Lifted Junction Tree Algorithm

Tanya Braun and Ralf Moller

Institute of Information Systems, Universitdt zu Liibeck, Liibeck
{braun,moeller}@ifis.uni-luebeck.de

Abstract. We look at probabilistic first-order formalisms where the do-
main objects are known. In these formalisms, the standard approach for
inference is lifted variable elimination. To benefit from the advantages
of the junction tree algorithm for inference in the first-order setting, we
transfer the idea of lifting to the junction tree algorithm.

Our lifted junction tree algorithm aims at reducing computations by in-
troducing first-order junction trees that compactly represent symmetries.
First experiments show that we speed up the computation time compared
to the propositional version. When querying for multiple marginals, the
lifted junction tree algorithm performs better than using lifted VE to
infer each marginal individually.

Keywords: Probabilistic Logical Models, Lifted Inference, Junction Tree,
Belief Propagation

1 Introduction

New probabilistic logical representation formalisms support first-order logic,
rather than just propositional logic, and one can reason about sets of individuals
in a relational domain. To express patterns or symmetries in the relation between
individuals, we combine random variables (randvars) with logical variables (log-
vars) to denote a whole set of randvars (parameterized randvars, PRVs). In an
undirected formalism with known domain objects, the idea of lifting is to use
these patterns and symmetries to infer knowledge faster.

A small example that serves as a running example for the upcoming sections
is a knowledge base (KB) G, with PRVs epidemic(D) and sick(D, P). The
PRV epidemic(D), for example, could stand for two propositional randvars if
logvar D had the two instantiations flu and measles.

In general, we study the inference task of computing marginal distributions.
Many approaches and applications need optimizations to enhance efficiency. For
propositional representation languages, variable elimination (VE) [19] speeds up
computation. VE decomposes a KB into parts that we can solve faster. In the
first-order context, lifted VE [12] aims at answering queries more efficiently by ex-
ploiting symmetries captured in PRVs. More specifically, with PRVs in a KB, we
have parameterized factors (potential functions), called parfactors for short, that
have PRVs as arguments. A parfactor represents a set of factors with an identical
potential function, e.g., a probability distribution. Lifted VE uses the symme-
tries in the potential functions to reduce the number of computations carried out.

2 Tanya Braun and Ralf Moller

¢1(epidemic(D)) ¢2(sick(D, P), epidemic(D))

‘ epidemic(D) ‘ sick(D, P)

Fig. 1. Parfactor Graph for G,

Figure 1 shows a graphical representation of G, with PRVs epidemic(D) and
sick(D, P) and parfactors ¢1(epidemic(D)) and ¢z(sick(D, P), epidemic(D)).
The graph consists of two variable nodes, one for each randvar in G.,, and two
factor nodes for the two parfactors. The factor nodes have edges to the nodes
of the randvars involved. E.g., factor ¢ (epidemic(D)) denotes that all randvars
for which epidemic(D) stands have the same potential function ¢;, e.g., a prior
probability for some epidemic to occur.

When asking multiple queries in the propositional case, an optimization is
the junction tree algorithm [7]. It allows to compute all marginal distributions ef-
ficiently instead of answering queries individually with VE. The junction tree al-
gorithm is designed for query answering with respect to KBs specified with undi-
rected formalisms. We can transfer directed formalisms into undirected ones by
moralizing the underlying graphs or by building decomposition trees (dtrees) [7].
Dtrees are tree representations of the decomposition of a KB during VE. The
junction tree algorithm supports exact reasoning through message passing where
we basically apply VE in all directions at a time. In the context of junction trees,
message passing distributes “knowledge” in a graph. It does not approximate in
itself. With symmetries present, many unnecessary messages are sent. We trans-
fer the idea of lifting to the junction tree algorithm to optimize the junction tree
representation and message handling. We illustrate our findings in the evaluation
with an extended example where we show that the advantages of a junction tree
transfer from the propositional to the first-order setting.

This paper contributes the following: We propose a lifted junction tree algo-
rithm for inference in probabilistic logical KBs. We lift the algorithm by building
a lifted (first-order) junction tree (FO jtree). To this end, we introduce parame-
terised clusters (parclusters) that, similar to parfactors, support logvars to cap-
ture symmetries. We modify the message passing scheme to operate on FO jtrees.
When calculating messages and results to queries, we integrate lifted VE.

