑎, 𝑏, 𝑐, 𝑑) means that

⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ or ⟨𝑏𝑐⟩ ⊆ ⟨𝑎𝑑⟩. Assume ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ (the
other disjunct is treated symmetrically). If 𝑠𝑖𝑔𝑛(𝑎, 𝑏) ̸=
𝑠𝑖𝑔𝑛(𝑐, 𝑑) were the case, this would e.g. mean from
reading right to left that 𝑎 < 𝑏 and 𝑑 < 𝑐. But due
to ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ we must have 𝑏 ≤ 𝑑 and 𝑑 ≤ 𝑐, i.e.
𝑏 < 𝑐. Now ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ also means 𝑏 ≤ 𝑎, giving a
contradiction. So 𝑠𝑖𝑔𝑛(𝑎, 𝑏) = 𝑠𝑖𝑔𝑛(𝑐, 𝑑) holds. Now,
in the left orientation we have intervals [𝑎, 𝑏] and [𝑐, 𝑑]
or intervals [𝑏, 𝑎] and [𝑐, 𝑑]. Consider the first case (the
other is treated similarly). We have to treat the case of
proper and improper intervals. (i) Case 𝑎 = 𝑑 and 𝑏 = 𝑐.
Here ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ becomes ⟨𝑎⟩ ⊆ ⟨𝑏⟩ which in turn
means 𝑎 = 𝑏. So ⟨𝑎𝑏⟩ = ⟨𝑏𝑑⟩ and ⟨𝑐𝑑⟩ = ⟨𝑏𝑑⟩, so
⟨𝑎𝑏⟩𝐸𝑄⟨𝑐𝑑⟩.

(ii) Case 𝑑 = 𝑎 and 𝑏 ̸= 𝑐. Then ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ means
𝑎 ∈ ⟨𝑏𝑐⟩ which means ⟨𝑎𝑏⟩𝐸𝐶⟨𝑐𝑑⟩. If 𝑑 ̸= 𝑎, then
⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ means that ⟨𝑎𝑏⟩{𝐷𝐶,𝑃𝑂}⟨𝑐𝑑⟩. (iii) Case
𝑑 ̸= 𝑎 and 𝑏 = 𝑐 is not possible: ⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ would
mean ⟨𝑎𝑑⟩ ⊆ ⟨𝑏⟩, so 𝑎 = 𝑑, contradiction. (iv) Case
𝑑 ̸= 𝑎 and 𝑏 ̸= 𝑐. So all of 𝑎, 𝑏, 𝑐, 𝑑 are pairwise different.
⟨𝑎𝑑⟩ ⊆ ⟨𝑏𝑐⟩ means under the orientation with intervals
[𝑎, 𝑏] and [𝑐, 𝑑] that we can have only ⟨𝑎𝑏⟩𝐷𝐶⟨𝑐𝑑⟩.
←: Assume that all 𝑎, 𝑏, 𝑐, 𝑑 are different. (The other

special cases are treated similarly as above) and all of
the condition 1.–3. are true. In particular 𝑎𝑏 and 𝑐𝑑
have the same orientation. Between ⟨𝑎𝑏⟩ and ⟨𝑐𝑑⟩ one
of the eight relations must hold. As all 𝑎, 𝑏, 𝑐, 𝑑 are dif-
ferent the relation cannot be 𝐸𝑄,𝐸𝐶, 𝑇𝑃𝑃𝑖, 𝑇𝑃𝑃 . If
𝑅𝐵𝑡𝑤

1 (𝑎, 𝑏, 𝑐, 𝑑) would not hold then none of the con-
figuration (i)–(viii) could hold which means that also
𝑃𝑂,𝐷𝐶 would have to be excluded. We are left
𝑁𝑇𝑃𝑃,𝑁𝑇𝑃𝑃𝑖, but this contradicts our assumption
that the third condition holds. Similarly one argues in the
case where we have improper segments.

