
June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

Identifying and Translating Subjective Content Descriptions

Among Texts

Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller, and Simon Schiff

Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160

23562 Lübeck, Germany
{bender,braun,gehrke,kuhr,moeller,schiff}@ifis.uni-luebeck.de

http://www.ifis.uni-luebeck.de

An agent pursuing a task may work with a corpus of documents as a reference library.
Subjective content descriptions (SCDs) provide additional data that add value in the

context of the agent’s task. In the pursuit of documents to add to the corpus, an agent

may come across new documents where content text and SCDs from another agent are
interleaved and no distinction can be made unless the agent knows the content from

somewhere else. Therefore, this article presents a hidden Markov model-based approach

to identifying SCDs in a new document where SCDs occur inline among content text.
Additionally, we present a dictionary selection approach to identifying suitable transla-

tions for content text and SCDs based on n-grams. We end with a case study evaluating
both approaches based on simulated and real-world data.

1. Introduction

An agent in pursuit of a task, explicitly or implicitly defined, may work with a

corpus of text documents as a reference library. From an agent-theoretic perspec-

tive, an agent is a rational, autonomous unit acting in a world, fulfilling a defined

task, e.g., providing document retrieval services given requests from users. We as-

sume that the corpus of an agent represents a specific context for the agent’s task,

since collecting documents is not an end in itself. Further, documents in a corpus

might be associated with additional location-specific data making the content near

the location explicit by providing descriptions, references, or explanations. We refer

to these location-specific data as subjective content descriptions (SCDs). Generat-

ing a corpus specific SCD-word distribution provides a value for different tasks of

an agent, e.g., classifying new documents [1] or enriching documents with SCDs

associated to other documents in the same corpus [2].

So far, we have assumed that SCDs and documents are separate or at least

clearly distinguishable and SCDs might be any form of additional data. However,

an agent in pursuit of new documents may come across documents where normal

document text, i.e., content, and textual content descriptions, i.e., SCDs, are in-

terleaved. An agent could go through the text and identify the SCDs manually or

create a parser that separates the SCDs from the content, manually specifying rules

for distinguishing content and SCDs. However, both approaches are cost-intensive

and laborious, and require intimate knowledge about content and SCDs of doc-

1

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

2

uments. Consider historical-critical editions as an example, a document category

where content and textual content descriptions can be interleaved, e.g., old poems

in Tamil, which contain the poem itself and comments for specific words inline after

the word added by editors or authors centuries later. The poem is the content and

the comments are SCDs.

Only an agent with knowledge of the original poem can easily distinguish poem

and comments. The first problem we tackle in this article is that of automatically

identifying inline SCDs (iSCDs) among texts. We turn to the agent’s corpus of doc-

uments to solve the problem. Assuming that the unknown document with iSCDs is

of the same context, we can use the corresponding SCDs-word distribution to distin-

guish between content and SCDs. The SCDs-word distribution allows for computing

most probably suited SCDs (MPSCDs) for the unknown document based on the

similarity between words in a document and words usually occurring with an SCD.

If the words belong to the content, we expect that an agent is able to identify a cor-

responding MPSCD with a high similarity. If the words belong to an SCDs, which

we assume has a different composition of words occurring together, we expect that

the similarity value is low. Based on these expectations, we set up a hidden Markov

model (HMM) where the hidden state variable encodes if a word sequence belongs

to content or SCDs and the observation sequence consists of discretized similarity

values. Given this setup and the existing corpus, the agent can train the HMM and

then compute a most-likely sequence of hidden states using the Viterbi algorithm [3]

to identify the iSCDs. Once iSCDs are identified, the agent can use them for further

purposes, e.g., translating content and comments.

The second problem we tackle in this article is that of context-specific transla-

tion of content and SCDs, which may come from different contexts (or even cen-

turies) and therefore may require different dictionaries. Assuming that an agent has

translations for a set of documents, we can create dictionaries s.t. each dictionary

contains for each word exactly one context-specific translation. For a new document

with content and iSCDs identified, we present a context-specific dictionary selection

approach based on n-grams, i.e., sequences of n neighboring words, to identify the

best suited dictionary for the content and textual content descriptions.

Specifically, the contributions of this article are:

(1) an approach to identifying iSCDs among texts based on an HMM,

(2) an approach to identifying a suitable dictionary for content and iSCDs, and

(3) a case study based on real-world and simulated data to evaluate the per-

formance of both approaches.

The remainder of this paper is structured as follows: We first specify notations

and recap SCD-word distributions. Then, we present our HMM-based approach

to identify iSCDs in a new document and the n-gram-based approach to estimate

suitable dictionaries to translate content and comments of a document. Afterwards,

we evaluate the performance of both approaches. The case study is followed by a

look at related work. Last, we conclude and present future work.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

3

2. Preliminaries

This section specifies notations and recaps the concept of an SCD-word distribution.

2.1. Subjective Content Descriptions

We define the following terms to formalize the setting of a corpus.

• A word w is a basic unit of discrete data from a given vocabulary

V = (w1, . . . , wN), N ∈ N, and can be represented a word w as a one-

hot vector of length N having a value of 1 where w = wi and 0’s otherwise.

• A document d is represented by a sequence of D ∈ N words (wd1 , . . . , w
d
D),

where each word wdi ∈ d is a subset of vocabulary V. The function #word(d)

returns the total number of words occurring in document d.

• A corpus D represents a set of Z ∈ N documents {d1, . . . , dZ} and we

assume that documents of the same corpus represent a specific context.

The term VD refers to the corpus-specific vocabulary of D representing the

set of all words occurring in the documents of D.

• For each corpus D exists a dictionary dict(D) representing a suitable trans-

lation for each word in the documents of corpus D. The set of all dictionaries

is given by Dict.

• An SCD t represents a sequence of words (wd1 , . . . , w
d
M), M ∈ N, where

each word wdi ∈ t is from an SCD-specific vocabulary Vg(d), and t can be

associated with a position ρ in a document d. We use the term located

SCDs interchangeably for associated SCDs and represent a located SCD t

by the tuple {(t, {ρi})li=1}, where {ρi}li=1 represents the l ∈ N positions in

document d the SCD t is associated with.

• For each document d ∈ D there exists a set g denoted as SCD set containing

a set of m located SCDs {tj , {ρi}
lj
i=1}mj=1. Given a document d or a set g, the

terms g(d) and d(g) refer to the set of located SCDs in document d and the

corresponding document d, respectively. The set of all located SCD tuples

in corpus D is then given by g(D) =
⋃
d∈D g(d).

• For each located SCD t ∈ g(d) exists an SCD window wind,ρ that refers to a

sequence of words in d surrounding ρ in d. Mathematically, we can represent

the window by wind,ρ = (wd(ρ−i), . . . , w
d
ρ, . . . , w

d
ρ+i), i ∈ N and ρ marks the

middle of the window. The window-specific position of wd ∈ wind,ρ is given

by pos(wd, wind,ρ) (0-based numbering) and the size of wind,ρ is given by

s(wind,ρ) = 2i+ 1.