The representation language and lifted VE operators we use heavily rely on
Taghipour’s work[17] (and the papers cited therein). Taghipour also introduces
lifted (first-order) dtrees (FO dtrees) based on [6] and gives a simple algorithm
to find one for a given KB. We use FO dtrees to build FO jtrees.

In terms of performance, the lifted junction tree algorithm imposes some
static overhead due to the junction tree construction and message passing. But,
with multiple queries or varying evidence where the tree is reusable, the overhead
amortizes and becomes more and more negligible compared to the junction tree
speed-up. According to our experiments, we significantly speed up run times in
the presence of symmetries compared to the grounded version. Additionally, we
speed up inference compared to lifted VE if asking multiple queries.

Lifted Junction Tree Algorithm 3

The remainder of this paper starts with related work on lifted inference and
belief propagation followed by background information on the junction tree al-
gorithm, parameterized KBs, and FO dtrees. Next, we introduce our lifted junc-
tion tree algorithm. Additionally, we present an evaluation of our algorithm with
promising results. We conclude the paper by looking at future work.

2 Related Work

We present related work in the area of probabilistic (first-order) formalisms,
focusing on the junction tree algorithm and lifted inference.

Basic junction tree algorithms, specifically, their message passing schemes,
use one of two architectures. Shafer and Shenoy [13] propose the first architecture
under the name probability propagation, often called Shafer-Shenoy. Jensen et
al. [9] introduce the second architecture, nowadays referred to as Hugin. Both
architectures have a collect and a distribute phase but vary with respect to
what they store and how they compute messages. On the one hand, Shafer-
Shenoy is more space-efficient than Hugin. On the other hand, Hugin usually is
faster. Hugin saves time by doing fewer computations per message but requires
more space to store larger intermediate results. We adapt the ideas of both
architectures to pass and process messages in our lifted algorithm.

Darwiche [7] provides the foundation for the dtrees as we use them and the
connection between dtrees and junction trees. His work on recursive conditioning
[6] and local symmetry (the latter together with Chavira [5]) provides ideas on
how to further utilize first-order structures in different ways.

Lifted inference has been the focus of research for some years now. The first
formalizations of lifted inference go back to [12], named FOVE for first-order VE.
The research presented in [3, 10, 17] extends the formalism to the standard form
GC-FOVE of lifted VE with generalized counting. We use the lifting operators
in GC-FOVE for internal lifted calculations in our algorithm.

Parallel to lifted VE, weighted first-order model counting emerges using the
lifting idea applied to weighted model counting for inference [4]. Another branch,
lifted belief propagation (BP), picks up the idea of probability propagation and
combines it with lifting. Often, the work on belief propagation is accompanied
with lifted representations. The work of Singla and his colleagues includes BP
on a lifted network, using hypercube-based representations, and an approximate
lifted BP, to approximate lifting in presence of noise [14-16]. Gogate uses hyper-
cubes as well for a lifted representation [8]. Ahmadi et al. [1] provide a counting
BP using a coloring algorithm including an extension to dynamic Bayesian net-
works. Though lifted BP uses belief propagation similar as we do, none of the
approaches given uses a lifted version of junction trees.

The junction tree algorithm provides an efficient alternative to inference if
confronted with the need to answer multiple queries or queries under varying
evidence. Lifting provides an idea to further optimize inference by handling sym-
metries in an efficient way. We take the propositional version and adapt it to a
first-order setting by modifying the underlying tree structure. Additionally, we

4 Tanya Braun and Ralf Moller

revise the propositional algorithm to deal with first-order constructs efficiently.
We alter the computing instructions for delivering results to queries as well as
assembling messages to incorporate lifted VE instead of ground VE. Overall,
we propose a lifted algorithm that compactly represents clusters in a KB and
efficiently handles inference on them.

3 Background

This section presents the standard junction tree algorithm and introduces defi-
nitions for parameterized KBs and FO dtrees. The first subsection is based on
[7], the second on [17]. Taghipour [17] calls the KB we work on a model. We
use the term model for the remainder of this paper. We assume familiarity with
common notions such as dtrees and its properties cutsets, contexts, and clusters
(for an introduction, see also the appendix in [2]).