The proposition in particular shows that we have a
non-trivial solution for the extension problem of composi-
tionality: Choose : to be defined according to (1); define
the relation :: on left and right each of which is a pair of
the form (𝑠, 𝑜) where 𝑠 stands for a closed section and
𝑜 ∈ {+,−, 0}. Last define (𝑠1, 𝑜1) :: (𝑠2, 𝑜2) iff 𝑠1
and 𝑠2 make up the same line and 𝑜1 = 0 or 𝑜2 = 0 or
𝑜1 = 𝑜2 and 𝑠1{𝐷𝐶,𝐸𝐶, 𝑇𝑃𝑃, 𝑃𝑂,𝐸𝑄}𝑠2.



6. Related Work
Early work on axiomatic treatments of analogies
goes back to Yves Lepage [12]. He considers lin-
guistic issues related to analogies of words as in
“walk:walked::search:searched”. He accounts for simi-
larities between words in the discussion of analogies but
betweenness is not mentioned at all. Nonetheless, for
future work plan to investigate the relations between his
approach and our approach because a recent article [13]
shows that there are relevant connections between similar-
ity relations and betweenness relations.

Schockaert et al. [14] incorporate analogical propor-
tions into a description logic framework. They enrich
each concept with features and are able to define analogi-
cal proportions based on these features. For one variant of
analogical proportions described by Schockaert and col-
leagues [14], some form of betweenness is used. However,
the whole approach is based on analogical proportions
over the domain of concepts and their features (and thus
on sets). In contrast, our approach presumes an arbitrary
domain of objects—as long as this domain is equipped
with a betweenness relation.

Continuous analogical proportions are widely used also
in practical approaches, e.g., for the interpolation of new
training examples [9], however, to the best of our knowl-
edge, by now not extended to the general case. Several
ways have been proposed to enhance the analogical pro-
portion of the Boolean case to multiple values. On the
one hand, there are many practice-oriented approaches
such as TransE [4] being focused on a specific (most times
geometrical) operation and its usability for classification.
On the other hand, there are multiple approaches starting
with the Boolean case and generalizing it to the general
case. One approach is based on a graded extension of the
Boolean case thus allowing values in [0, 1], it results in
graded analogical proportions not being true or false but
having a truth value in [0, 1][15].

A general form of an analogical proportion based on
groups has been proposed by Stroppa and Yvon [16]. This
definition depicts a general applicable analogical propor-
tion, having the classical proportion 𝑎

𝑏
= 𝑐

𝑑
as special

case. However, they do not define, in contrast to our ap-
proach, the analogical proportion focused on axioms it
needs to fulfill and, though they consider groups (and even
more general factorizations), their approach is not appli-
cable to arbitrary spaces equipped with a betweenness
relation.

Also related to the approach of this paper is a computa-
tional framework [17] on conceptual blending [18]. Con-
ceptual blending is founded in cognition science, in partic-
ular, in that part dealing with the mechanisms underlying
human creativity in inventing concepts, e.g., inventing the
concept of houseboat from concept house and concept
boat [17]. The authors stress that concept blending is a

non-trivial operation different from simple set operations
such as intersection or union. If we consider continu-
ous analogical proportions over the domain of concepts,
then concepts in between two others can be considered
as their conceptual blending. Also the example discussed
by Prade and Richard [3] (the concept of centaur as ly-
ing in between the concept of man and horse) indicates
at least that work on continuous analogical proportions
might profit from work on concept blending and vice versa.
Continuous analogical proportions do not directly provide
an operator of concept blending, but at least they describe
a set of concepts in between two given concepts and hence
a set of potential blending concepts, which fits to the idea
of a “blended space” [17]. For the sake of completeness,
we mention here also work on hyperdimensional com-
puting and, more generally, vector symbolic approaches
[19, 20] which provide vector operations corresponding
to conceptual blending.

7. Conclusion
The idea of continuous analogical proportions motivated
our investigation on the definability of analogical propor-
tions via betweenness relations. As a main result we could
show that such a definition is possible in the representative
microcosm of the eight models of analogical proportions
[3]– and it was even possible to consider a definition being
the inverse of the forgetting operation (leading from ana-
logical proportions to continuous analogical proportions).

In future work we plan, first, to widen the perspec-
tive from the microcosm of eight models to other ana-
logical proportions, second, to generalize the decompos-
ability questions from Euclidean betweenness to general
betweenness relations, and, third, to investigate the con-
sequences of our results for frameworks (such as concept
blending) dealing with analogies and betweenness of con-
cepts.
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