• Each word wd ∈ wind,ρ is associated with an influence value I(wd, wind,ρ)

representing the distance in the text between wd and position ρ. The closer

wd is positioned to ρ in wind,ρ, the higher its corresponding influence

value I(wd, wind,ρ). The influence value of wd at pos(wd, windd,ρ) might

be distributed binomial, i.e., I(wd, wind,ρ) =
(
n
k

)
· qk · (1 − q)n−k, where

n = s(wind′,ρ), k = pos(wd, wind,ρ), and q = ρ
n .

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

4

Algorithm 1 Forming SCD-word distribution matrix δ(D)

1: function buildMatrix(D)

2: Input: Corpus D
3: Output: SCD-word distribution δ(D)

4: Initialize an m× n matrix δ(D) with zeros

5: for each d ∈ D do

6: for each t, ρ ∈ g(d) do

7: for each w ∈ wind,ρ do . Iterates over ρ

8: δ(D)[t][w] += I(w,wind,ρ)

9: Normalize δ(D)[t]

10: return δ(D)

2.2. SCD-word Distribution

An SCD-word distribution encodes which words occur often around the position

of a given SCD. Specifically, we generate an additional representation for each of

the m SCDs associated to documents in corpus D by building a vector of length

n, where n = |VD|, s.t. each vector entry refers to a word w in VD. The entry

itself is a probability describing how likely it is that a word occurs in an SCD

window surrounding the position associated with the SCD, yielding an SCD-word

distribution for each SCD. Algorithm 1 generates the SCD-word distribution for all

m SCDs in SCD set g(D). We represent the SCD-word distribution by an m × n
matrix δ(D), where the SCD-word distribution vectors form the rows of the matrix:

δ(D) =

w1 w2 w3 · · · wn

t1 v1,1 v1,2 v1,3 · · · v1,n

t2 v2,1 v2,2 v2,3 · · · v2,n
...

...
...

...
...

...

tm vm,1 vm,2 vm,3 · · · vm,n

 (1)

The input of Alg. 1 is a corpus D containing a set of documents associated with

SCDs. In Line 4 of Alg. 1, we instantiate an empty δ(D) by filling the matrix with

zeros. Afterwards, we update the SCD-word distribution matrix δ(D) entries based

on the SCDs and words occurring in the documents of D using maximum-likelihood

estimation by counting, for each SCD t, the number of occurrences of each word w

in the corresponding windows wind,ρ of all documents in D and all positions. We

weight the occurrences by the influence value of each word in a window (Line 8).

At the end of the outer loop, the SCD-word distribution of the current SCD t

is normalized to yield a probability distribution for each SCD over the complete

vocabulary (Line 9). Finally, Alg. 1 returns the SCD-word distribution matrix δ(D).

Given δ(D) and presented with a new document d of the same context containing

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

5

pure text without any SCDs, an agent can use δ(D) to find M MPSCDs. MPSCDs

are computed by sliding a tumbling window wind,ρ of size σ = #word(d)
M over the

words in d and computing the similarity between the words in wind,ρ weighted

according to I(wd, wind,ρ) and the rows in δ(D) and choose the SCD t belonging

to the row with highest similarity. Afterwards, width and position of each window

can be further optimized. Please refer to [1] for details.

Next, we present an approach to identifying iSCDs in documents.

3. Identifying Inline SCDs

In this section, we introduce the problem to identifying textual SCDs interleaved

with content and present an HMM-based approach solving the problem.

3.1. Inline SCD Problem

The problem at hand consists of an agent being faced with a document containing

content and iSCDs in the form of text and no markers or way inherently available

to distinguish the two. An important task of an agent is to identify iSCDs among

text s.t. the agent can reconstruct the document’s content text and use the located

iSCDs for other purposes, e.g., to identify similar documents within the corpus.

Given this setting, we introduce iSCDs into our notation as follows:

• Next to the corpus-specific vocabulary VD, vocabulary Vg(D) represents the

words occurring in (i)SCDs associated to documents in D. Both vocabular-

ies VD and Vg(D) might overlap.

• An iSCD t is is represented by a sequence of words (w1, . . . , wn), n ∈ N, wi ∈
Vg(D) and associated to the sequence of words preceding t in d.

• A document d containing iSCDs can be represented by sequences of words

from VD and sequences of words from Vg(D) alternating, where the latter

is associated with the preceding window of words.

Problem 1 introduces the inline SCD problem and Example 1 illustrates the

inline SCD problem using a text containing two iSCDs.

Problem 1 (Inline SCD Problem). For a document d = (wd1 , . . . , w
d
D), wdi ∈

(VD ∪ Vg(D)), an agent does not know which subsequences of d are content and

which are iSCDs.

Example 1 (Inline SCD Example). A document d contains the following sen-

tence with two iSCDs, which are underlined:

“David Blei professor at Columbia University received the ACM In-

fosys Foundation Award renamed in the ACM Prize in Computing

in 2013.”

However, the highlighting of iSCDs is not available in the original document

s.t. an agent is faced only with the word sequence and has to decide which words

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

6

represent content words and which words represent iSCDs. It is easy the solve the

problem if the two vocabularies do not overlap but becomes more difficult the more

the two vocabularies share words.

We can reformulate Problem 1 as a classification problem estimating for each

word in a sequence of words the corresponding category. In our setting, we have

two categories – one category represents the subsequences in d belonging to content

and another category represents the subsequences in d belonging to an iSCD.

3.2. General Procedure

To solve Problem 1, we work with two assumptions about corpus D and a new

document d containing content text and iSCDs: (i) Document d belongs to the

same context as D. (ii) Vocabulary VD differs at least slightly from Vg(D). Given

the first assumption, we can use D’s SCD-word distribution δ(D) for d as well.

Given the second assumption, δ(D) works well for estimating MPSCDs for content

words and less well for iSCDs words. Estimating MPSCDs for d using a sliding

window (instead of a tumbling one), we expect the following behavior: The MPSCD

similarity value for a window over an iSCD should be significantly smaller than the

MPSCD similarity value for a window over content. We can train an HMM with this

behavior to solve Problem 1. Specifically, we need to perform the following steps:

(1) Estimate δ(D) for D using Alg. 1 (offline).

(2) Train an HMM for classifying whether a word belongs to the category

“content” or the category “iSCD” (offline).

(3) For each new document d:

(a) Estimate the MPSCD sequence over a sliding window along the words

of d using δ(D).

(b) Compute the most probable sequence of states S in the HMM given

the sequence of similarity values of the MPSCD sequence as evidence

and identify the words in d that belong to category “iSCD” given S.

The following sections present in detail how to estimate the MPSCD sequence and

classify iSCDs using an HMM.

3.3. Estimating an MPSCD Sequence

Given a corpus D containing documents associated with a set of location-specific

SCDs, we can generate a corpus-specific SCD-word distribution δ(D) using Alg. 1.