3.1 Junction Tree Algorithm

In inference, we query models, e.g., a factor graph, given some evidence. For
one query, VE is the standard approach. With multiple queries, we look for a
data structure that allows to pre-compute recurring calculations for faster query
answering. Junction trees (jtrees) serves as such a data structure. Jtree nodes
represent sets of variable nodes of the underlying model, called clusters. One
algorithm run distributes knowledge in the underlying jtree. At the end, a node
holds all information to compute marginal probabilities for its variables.

Intuitively, clusters consist of elements (i.e., randvars) that share close rela-
tions, through factors, otherwise not present in the model. Randvars that con-
tribute to various clusters inform the structure of the jtree. All clusters that share
a randvar build a subgraph to ensure that if local changes in one cluster influence
a randvar, the effect is communicated to the other clusters. To construct a jtree,
we build a dtree and compute its clusters. A dtree represents a decomposition
of a model during VE. The dtree structure and its clusters associated with each
node form a jtree.

A factor is associated with a cluster that includes the factor’s arguments.
Evidence influences arguments. If we enter evidence in the graph at one end, we
propagate that information to other parts using messages. After propagating all
information (factors are information as well), we answer queries by looking at
clusters that contain the query variables. Starting from evidence, we compute
aggregations of factors by propagating information from node to node. We reuse
the jtree with new evidence.

Next, we formalize the dtree and jtree data structure and the junction tree
algorithm. A dtree for a graph G is a tree whose leaf nodes correspond to the
factors in G. An inner node represents a decomposition of its factors into parti-
tions, one for each child, containing the factors in the child’s subtree. The cluster
of a dtree node N is the union of its cutset and context. The cutset of N is the
set of randvars shared between any pair of its child nodes. In case of N not being

Lifted Junction Tree Algorithm 5

the root, we subtract the randvars appearing in its ancestor cutsets. The context
of N is the intersection of its randvars and those in its ancestor cutsets.

A jtree for a graph G is a pair (J,C) where J is a tree (the structure of
the jtree) and C is a function that maps each node i in J to a label C; called
a cluster. The mapping function effectively makes the clusters and nodes of J
interchangeable. A jtree must satisfy three properties: (i) A cluster C; is a set
of nodes from G. (ii) For every edge X—Y in G, variables X and Y appear in
some cluster C;. (iii) If a node from G appears in clusters C; and C;, it must
appear in every cluster Cj on the path between nodes i and j in J. S;;, called
the separator of edge ¢—j, holds those randvars shared by clusters C; and C;
and is given by C; N C;.

A jtree is minimal if by removing a variable from any cluster, the jtree stops
being a jtree The clusters of a dtree fulfil the jtree properties. But, the resulting
jtree is seldom minimal. We merge two neighboring clusters if the randvars in
one of them is a subset of the randvars in the other.

The main workflow to answer queries is to construct the jtree, pass messages,
and then answer queries. We modify the junction tree algorithm from [7] using
potential functions instead of conditional probability tables (CPTs). The algo-
rithm consists of a preparation phase and the actual algorithm. The preparations
incorporate three steps: (i) Construct a jtree. (ii) Assign each potential func-
tion ¢ to a cluster that contains its randvars. (iii) Assign for each randvar X an
evidence indicator Ax to a cluster that contains X. We use evidence indicators
to assign an observed value of a randvar. By multiplying an indicator with a
potential function, we incorporate the evidence into the model. For each cluster,
we multiply the assigned factors.

The algorithm itself is short: We enter evidence e through the indicators.
Then, the algorithm sends messages to distribute knowledge. Message M;; from
node ¢ to node j holds new information for j encoded in a readable way: M;;
is a product of the factor assigned to ¢ and the messages received from other
nodes but j projected onto S;; by summing out C; \ S;;. Message computation
is a form of VE, summing out variables unknown at the receiver node. We can
interpret a message as a factor with the separator variables as arguments. After
passing two messages per edge, we can compute, e.g., marginal P(C,e) for every
cluster C. To answer a query, we can now use any cluster that contains the query
variables and sum out all other variables.

3.2 Parameterized Models and FO Dtrees

Parameterized models provide a compact way to specify KBs using first-order
constructs allowing lifted VE. To enable a compact dtree representation, we need
a first-order version, which we use for constructing FO jtrees.