Based on δ(D), Alg. 2 allows for calculating a sequence of MPSCDs similarity values

for d by sliding a window wind,t,ρ of size σ over the words in d. Initially, the sliding

window contains the first σ words (wd1 , ..., w
d
σ). Then, we shift the window over the

sequence of words in d by removing the first word wd1 and extending the window with

the word wdσ+1. We repeat this shifting operation until the end of the document,

with the last window containing (wd(D−σ), ...w
d
D). For the sequence of words in each

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

7

Algorithm 2 Estimating MPSCD sequence

1: function estimateMPSCDsequence(d, σ, δ(D))

2: Input: Document d, window size σ, SCD-word distribution δ(D)

3: Output: SCDs g(d) with similarity values W
4: W ← ∅
5: for ρ← σ

2 ; ρ ≤ #word(d); ρ← ρ+ 1 do

6: Set up wind,t,ρ of size σ around ρ with t = ⊥
7: δ(wind,t,ρ)← new zero-vector of length n

8: for each word w ∈ wind,t,ρ do

9: δ(wind,t,ρ)[w] += I(w,wind,t,ρ)

10: t← arg maxti∈g(D)
δ(D)[ti]·δ(wind,t,ρ)
|δ(D)[ti]|·|δ(wind,t,ρ)| in wind,t,ρ

11: sim← maxti∈g(D)
δ(D)[ti]·δ(wind,t,ρ)
|δ(D)[ti]|·|δ(wind,t,ρ)|

12: W ←W ∪ (sim,wind,t,ρ)

13: g(d)← g(d) ∪ t
14: return g(d), W

wd1 w
d
2 w

d
3 w

d
4 w

d
5 w

d
6 w

d
7 w

d
8 w

d
9w

d
10w

d
11w

d
12w

d
13w

d
14w

d
15w

d
16w

d
17w

d
18w

d
19w

d
20

w
in
d
,t
,ρ
i

w
in
d
,t
,ρ
i

Similarity value 0.9

Fig. 1: Sliding window of size σ = 9 sliding over document d, where words wd9 to wd13
represent an iSCD, accompanied by corresponding similarity values on the right.

wind,t,ρ, Alg. 2 calculates the MPSCD t and corresponding similarity value sim.

Specifically, Alg. 2 builds a vector representation δ(wind,ρ) for the sequence of words

in wind,t,ρ and compares the vector with the vector representation of all SCDs in

δ(D) using cosine similarity. Example 2 describes the sliding window behaviour and

what similarity values might look like using an example setup.

Example 2 (Sliding Window and Similarity Values). Figure 1 illustrates

the behavior of a sliding window wind,t,ρ for the first 20 words wd1 to wd20 in d

with a window size σ of 9, starting with wind,t1,wd5 = (wd1 , ..., w
d
9) and ending with

wind,t12,wd16 = (wd12, ..., w
d
20). In this example, the words w9 to w13 represent an

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

8

iSCD. Figure 1 also shows the sequence of MPSCD similarity values on the right for

each window depicted to the left. We have a sequence of twelve MPSCD similarity

values for the corresponding twelve windows. In the first window wind,t1,wd5 , only

word w9 belongs to an iSCD. Shifting the window to the right results in a second

word belonging to the iSCD. The more words belong to an iSCD, the lower the

corresponding window’s MPSCD similarity value gets.

As shown in Fig. 1, iSCDs yield a specific pattern in the sequence of MPSCD

similarity values: Similarity values first decrease, when the sliding window slowly

moves into the iSCD, plateau, when the sliding window is squarely in the iSCD, and

then increase again, with the the sliding window moving out of the iSCD. Next, we

present an approach to solve Problem 1 by identifying iSCDs in d using an HMM

trained of sequences of MPSCD similarity values.

3.4. Estimating iSCDs

We use an HMM to identify iSCDs using the sequence of MPSCD similarity values in

d. First, we define the HMM and consider an example HMM for the iSCD problem.

Second, we present how to identify iSCDs in d using an HMM.

Definition 1 (Hidden Markov model). A hidden Markov model λ = (aij , bj , π)

for solving Problem 1 is defined by:

• (hidden) states Ω = {s1, ..., sn}; for the iSCD problem, n = 2, with state

s1 (s2) meaning the words behind s1 (s2) belong to “content” (“iSCD”),

• an observation alphabet ∆ = {y1, . . . , ym}, where each yi represents a range

of MPSCD similarity values; the observation alphabet is generated by dis-

cretizing MPSCD similarity values,

• a transition probability matrix A representing the probability of all possible

state transitions ai,j , i, j ∈ {1, 2} between the two states s1, s2 ∈ Ω, which

implies moving forward in time from time step t to t+ 1,

• an emission probability matrix B representing the probability of emitting

a symbol from observation alphabet ∆ for each possible state in Ω, and

• an initial state distribution vector π = π0.

With
∑n
j=1 ai,j = 1 for each si ∈ Ω summing over Ω, the entries of A between

states si, sj ∈ Ω, represent the following conditional probability:

ai,j = P (sj |si).

With
∑m
k=1 bj(yk) = 1 for each sj ∈ Ω summing over ∆, the entries of B represent

the following conditional probability:

bj(yk) = P (yk|sj).

The semantics of λ is given by unrolling λ for a given number of time steps and

building a full joint distribution.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

9

St−1 St
A = P (St | St−1)

OtB = P (Ot | St)

(a) One-time slice graph

s1

a11

s2

a12

a21

a22

yl

b1(yl)

b2(yl)

ym
b1(ym) b2(ym) yh

b1(yh)

b2(yh)

(b) State-transition system

Fig. 2: Hidden Markov model with one hidden variable St with two possible states

{s1, s2} emitting an observation Ot with three possible values {yl, ym, yh}.

Example 3 (Graphical Representations). Figure 2 contains two graphical rep-

resentations of an HMM λ = (aij , bj , π) with observation symbols {yl, ym, yh} ∈ ∆

and two states {s1, s2} ∈ Ω. Figure 2a shows a one-time slice representation of the

HMM. Figure 2b shows the HMM as the corresponding state-transition system.

In general, transition probability matrix A and emission probability matrix B

are unknown and have to be learned, e.g., using the Baum-Welch algorithm [4].

Using a set of documents containing located SCDs, we can calculate MPSCDs and

their similarity values to train an HMM on this information using the Baum-Welch

algorithm. The discrete observation alphabet ∆ requires discretizing similarity val-

ues. A discretization function f : [0, 1] 7→ ∆ maps a MPSCD similarity value x to

one of the m symbols in ∆. The specific discretization depends on the agent’s task

and can be adapted to each problem individually.

To solve Problem 1, we have to find the most likely sequence of states in an

HMM λ, given a sequence of MPSCD similarity values W. Algorithm 3 describes

the workflow for identifying iSCDs based on such a sequence of similarity values

W over the windows in d. First, Alg. 3 calculates the most likely state sequence

by applying the discretization function f on the similarity values in W, yielding

an observation sequence O for λ. Then, it calculates the most likely sequence of

states S in λ given O using the Viterbi algorithm [3], which makes use of the

dynamic programming trellis for computing the most likely state sequence S for an

observation sequence O. Given S, Alg. 3 reconstructs the iSCDs by identifying the

windows behind those states in S that are equal to s2 (“iSCD”) and marking the

words in each corresponding window as an iSCD. Example 4 illustrates estimating

the most likely sequence of states using the Viterbi algorithm for MPSCD similarity

values resulting from the twelve windows shown in Example 2.

Example 4. Let us assume that Alg. 2 yields the following MPSCD similarity

values for the 12 windows in Example 2, as shown in Fig. 1:

(0.8, 0.7, 0.6, 0.4, 0.2, 0.18, 0.24, 0.22, 0.22, 0.4, 0.54, 0.7)

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

10

Algorithm 3 Estimate iSCDs using MPSCD similarity values and a trained HMM

1: function estimateISCDs(λ, f , W, d, σ)

2: Input: HMM λ, discretization function f , similarity valuesW, document d,

window size σ

3: Output: SCDs g(d)

4: O ← ()

5: for each similarity value sim ∈ W do

6: O ← O ◦ f(sim)

7: S ← Viterbi(λ, O) . Compute the most likely state sequence

8: g(d)← ∅
9: for each i, state ∈ S do . Iterate over S, maintain an index i

10: if state = s2 then . s2 corresponds to “iSCD”

11: t← (wdi , . . . , w
d
i+σ)

12: g(d)← g(d) ∪ t
13: return g(d)

win1

s1

s2

yl

win2

s1

s2

ym

win3

s1

s2

ym

win4

s1

s2

ym

win5

s1

s2

ym

win6

s1

s2

ym

win7

s1

s2

ym

win8

s1

s2

ym

win9

s1

s2

ym

win10

s1

s2

ym

win11

s1

s2

ym

win12

s1

s2

ym

Fig. 3: Trellis corresponding to the MPSCD sequence of Example 2.

Using the following function for discretization

f(x) =

yl 0 ≤ x < θ1

ym θ1 ≤ x < θ2

yh θ2 ≤ x ≤ 1,

(2)

where θ1 = 0.3 and θ2 = 0.7, we get the following observation sequence:

O = (yh, yh, ym, ym, yl, yl, yl, yl, yl, ym, ym, yh)

Let the corresponding state sequence in the trained HMM be given by

S = (s1, s1, s1, s1, s1, s1, s2, s1, s1, s1, s1, s1).

Figure 3 represents the trellis of the observation sequence O, where the thick ar-

rows indicate the most probable transitions between the states and the dotted lines

represent all possible state transitions. The hidden iSCD is at position win7, which

corresponds to window wind,ρ with ρ = 7 + b 92c = 11. The identified window con-

tains the words (wd9 , . . . w
d
13), which make up the iSCD in the example.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

11

Correctness By identifying the word sequences that are most probably iSCDs,

we automatically identify which words belong to iSCDs and which words belong to

content. Therefore, we solve Problem 1 by not only providing which subsequences

are iSCDs but providing those that are most probable given the underlying HMM,

which makes the quality of the solution to a specific instance of the problem op-

timal in the sense that given the probabilistic fundamentals of our approach, this

calculated solution is the one leading to the highest probability.

Next, we present an approach to selecting dictionaries for content text and

iSCDs, which may have been identified using the method just presented.

4. Context-specific Dictionary Selection

In the last section, we have presented an HMM-based approach to identifying iSCDs

among texts. In this section, we introduce the problem of selecting a suitable dic-

tionary to translate both, iSCDs and content. Additionally, we present an approach

to solve the problem by automatically selecting suitable dictionaries.

4.1. Dictionary Selection Problem

An agent interested in translating a document has to decide on a dictionary for un-

known words to select a suitable translation. Generally, there is no single translation

for a word since the translation of a word depends on the specific context. Consider

historical-critical editions representing poems as content and iSCDs as comments.

Translating historical-critical editions is non-trivial since the edition contains com-

ments written from different authors at different times. Using a single dictionary to

translate the text of a historical-critical edition might result in non-optimal trans-

lations because a single dictionary ignores the fact that a poem has been enriched

with additional descriptions at different points in time. Thus, we are interested

in selecting for a poem and each identified iSCD the corresponding Q best suited

dictionaries. Generally, the dictionary selection problem asks for the top-Q dictio-

naries for a sequence of words (w1, . . . , wi) representing the poem or an iSCD, given

J corpora {D}Ji=1 containing a set of documents and their corresponding transla-

tions. Equation (3) represents a mathematical description of the document selection

problem.

arg max
dict1,...,dictQ∈Dict

P (dict1, . . . , dictQ|(w1, . . . , wi), {D}Ji=1) (3)

4.2. Dictionary Selection Approach

The dictionary selection problem, introduced in Section 4.1, asks for the Q most

suitable dictionaries for a sequence of words in a new document d given a set of

corpora containing documents and their corresponding translations. The sequence of

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

12

Algorithm 4 N-gram-based Dictionary Selection

1: function selectDictionary(n, {D}Ji , seq)

2: Input: length of n-gram n, set of corpora {D}Ji , word sequence seq

3: Output: suitable dictionary: dict

4: vseq ← n-gram-frequency of seq

5: s← 0

6: dict← empty

7: for each corpus D ∈ {D}Ji do

8: vD ← corpus-specific n-gram-frequency

9: sim← vD·vseq
|vD|·|vseq|

10: if sim > s then

11: dict← dict(D)

12: s← sim

13: return dict

words might represent the poem or an iSCD. Generally, different translations might

exist for a word and a suitable translation is only possible if the corresponding

context is available. For a new document d containing only words, we can represent

the context of each word by its neighbouring words. In this section, we present an

approach to identifying theQmost suitable dictionaries to translate a word sequence

available in d based on the n-grams occurring within the documents of the J corpora

and the n-grams in an iSCD. Thus, we create for each word in a sequence of words

the n-grams by using the neighbouring words and identify a suitable dictionary for

a sequence of words based on the similarity of all sequence-specific n-grams and

all n-grams we can generate from documents of all J corpora. Finally, we select

the dictionary associated to the corpus containing the most similar n-grams. Let us

assume we have a set of J corpora and for each corpus D exists a corpus-specific

dictionary that has been used to translate the documents, e.g., dictionary dict1 is

suitable for documents in D1 and another dictionary dict2 suitable for documents in

corpus D2. Additionally, we assume a new document d is available and using Alg. 3

we have successfully identified the content and comments. Then, we are interested

in selecting a suitable dictionary for the original text in d and a suitable dictionary

for each iSCD based on the n-grams we can create from the sequences of words

referring to the text and to the iSCDs.