First, we define a few useful shortcuts. Consider the PRV epidemic(D) rep-
resenting a set of randvars depending on the instantiations of D. We call the
possible values of D its domain, denoted D(D). Assuming epidemic(D) is bi-
nary, the range of each randvar represented by epidemic(D) is true and false:
range(epidemic(D)) = {true, false}. The term logvar(P) denotes the logvars

6 Tanya Braun and Ralf Moller

in a set or sequence of randvars P (e.g., logvar(epidemic(D)) = {D}). Domains
constrain the instantiations of a PRV to a given set by specifying the values of
its logvars. As PRVs are arguments to parfactors, parfactors are subject to con-
straints as well. We introduce a constraint C' to specify instantiations of logvars.
Taghipour defines a constraint C' as a tuple (X, Cx), with Cx C x;D(X;)
where X = (X3,...,X,,) is a tuple of logvars.

To specify a parfactor g, we need the potential function with its arguments,
i.e. PRVs, and a constraint on the logvars in g. Formally, g is given by

g:=VL : ¢(A4) | C

where L is a set of logvars that the factor generalizes over. A = (44,...,A,)
is a sequence of randvars. If L = logvar(A), we omit VL in the parfactor. ¢ =
x™_range(A4;) — R* is a potential function with values of A as input.

A model G is given by a set of parfactors {g; }"_;. Model G, becomes the par-
factor model G, = {g1, g2} with g1 = ¢1(epidemic(D))|Cy, g2 = ¢=2(sick(D, P),
epidemic(D))|Cs. Let D(D) = {flu, measles} and D(P) = {alice, eve, bob}.
Then we could define Cy by ((D, P),Cp,py) and C(p py = {(flu, eve), (flu,bob),
(flu, alice), (measles, eve), (measles, bob), (measles, alice)}.

Lifting uses the fact that we can decompose a model into isomorphic sub-
problems and solve only one representative. For our algorithm, we use the lifting
operators defined by Taghipour (for full definitions including pre- and postcon-
ditions, see [17]). For example, we use lifted absorption when entering evidence
in the FO jtree or lifted summing-out when computing messages.

First-Order Dtrees We now define a compact representation of the decompo-
sition of a model. Logvars allow us to ground models partially by grounding a
subset of the logvars and work with representatives of the grounded logvars. If a
model is in a certain normal form, we can decompose it into partial groundings
isomorphic up to permutations of inputs. For details on the normal form and
decomposition into partial groundings (DPG), see also the appendix in [2].

Isomorphic decomposition (ID) nodes represent isomorphic partial ground-
ings in the FO dtree. An ID node Tx is given by a triplet (X,x,C) where
X ={Xj,... X} is a set of logvars all of the same domain Dx, x = {z1,... 2%}
is a set of symbolic constants from Dx, and C is a constraint on x, such that for
i,j : z; # x; € C. We denote Tx by Vx : C in the FO dtree. Tx has one child
named Tyx. The model under Ty is a representative instance of Tx.

An FO dtree represents a decomposition of a parfactor model during lifted
VE with parfactors in its leaves and ID nodes to model representative instances.
Formally, an FO dtree is a tree that can have ID nodes and in which (i) each leaf
contains a factor (possibly with symbolic constants), (ii) each leaf with symbolic
constant x is the descendent of exactly one ID node Tx such that x € x, (iii) each
leaf that is a descendent of ID node Tx has all symbolic constants x in its factor,
and (iv) for each ID node Tx, X = {X1,... X;.}, Tx has k! children {T;}*,,
which are isomorphic up to a permutation of symbolic constants x.

Lifted Junction Tree Algorithm 7

epidemic(d)
sick(d, p)

sick(d, p)

¢4 (sick(d, p), epidemic(d)) epidemic(d)

Fig. 2. FO Dtree for Ges Fig. 3. FO Jtree for the FO Dtree in Fig. 2

For an FO dtree, one can compute a cluster for each node analogously to
computing clusters for propositional dtrees. The appendix in [2] shows how to
build an FO dtree for a model and how to compute clusters for FO dtrees.