Algorithm 4 represents the technical description for selecting a suitable dictio-

nary for a word sequence seq. The inputs are the length n of n-grams, all corpora

{D}Ji , and a a word sequence seq. The output of Alg. 4 is the best suited dictionary

dict. Algorithm 4 starts by calculating the frequency vseq of n-grams available in

word sequence seq. Then, Alg. 4 calculates the n-gram frequencies vD for each cor-

pus D by analyzing each document in D and computes the cosine similarity between

vseq and vD. Alg. 4 stores the current corpus’ dictionary if it has a higher similarity

value as any corpus checked before. In the end, Alg. 4 returns the stored dictionary.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

13

Correctness We can calculate all possible n-grams from a given sequence of words

representing an iSCD or a poem. Additionally, we calculate all possible n-grams for

each document in the J corpora. Thus, we can compare the n-gram frequency

vectors from a sequence of words of new document d with each corresponding n-

gram frequency vector of each corpus. Using a vector representation of the n-gram

frequency allows us to compare the frequencies based on the cosine similarity used

in Line 9 of Alg. 4. Comparing the n-gram frequency vector of a word sequence with

the n-gram frequency vectors of each corpus yields the most similar corpus. Since

each corpus is linked to a corpus-specific dictionary, we can directly select the best

suited dictionary for each sequence of words in d.

5. Case Study

After introducing the HMM-based approach to identifying iSCDs among texts, fol-

lowed by the n-gram-based dictionary selection approach, we present a case study

illustrating the potential of both approaches estimating iSCDs within documents of

different data sets as well selecting suitable dictionaries. We start with a description

of data sets we use in this case study followed by the workflows for analyzing the

performance of the HMM-based iSCDs detection approach and the n-gram-based

dictionary selection. Additionally, we illustrate the potential of both approaches by

evaluating the performance on the data sets.

5.1. iSCD Detection

In this section, we present the data sets, the workflow and results for the iSCD

detection approach introduced in Section 3.

5.1.1. Data Sets

We use the following seven data sets to evaluate the performance of the HMM-based

approach to identifying iSCDs in a new document.

(1) Tamil consists of 91 poems transcribed from old palm leaves [5].

(2) Greek consist of 1 treatise about Aristotle’s Categories [6].

(3) US consists of 74 articles about cities in the Unites States of America.a

(4) EU consists of 10 articles about cities in Europe.b

(5) Arxiv-general consists of 500 randomly selected abstracts from Arxivc.

(6) Arxiv-CS consists of 500 randomly selected abstracts from publications of

the Computer Science (CS) category available on Arxivc.

(7) Newsgroups consists of 290 posts from the 20 newsgroups data set contain-

ing 18.828 newsgroup posts on 20 topics [7].

aUS cities – https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
bEuropean cities – https://en.wikipedia.org/wiki/List_of_urban_areas_in_Europe
cArXiv – https://www.kaggle.com/Cornell-University/arxiv

https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
https://en.wikipedia.org/wiki/List_of_urban_areas_in_Europe
https://www.kaggle.com/Cornell-University/arxiv

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

14

Table 1: Characteristics of data sets divided into eight different settings.

Tamil Greek US EU Arxiv News-

Unst. St. general CS groups

|D| 91 91 1 74 10 500 500 290

Avg #word(d) 73,2 73,2 10.458 200,7 318,7 74,4 77,3 133,7

iSCDs 908 869 143 1.814 757 4.905 4.715 6.541

|VD ∪ Vg(D)| 8.015 5.783 3.623 6.688 3.314 10.083 8.843 12.829

|VD| 5.521 4.304 1.894 3.657 1.439 5.776 4.715 7.558

|Vg(D)| 2.666 1.987 2.123 3.902 2.232 6.751 6.493 8.332

|VD ∩ Vg(D)| 172 508 394 871 357 2.444 2.365 3.061

For the Tamil and Greek data sets, we extract the documents from [5] and [8],

respectively. [8] contains a digital copy of the Aristotle’s Categories we have used

to extract the text. Each document is associated with comments about the content

from the original documents and acting as iSCDs. The US and EU data sets con-

sist of articles from the open and widely accessible online encyclopedia Wikipedia

containing text about cities in the US and EU, respectively. The Arxiv data set

contains a subset of 500 randomly selected abstracts from the Arxiv library. Ad-

ditionally, for the Arxiv-CS data set we randomly selected 500 abstracts from the

Arxiv library referring to the CS category. The Newsgroups data set represents a

randomly selected subset of the well-known 20 newsgroups data set.

In contrast to the documents in Tamil and Greek, the documents in the other

data sets do not contain iSCDs. Thus, we generate iSCDs for each document of data

sets (3) - (7) by (i) downloading a dump of the English free online dictionary Wik-

tionary, (ii) creating an SCD for each word in a document using the corresponding

Wiktionary entry (if available), and (iii) splicing the SCDs into the document.

After we have downloaded all documents and determined iSCDs we store the

documents in the respective corpora. Next, we use the following standard prepro-

cessing tasks from the NLP community, (i) lowercasing all characters, (ii) stemming

the words, (iii) tokenizing the result, and (iv) eliminating tokens from a stop word

list containing 179 words, to transform the text of the documents into a more di-

gestible form for machine learning algorithms to increase their performance [9].

Generally, language changes over time, and modern word stemmers and stop words

might not be optimal for old texts. Thus, we neither eliminate stop words nor stem

words in Greek. For Tamil, we compare the performance of the unstemmed (unst.)

corpus to a stemmed (st.) corpus by a modern word stemmerd for Tamil.

Table 1 gives an overview about (i) the number of documents in a corpus, (ii) the

average length of documents, and (iii) the size of different vocabularies. Stemming

dhttps://github.com/rdamodharan/tamil-stemmer

https://github.com/rdamodharan/tamil-stemmer

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

15

0

1000

2000

3000

4000

5000

0.0 0.1 0.2 0.3 0.4

Similarity

F
re

q
u
en

cy

Tamil Poems Unst.

0

5000

10000

15000

0.00 0.25 0.50 0.75 1.00

Similarity

F
re

q
u
en

cy

Newsgroups

0

1000

2000

3000

0.00 0.25 0.50 0.75

Similarity

F
re

q
u
en

cy

Greek Poems

Fig. 4: Histograms of similarity values gained from Alg. 2 for unstemmed Tamil,

Newsgroups, and Greek. Note the different scaling of the axes.

the poems in Tamil yields to less different words in the vocabulary and more in-

tersecting words between content (poem) and their comments (iSCDs). For ease of

reading, we divide numbers with many digits into group using a dot as delimiter.

5.1.2. iSCD Detection Workflow

Evaluating the performance of the HMM-based approach to identifying SCDs

among texts requires a setup of the HMM. We use two hidden states (s1,s2) as

defined in Def. 1 and five observable states y1 to y5. We have tested different setups

and five observable symbols having yielded good results. The thresholds are selected

by analyzing histograms of similarity values. Figure 4 represents histograms of simi-

larity values gained from Alg. 2 for different corpora. The intervals for y1 to y5 should

be selected from the areas of similarity values having a high frequency to gain a good

HMM-based iSCD detection performance. For all data sets expect Greek, we se-

lect the intervals: y1 = [0.0, 0.05), y2 = [0.05, 0.1), y3 = [0.1, 0.15), y4 = [0.15, 0.20),

and y5 = [0.20, 1.0]. For Greek, we use the intervals: y1 = [0.0, 0.3), y2 = [0.3, 0.35),

y3 = [0.35, 0.4), y4 = [0.4, 0.45), and y5 = [0.45, 1.0].