Figure 2 shows an FO dtree for G.,. For readability purposes, we only
write the element for singleton sets and omit T constraints. The root is an
ID node Tp = (D,d, T) (logvar D allows a DPG). Tp has a child Ty with
the model G' = {g] = ¢'(epidemic(d)), g4 = ¢'(sick(d, P),epidemic(d))}. G’
does not allow a DPG (gi has no logvar). Hence, G’ is split based on the
occurrence of P. Thus, T, gets two children. The right child with the model
{91 = ¢'(epidemic(d))} is ground. It has only one factor in its model which
results in a leaf node with factor ¢'(epidemic(d)). The left child with the model
{gh = &' (sick(d, P), epidemic(d))} has a logvar, P, that permits a DPG. Hence,
the child is an ID node Tp = (P,p, T) with a child 7}, with the model {g§ =
@' (sick(d, p), epidemic(d))}. g4 is ground and only consists of one factor as well,
so the child is a leaf node with factor ¢ (sick(d, p), epidemic(d)) contained in it.

4 Lifted Junction Tree Algorithm

This section presents our lifted version of the junction tree algorithm including
FO jtrees and parclusters.

4.1 First-Order Junction Trees

FO jtrees follow the idea of ground jtrees. Clusters combine PRVs with close
relations and message passing distributes knowledge to enable efficient query
answering of many queries. A ground jtree in the presence of symmetries has
many nodes with identical factors where messages propagate information that
basically is already present. We allow parameterized randvars to capture sym-
metries and parameterize the notion of a cluster to represent a subgraph of
grounded clusters with identical potential functions.

8 Tanya Braun and Ralf Moller

Algorithm 1 Constructing an FO Jtree for a Model G Using an FO Dtree

function FO-JTREE(G)
FO dtree T = FO-DTREE(G)
Compute clusters for T’
Construct FO jtree J
Minimize J
return J

Parclusters Intuitively, parclusters are the nodes of an FO jtree formed by FO
dtree clusters. A parcluster describes the set of randvars in a cluster and can
have factors assigned. It generalize over logvars if ID nodes are involved.

Formally, a parcluster C = VL : A|C is a set of randvars A. The parameters of
C are the set of logvars L and logvar(A) C L. The constraint C puts limitations
onto logvars and symbolic constants. A factor ¢(A,)|Cy assigned to C has to
fulfil (i) Ay C A, (ii) logvar(Ay) C L, and (iil) Cy C C.

As jtrees built from dtrees often are non-minimal, we define a merge operation
for parclusters. Parclusters C; and C; with possibly assigned factors ¢; and ¢;
can merge if A; € A; V A; C A; holds. The merged parcluster Cj, and its
assigned factor ¢, are determined by

- A, =A; U .Aj,
- Ly =L; UL,
- Cp =C; Uy, and
b; if only ¢; exists
lon if only ¢; exists
- K =

i @ @ if both exist

undefined otherwise.

The new node k takes over all neighbours of 7 and j. To merge a parcluster with
logvars and another with corresponding symbolic constants, we first perform an
inverse substitution from symbolic constants to logvars and then merge.

FO Jtrees An FO jtree for a model G is a graph with parclusters as nodes. It
must also satisfy the three properties introduced for ground jtrees. Grounding
an FO jtree leads to a jtree that could have been built by converting a ground
dtree into a jtree. The set of factors in the grounded version of the FO jtree is
identical to the set of factors in the ground jtree. Algorithm 1 shows pseudo code
for constructing an FO jtree for a model G. First, it constructs an FO dtree and
computes its clusters. Then, it builds an FO jtree using the clusters. Finally, the
FO jtree is minimized by merging parclusters.

The clusters of the FO dtree in Fig. 2 lead to the FO jtree in Fig. 3. The
labels next to the nodes indicate from which node a cluster came. The FO jtree
shown is not minimal. Iteratively merging leaf parclusters with their neighbor
leads to a single parcluster C = VD, P : {epidemic(D), sick(P, D)} with ¢; and
@2 assigned to it.

Lifted Junction Tree Algorithm 9

Algorithm 2 Lifted Junction Tree Alg. for Model G, Queries @, Evidence FE

function FOJT(G, Q, E)
FO jtree J = FO-JTREE(G)
J.ENTEREVIDENCE(E)
J.PASSMESSAGES
J.GETANSWERS(Q)

4.2 Algorithm Description

Our lifted junction tree algorithm has the following workflow: (i) Construct
an FO jtree for a given model G. (ii) Enter evidence E into the tree. (iii) Pass
messages. (iv) Compute answers. Algorithm 2 shows a corresponding pseudo
code description, which uses Algorithm 1.

FO jtree construction uses the clusters of an FO dtree for model G. After
the FO jtree construction, we enter evidence F, a set of evidence parfactors.
We assign an evidence parfactor to a parcluster if the represented set of the
parcluster randvars includes the randvars of the evidence parfactor.

Message passing on FO jtrees proceeds analogously to the one on grounded
jtrees. A message from node ¢ to node j is a factor over the randvars in separator
Si; where all other randvars in parcluster C; are summed out. The messages
and factors include PRVs which allow us to use lifted VE for computations.
Message passing starts from the leaves and moves inward (collect phase). When
all neighbors but one have sent messages to a node, the node itself sends a
message to the remaining neighbor. Sending messages in such a way leads to
one or two nodes in the center of the jtree to have received messages from
all neighbors. Then, the distribute phase begins. The one or two nodes send
messages to all its neighbors. If now a node receives a message (from the node to
which it sent a message during the collect phase), it sends messages to all other
neighbors. With new evidence, we repeat message passing.

To answer a query, we identify a cluster with the query terms in its domain
and sum out all other terms in its parfactor and messages received. For answering
queries (or handling evidence), we need the lifted VE operator splitting to rewrite
the model to permit lifted summing out. (A parfactor is split into one parfactor
for the query term (or the terms for which we have evidence) and one for the
other instances of the logvar.)

Compared to the ground version, we do not change the algorithm structure
much to lift it. We enter evidence and pass messages. The preparation phase and
how we handle evidence, messages, and queries vary. In a dtree, the leaves hold
the factors and every factor appears in exactly one leaf. Therefore, clusters have
assigned factors and our merge operation maintains them. Additionally, we do
not assign evidence indicators as we use evidence parfactors to handle evidence
in a lifted manner. So, the preparation phase (construction, assign factors, assign
indicators) melts down to construction. For message and query computation, we
incorporate lifted VE operators to further optimize calculations.

10 Tanya Braun and Ralf Moller

Node 2 Node 3

C,=VX,Y:
{RIX,Y),
P(X),S}

Pc, = ?1(Q(X,Y),S)® Pcy = d2(R(X,Z),S)®
¢3(Q(X,Y), P(X),S) ¢4 (R(X,Z2),P(X),S)

Fig. 4. FO Jtree for Ges2

5 Evaluation

We compare our lifted algorithm with GC-FOVE and a propositional version
of the junction tree algorithm. We have implemented our lifted junction tree
algorithm with Shafer-Shenoy message passing as a Java program that builds on
GC-FOVE [18] which is an extension of C-FOVE [10] in BLOG [11].

First experiments exhibit promising results. Since lifting is relevant in the
presence of symmetries, the experiments focus on models with symmetries. Ad-
ditionally, inference benefits from our approach particularly if asking several
queries. Although GC-FOVE has to eliminate all non-query randvars in the
model, it is usually faster than our algorithm if asking only one query as it does
not have to construct an FO jtree. With multiple queries, though FO jtree con-
struction and message passing impose some static overhead, our algorithm needs
considerably fewer computations to answer queries. If evidence changes, we can
reuse the FO jtree and only add the overhead of a message passing run.

We illustrate our findings with an extended model Gz = {91, 92, 93, 94, g5 }-
The parfactors are defined as follows:

— g1 = ¢1(Q(X’ Y),S)

- g2 = $2(R(X, Z),S)

- g3 = 93(Q(X,Y), P(X),S)
- 94 = ¢4(R(X’ Z)vP(X>7S)
- g5 = ¢5(UW),S)

The domains of the four logvars are of size four. The randvars are binary and
the potential functions are CPTs with random entries. We have no evidence
and the queries are P(S), P(U(w1)), P(P(x1)), P(Q(x1,y1)), and P(R(z1, 21)).
Figure 4 displays the minimized FO jtree for G..2 consisting of three nodes with
the associated parfactors as labels. The two parfactors of parclusters C, and Cjs
are multiplied into one parfactor using lifted multiplication during merging.