We perform the following five tasks on each data set to evaluate the performance

of the HMM-based iSCD detection approach:

(1) Split the data set into multiple parts and use leave-one-out cross-validation

resulting in training sets of 80-90% of the documents and test sets contain-

ing the remaining 10-20% of the documents.

(2) Form the SCD-word distribution δ for the training set using Alg. 1.

(3) Generate an HMM and apply the Baum-Welch algorithm [3] to train the

hidden parameters of the HMM.

(4) For each document in the test set estimate MPSCDs using Alg. 2, and

(5) Compute the most probable sequence of hidden states in the HMM for the

discretized sequence of similarity values using the Viterbi algorithm.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

16

We use the F1-score to evaluate the performance, which is defined by:

F1-Score =
2 · precision · recall

precision + recall
,

where precision and recall are defined by: tp
tp+fp and tp

tp+fn , respectively, with

tp = # true positives, fp = # false positives, tn = # true negatives, and fn =

false negatives. We use cross-validation and the total average of the precision,

recall and F1-score in the results.

We evaluate the performance of the HMM-based approach by comparing the re-

sults with the following two standard approaches, namely, word-based classification

and a single threshold-based classification.

Word-based Classification For each word, we form a distribution representing

how often the word occurs in content (#c) vs. iSCD (#s), i.e., p = #c
#c+#s

and 1−p. We classify each word by sampling from (p, 1−p). Words belong-

ing only to one vocabulary have a (1, 0)-distribution and can be directly

classified as belonging to either content or iSCD. For words that are not

part of any vocabulary, we randomly assign a category.

Threshold-based Classification Instead of training an HMM on the MPSCD

similarity sequences, we directly classify based on the MPSCD similarity

value of a window sim and a threshold `. If sim < `, we classify the words

in the window as an iSCD. We use the histograms in Fig. 4 to choose the

values of `. For unstemmed Tamil, ` = 0.05 and for Greek, ` = 0.35 results

in best performance for iSCD detection. For all other data sets, ` = 0.1

yields the best results.

As depicted in Table 1, unstemmed Tamil contains only 172 words, representing

2% of all words, that occur in both vocabularies VD and Vg(D). After stemming the

words in Tamil, this share increases to 8%. In US, EU and Greek VD and Vg(D) share

around 10% of their words, while Arxiv and Newsgroups share around 25% of their

words, respectively. Thus, we expect a good word-based classification performance

for data sets sharing less words between VD and Vg(D), e.g., for Tamil.

Next, we present the results for the HMM-based iSCD detection approach.

5.1.3. Results

Figure 5 presents the performance of the HMM-based, word-based, and threshold-

based approach for all data sets. For the HMM-based approach, we present the

performance of the initial model and the trained model. The initial HMM contains

the following emission probabilities in case of iSCDs:

{y1 : 0.15, y2 : 0.50, y3 : 0.20, y4 : 0.10, y5 : 0.05}

and in case of text:

{y1 : 0.05, y2 : 0.05, y3 : 0.30, y4 : 0.35, y5 : 0.25}.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

17

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Tamil Poems Unst.

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Tamil Poems St.

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Greek Poems

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Cities in the US

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Cities in the EU

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Cities in the EU and US

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Arxiv General Selection

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Arxiv Computer Science

0.00

0.25

0.50

0.75

1.00

Word
−based

Threshold
−based

Initial
HMM

Trained
HMM

Newsgroups

Precision Recall F−Score

Fig. 5: Classification performance for HMM-, word-, and threshold-based approach.

Unstemmed Tamil yields very low MPSCD similarity values (Fig. 4) in contrast to

the other data sets yielding values similar to Newsgroups. Therefore, we slightly

modify the emission probabilities for unstemmed Tamil by increasing y1 and y2.

The emission probabilities encode that a window associated with an MPSCD of a

high similarity value is unlikely being classified as an iSCD.

The word-based classification yields the best F1-Score for US. The precision of

the word-based classification is very high for Tamil and Greek, while the precision

is low for Arxiv. This corresponds to our assumption made before: Fewer shared

words between VD and Vg(D) result in better precision. The recall of the word-based

classification is considerably lower than the recall of the HMM-based approach.

Interestingly, the word-based classification performance is not as poor as expected

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

18

for data sets containing more overlapping vocabulary between VD and Vg(D).

The threshold-based classification performance is good for all data sets. Often

the results are similar or even better than the results of the HMM-based approach.

However, for the threshold-based approach it is difficult to determine the best values

` for the threshold, since the threshold changes for each data set.

The HMM-based approach performs well for all data sets. Mostly, the trained

HMM, the initial HMM, and the threshold-based classification result in similar

values. The difference between the initial and the trained HMM is not as pronounced

since the initial values for the emission probabilities are already of good quality,

which reduces not only the runtime for learning but also has the effect of the initial

model performing relatively well. The discretization function uses intervals close to

threshold `, such that threshold-based classification performs similar well, too.

Overall, the HMM-based approach yields the best performance in the case study.

Even thought, the threshold-based classification sometimes results in slightly better

results for most data sets. However, choosing a threshold is difficult and training

an HMM is much easier.

5.2. Dictionary Selection

This section presents the data sets, the workflow and results for the dictionary

selection approach.

5.2.1. Data Sets

For the evaluation of the dictionary selection approaches, we use the entire 20

Newsgroups data set mentioned above, containing 18.828 documents. On average

each document contains 16 sentences and each newsgroup features 4.942 unique

words while sharing 8.639 words with other newsgroups.

Additionally, we use a data set (Shakespeare) containing 39 Shakespeare docu-

ments taken from Project Gutenberge. On average, each document in Shakespeare

consist of 2.526 sentences. The total number of different words in the vocabulary of

both data sets is 139.788, while both data sets share only 9.183 words. 9.826 words

occur only in Shakespeare, and 120.779 words occur only in documents of the 20

newsgroups data set.

For documents in both data sets, we apply the same four preprocessing tasks

from the NLP community already used for the iSCD Detection, namely lowercasing

all characters, stemming the words, tokenizing the result, and eliminating tokens

from a stop word list.

ehttps://www.gutenberg.org/

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

19

5.2.2. Dictionary Selection Workflow

Given multiple dictionaries and for each dictionary a well suited set of documents,

the dictionary selection problem asks for the best suited dictionaries to translate a

document d. In our scenario d is a poem interleaved with iSCDs. After extracting

the content (dp) and the set of iSCDs (g(d)) using the HMM-based iSCD detection

approach, we perform the following steps to translate the content in d.

(i) Specify the length of n-grams we use in Alg. 4.