Comparison with GC-FOVE We feed our algorithm with the model and
the five queries as input and receive as answers five probability distributions.
We run GC-FOVE with the same model and each query individually. Asking

Lifted Junction Tree Algorithm 11

® GC-FOVE ® FOJT

100

I message passing
80 / II P(S)+1

60 I P(U(w)) + 11
40 IV P(P(z1)) + III
2 . V. PQz1,y1)) + 1V
0 o

VI P(R(x1,z1)) + V
I I 1m IV vV VI (R(@1,21))

Fig. 5. Accumulated Number of Calls to Lifted VE Operators During Query Answering
by GC-FOVE and FOJT (The lines between data points are only there for readibility.
The gray dots denote that the counts include queries that GC-FOVE aborted.)

multiple queries in GC-FOVE may lead to dependencies between query terms
which causes GC-FOVE to abort.

For the queries P(S), P(U(wi)), and P(P(z1)), we get three probability
distributions identical to the ones from our algorithm. The query P(Q(z1,y1))
leads GC-FOVE to terminate and prompt the following error message: Fatal
error: Parfactor([qe(x1l, y1), qe($318, y1)]

:{constraint} still contains a non-query term. When GC-FOVE aborts,
it has already performed 30 split and sum-out operations to no avail. Query
P(R(x1,21)) causes the same problem.

Figure 5 shows the accumulated number of calls to lifted VE operators during
answering the five queries for GC-FOVE and our algorithm called FOJT in the
figure. We initialize the accumulated counts with the number of calls to lifted
VE operators during message passing for FOJT. The order of the added counts
is from the shortest to the longest query in terms of operator calls. GC-FOVE
has to always eliminate all randvars in the model except for the query randvar.
In contrast, after message passing, FOJT only has to eliminate all non-query
randvars in a parcluster. E.g., for P(U(w;)), we take the final parfactor at Cy,
¢c,, and sum out U(W), W # w; (with lifted VE) and S. GC-FOVE has to
additionally sum out P(X), Q(X,Y), and R(X, Z).

With the second query, FOJT needs fewer overall calls. Considering that we
also need to construct the FO jtree, the test run supports our statement that
with only very few queries to answer, the overhead of our lifted junction tree
algorithm does not amortize. But with an increasing number of queries, our
approach becomes more and more efficient.

Overall, GC-FOVE calls the splitting operator over three times more and the
summing-out operator over one and a half times more than our algorithm as it
has to eliminate all non-query terms for each query. We pay the savings in calls
with time spent on constructing the FO jtree and passing messages. The message

12 Tanya Braun and Ralf Moller

passing, which involves four messages being sent, takes another five calls to the
summing-out operator.

A brief look at runtimes shows that FOJT appears to be competitive. GC-
FOVE has an accumulated runtime of ~ 55 ms for model G.;2 and the three
queries it can answer. The runtime of the implementation of our algorithm is
~ 40 ms which ~ 15 ms faster and answers two more queries. With only the
three queries GC-FOVE can answer, our algorithm needs ~ 24 ms.

Comparison with Ground Version The ground jtree for G, has 36 clusters,
4 clusters of form {U(w;), S}, 16 clusters of the form {Q(x;,y;), P(x;), S}, and
16 clusters of the form {R(x;, z;), P(z;), S}. If we merge the clusters of the dtree
to have one virtual root, e.g., {Q(x1,y1), P(x1), S}, with 35 neighbors, we send
70 messages instead of 4. In the collect phase, we perform 35 grounded sum-out
operations. For each message in the distribute phase, we calculate a product with
35 multiplicands and sum out one or two ground randvars. At the end, each leaf
node has to multiply the received message into its factor and the virtual root
has to multiply all its messages and its factor. To answer queries, we have less
work as we only need to sum out one or two ground randvars.

For the grounded-out version, the Hugin architecture is advantageous. We
would not calculate 35 products with 35 multiplicands but multiply each incom-
ing message into the stored factor once (leading to overall 35 multiplications)
and divide the stored factor by the received message if sending the return mes-
sage (35 divisions). Using Hugin in our lifted algorithm does not have a huge
effect on the number of computations given the FO jtree for Gy o.