(ii) Perform Alg. 4 to identifying a suitable dictionary for content and iSCDs.

We run all experiments on a virtual machine featuring 8 Intel 6248 cores at 2.50GHz

(up to 3.90GHz) and 16GB RAM.

Using the two data sets we demonstrate the performance of the n-gram-based

document selection approach in two different settings: First, we are interested in

selecting the best dictionary among a modern language dictionary for all 20 news-

groups and an ancient language dictionary for Shakespeare. Second, we assume to

have a context specific dictionary for each single newsgroup and we are interested

in selecting the best dictionary among the 20 dictionaries.

For each setting we split the data sets randomly into a training set containing

80% of the sentences and a test set containing the remaining 20%. After training

the models we measure the accuracy as proportion of correctly selected dictionaries

for the sentences in the test set.

We compare the performance of the n-gram-based approach, introduced in Sec-

tion 4.2, with the well-known Skip-gram model [10, 11]. The training objective of

the Skip-gram model is to find word representations that are useful for predicting

the surrounding words in a sentence or a document. Given a sequence of training

words, the objective of the Skip-gram model is to maximize the average log proba-

bility. We generate for each corpus a Skip-gram model and use distance measures

to calculate the distance between a corpus-specific model and a given sentence from

d to identify a suitable dictionary for a sentence based on the corpus where the

corresponding model has the shortest distance. We analyse the performance of the

following distance measures:

Jaccard Given a sentence, we take each word and query the model for the sur-

rounding words. The words predicted are then compared to the actual words

in the sentence using the Jaccard index. We use the mean of all Jaccard

indices to get the distance between the sentence and a model.

Model Given a sentence of a document we calculate the distance of each word of

the sentence to all words known by the model. To get the distance between

the sentence and the model we use the mean of the distances for each word.

Sentence This approach is similar to Model, but we do not calculate the distance

to all words known by the model, but only to the words occurring in the

sentence. Thus, we also take each word of the given sentence and calculate

the distance within the model to the other words in the given sentence.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

20

0.00

0.25

0.50

0.75

1.00

Unigram Bigram Trigram Five-gram

Length of n-Gram

A
cc

u
ra

cy

All Newsgroups against Shakespeare

0.00

0.25

0.50

0.75

1.00

Unigram Bigram Trigram Five-gram

Length of n-GramR
at

io
o
f

P
re

d
ic

ta
b

le
S

en
te

n
ce

s

All Newsgroups against Shakespeare

0.00

0.25

0.50

0.75

1.00

Unigram Bigram Trigram Five-gram

Length of n-Gram

A
cc

u
ra

cy

Single Newsgroup against each other

0.00

0.25

0.50

0.75

1.00

Unigram Bigram Trigram Five-gram

Length of n-GramR
at

io
o
f

P
re

d
ic

ta
b

le
S

en
te

n
ce

s

Single Newsgroup against each other

Fig. 6: Accuracy (left) and ratio of predictable sentences (right) of the n-gram-based

approach for different data sets and different lengths of n-grams.

Voting Calculate all three distance measures (Jaccard, Model, Sentence), predict

the most probable model for each of the three measures and perform a

majority voting. To determine the top-n best matching dictionaries, we

predict the n most probable models for each distance measure and then

perform a majority voting across the 3n predictions.

5.2.3. Results

Figure 6 shows boxplots of accuracies and ratio of predictable sentences. The ratio

indicates for how many sentences the model could explicitly select a dictionary for,

i.e., when using five-grams it may happen that a sentence contains no five-gram

known by the model and therefore no selection is possible.

In both settings, the model is able to predict all sentences using unigrams, but

not while using five-grams. For Shakespeare, the accuracy is overall high, con-

firming that modern and ancient languages feature more differences than different

contexts. For Newsgroups, the accuracy grows with the length of the n-grams while

the ratio decreases. Generally, bigrams provide a good compromise between accu-

racy and ratio. While rating the reached accuracy of 0.5 when using bigrams, we

have to remember that randomly choosing a dictionary among 20 would result in

an accuracy of around 0.05%.

As stated before, we compare the performance of the n-gram-based approach

to the Skip-gram-based approach. In Fig. 7, we show the accuracy and ratio of the

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

21

0.00

0.25

0.50

0.75

1.00

Jaccard Model Voting Sentence

Distance Measure

A
cc

u
ra

cy

Single Newsgroup against each other

0.00

0.25

0.50

0.75

1.00

Jaccard Model Voting Sentence

Distance MeasureR
at

io
o
f

P
re

d
ic

ta
b

le
S

en
te

n
ce

s

Single Newsgroup against each other

Fig. 7: Accuracy (left) and ratio of predictable sentences (right) of the Skip-gram-

based approach on different newsgroups.

1

10

100

1000

U
nigram

B
igram

T
rigram

F
ive-gram

Jaccard

M
odel

V
oting

Sentence

Length of n-Gram/ Distance Measure

S
el

ec
ti

on
s

p
er

S
ec

on
d

Single Newsgroup against each other

0.00

0.25

0.50

0.75

1.00

1 2 3 4 6 8

Top-n Best Matches considered

A
cc

u
ra

cy

Bigram Sentence

Single Newsgroup against each other

Fig. 8: Speed (left) of both approaches shown as number of sentences processed per

second (logarithmic scaled). Top-n performance (right) using the best parameters

of each approach.

Skip-gram-based approach. The Skip-gram-based approach generally yields lower

accuracy but provides higher ratios than the n-gram-based approach. For the Skip-

gram-based approach, the Sentence distance measure results in the best accuracy.

Comparing values for the best length of the n-grams with the best distance measure,

bigrams and Sentence respectively, the accuracy of the n-gram-based approach is

clearly higher while both approaches result in similar ratios.

In Fig. 8, we illustrate the runtime of both approaches. On the left side the

performance of both approaches in term of selections performed per second. The

n-gram-based approach performs around 3.000 selections per second while the Skip-

gram-based approach only performs less than 10 selections in the same time.

Last but not least, we present the performance of the top-n best matching

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

22

dictionaries on the right side of Fig. 8 since an agent might be allowed to return a

ranked list of results for a task. We only consider bigrams and the Sentence distance

measure. An accuracy clearly above 0.5 is already achieved by only considering the

top-2 dictionaries. Overall, the n-gram-based approach shows a good performance,

especially when using bigrams. In comparison to the Skip-gram-based approach,

short run times and good accuracy results are the advantages.

6. Related Work

We look at related work in the area of text segmentation, HMM-based classification,

as well as word embeddings.

Text Segmentation In text segmentation, the task is to separate text into seg-

ments, such as words [12], topics [13], sentences [14], passages, or lines. The difficulty

lies in identifying the segment borders [15]. In case of topic segmentation, each co-

herent sequence of words that is part of the content or part of an iSCD, is a segment.