6 Conclusion

Most applications need efficient inference algorithms. As first experiments with
our lifted junction tree algorithm show, our proposal performs inference more
efficiently when dealing with multiple queries in the presence of symmetries. The
junction tree construction imposes overhead but only once per fixed knowledge
base. If the evidence changes, message passing is repeated. For different queries
for a model and given evidence, the algorithm only needs to run once.

Currently, we are fleshing out our algorithm and implementation to fully
handle evidence. Additionally, we intend to optimize the basic implementation
of the algorithm and extend it to include message passing based on the Hugin
architecture. We plan to thoroughly evaluate different settings and analyze the
behavior of our algorithm in terms of growing knowledge bases. In a broader
scope, we investigate ideas to further use the data structures with respect to
other theoretical constructs as well as practical applications that could benefit
from our algorithm. Symmetries within a factor present an area of interest to
potentially refine the data structures and increase efficiency. Dynamic structures
to incorporate temporal constructs are another branch of work to look at.

Lifted Junction Tree Algorithm 13

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting Symmetries for
Scaling Loopy Belief Propagation and Relational Training. In: Machine Learning,
vol. 92, pp. 91-132. Kluwer Academic Publishers, Hingham (2013)

Braun, T.: Lifted Junction Tree Algorithm. Technical Report, Universitiat zu
Liibeck (2016)

de Salvo Braz, R.: Lifted First-Order Probabilistic Inference. PhD Thesis, Univer-
sity of Illinois at Urbana-Champaign (2007)

Van den Broeck, G.: Lifted Inference and Learning in Statistical Relational Models.
PhD Thesis, KU Leuven (2013)

Chavira, M., Darwiche, A.: Compiling Bayesian Networks Using Variable Elim-
ination. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence. Morgan Kaufman, San Francisco (2007)

Darwiche, A.: Recursive Conditioning. In: Artificial Intelligence, vol. 2, pp. 4-41.
Elsevier Science Publishers, Essex (2001)

Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

Gogate, V., Domingos, P.: Exploiting Logical Structure in Lifted Probabilistic In-
ference. In: Working Note of the Workshop on Statistical Relational Artificial In-
telligence at the 24th Conference on Artificial Intelligence. The AAAI Press, Menlo
Park (2010)

Jensen, F.V., Lauritzen, S.L., Oleson, K. G.: Bayesian Updating in Recursive
Graphical Models by Local Computations. In: Computational Statistics Quarterly,
vol. 4, pp. 269-282. Physica-Verlag, Vienna (1990)

Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Pack Kaelbling, L.: Lifted
Probabilistic Inference with Counting Formulas. In: Proceedings of the 23rd Con-
ference on Artificial Intelligence, pp. 1062-1068. The AAAI Press, Menlo Park

(2008)
Milch, B., Li L.: Bayesian Logic Programming Language, https://bayesianlogic.
github.io

Poole, D.: First-Order Probabilistic Inference. In: Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence, pp. 985-991. Morgan Kaufman
Publishers Inc., San Francisco (2003)

Shafer, G.R., Shenoy, P.P.: Probability Propagation. In: Annals of Mathematics
and Artificial Intelligence, vol. 2, pp. 327-351. Springer, Heidelberg (1989)
Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: Proceedings
of the 23rd Conference on Artificial Intelligence, pp. 1094-1099. The AAAT Press,
Menlo Park (2008)

Singla, P., Nath, A., Domingos, P.: Approximate Lifted Belief Propagation. In:
Working Note of the Workshop on Statistical Relational Artificial Intelligence at
the 24th Conference on Artificial Intelligence. The AAAI Press, Menlo Park (2010)
Singla, P., Nath, A., Domingos, P.: Approximate Lifting Techniques for Belief
Propagation. In: Proceedings of the 28th Conference on Artificial Intelligence, pp.
2497-2504. The AAAT Press, Menlo Park (2014)

Taghipour, N.: Lifted Probabilistic Inference by Variable Elimination. PhD Thesis,
KU Leuven (2013)

Taghipour, N.: GC-FOVE, https://dtai.cs.kuleuven.be/software/gcfove
Zhang, N.L., Poole, D.: A Simple Approach to Bayesian Network Computations.
In: Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp.
171-178. Morgan Kaufman Publishers, San Francisco (1994)