In topic segmentation, Hearst [13] uses a sliding window over a sequence of words

and compares adjacent windows with the current window. The more the adjacent

windows are similar, the more it is likely that a subtopic continues. Transferred to

our setting, the inference would be that text (or iSCD) continues on as the window

slides on and the similarity remains high. Choi [16] constructs a dictionary of word

stem frequencies for each sentence and represents it as a vector of frequency counts

for domain independent linear text segmentation.

A similarity matrix is constructed by comparing all sentences using the cosine

similarity. The values in the matrix are then replaced by the number of neighbouring

elements with a lower similarity. Segments then are identified as a square region

along the diagonal of the rank matrix. The existing algorithms do not solve the

iSCD problem as they ignore the context of a specific task, which we explicitly

incorporate. In addition, we identify exactly those segments as iSCDs that are

relevant for the task of an agent.

Hidden Markov Model Another class of related work deals with HMM-based

classification. Classification and statistical learning using HMMs has achieved re-

markable progress in the past decade. Using a HMM is a well-researched stochastic

approach for modeling sequential data, and it has been successfully applied in a vari-

ety of fields, such as speech recognition [17], character recognition [18], finance data

prediction [19, 20], credit card fraud detection [21], and workflow mining [22, 23, 24].

With the identification of iSCDs, we have successfully applied HMMs in another

context, solving a new task.

Word Embedding Word embedding is a class of representation of words for text

analysis. Often, words are represented as real-valued vector that encodes the mean-

ing of the word. Words that are close to each other in the vector space are expected

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

23

to be similar in meaning. Since the 1990s, vector space models have been used in

distributional semantics and different models have been introduced, e.g,. LSI [25]

or LDA [26]. Bengio et al. have coined the term word embedding [27]. They have

trained a word embedding in a neural language model together with model parame-

ters. Collobert and Weston demonstrate the power of pre-trained word embeddings

in [28].

In 2013, Mikolov have introduced word2vec [11] – enabling training and use

of pre-trained embeddings. More recent word embedding approaches providing pre-

trained models for different NLP tasks include the transformer-based language mod-

els BERT [29] and GPT [30].

7. Conclusion

This paper presents an approach to identifying textual SCDs among the usual text

of documents as well as an approach to identifying suitable dictionaries to translate

content and SCDs. We define the iSCD problem, where the words of SCDs are

interleaved with the normal document text (content of document), and present an

approach to solve the problem. The approach uses the SCD-word distribution of

a given corpus, which encodes the most likely words to occur with an SCD, as

well as an HMM, which encodes being part of an SCD or not as the hidden state.

Calculating a most probable sequence of hidden states in the HMM then allows for

identifying the most probable windows for iSCDs.

Additionally, we have introduced the context-specific dictionary selection prob-

lem and present an n-gram-based dictionary selection approach to identify the most

suitable dictionary for each iSCD and the content of a document. A case study on

real-world and simulated data shows the performance for both approaches in terms

of recall and F1-score.

In future work, we aim to incorporate a person with a specific goal into the task

of an agent that has a reference library with a set of SCDs.

Additionally, we plan to put different SCDs into relation to each other through

links, which, depending on the type of SCD, could be text-based using similar words

or relation-based using reoccurring entities or relations. Links between SCDs further

support the agent in providing information retrieval services.

Acknowledgment

The research is partially funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strategy – EXC 2176

“Understanding Written Artefacts: Material, Interaction and Transmission in

Manuscript Cultures”, project no. 390893796. The authors thank José Maksim-

czuk for providing the Greek data set as well as Eva Wilden and Giovanni Ciotti

for providing the Tamil data set.

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

24

References

[1] F. Kuhr, T. Braun, M. Bender, and R. Möller, “To Extend or not to Extend? Context-
specific Corpus Enrichment,” in Proceedings of AI 2019: Advances in Artificial Intel-
ligence. Springer, 2019.

[2] F. Kuhr, B. Witten, and R. Möller, “On corpus-driven annotation enrichment,” in
13th IEEE International Conference on Semantic Computing. IEEE Computer So-
ciety, 2019.

[3] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp.
268–278, 1973.

[4] L. E. Baum, “An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes,” in Inequalities III: Pro-
ceedings of the Third Symposium on Inequalities, O. Shisha, Ed. Academic Press,
1972, pp. 1–8.

[5] E. Wilden, A Critical Edition and an Annotated Translation of the Akanānūru: Part
1, Kalirriyānainirai. Old commentary on Kalirriyānainirai KV - 90, word index of
Akanānūru KV - 120. École Française d’Extrême-Orient, 2018.

[6] I. Bekker et al., “Aristotelis opera edidit academia regia borussica,” Volumen primum-
Volumen alterum, 1831.

[7] “20 newsgroups data set.” [Online]. Available: http://qwone.com/∼jason/
20Newsgroups/

[8] Alignment of aristotle’s categories. Accessed: 2021-04-09. [Online]. Available:
http://textalign.net/output/ar.cat.tan-a-div-collated-obj.html

[9] S. Vijayarani, M. J. Ilamathi, and M. Nithya, “Preprocessing techniques for text
mining-an overview,” International Journal of Computer Science & Communication
Networks, vol. 5, no. 1, pp. 7–16, 2015.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[11] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” arXiv preprint
arXiv:1310.4546, 2013.

[12] Y. Sun, T. S. Butler, A. Shafarenko, R. Adams, M. Loomes, and N. Davey, “Word
segmentation of handwritten text using supervised classification techniques,” Applied
Soft Computing, vol. 7, no. 1, pp. 71–88, 2007.

[13] M. A. Hearst, “Multi-paragraph segmentation of expository text,” arXiv preprint
cmp-lg/9406037, 1994.

[14] D. Dalva, U. Guz, and H. Gurkan, “Effective semi-supervised learning strategies for
automatic sentence segmentation,” Pattern Recognition Letters, vol. 105, pp. 76–86,
2018.

[15] I. Pak and P. L. Teh, “Text segmentation techniques: a critical review,” in Innovative
Computing, Optimization and Its Applications. Springer, 2018, pp. 167–181.

[16] F. Y. Y. Choi, “Advances in domain independent linear text segmentation,” in
1st Meeting of the North American Chapter of the Association for Computational
Linguistics, 2000. [Online]. Available: https://www.aclweb.org/anthology/A00-2004

[17] L. R. Rabiner and B. Juang, “A tutorial on hidden markov models,” IEEE ASSP
Magazine, vol. 3, no. 1, pp. 4–16, 1986.

[18] J. Hu, M. K. Brown, and W. Turin, “Hmm based online handwriting recognition,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 18, no. 10, pp.
1039–1045, 1996.

[19] Y. Zhang, “Prediction of financial time series with hidden markov models,” Ph.D.
dissertation, Applied Sciences: School of Computing Science, 2004.

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://textalign.net/output/ar.cat.tan-a-div-collated-obj.html
https://www.aclweb.org/anthology/A00-2004

June 2, 2021 13:0 WSPC/INSTRUCTION FILE main

25

[20] N. Nguyen and D. Nguyen, “Hidden markov model for stock selection,” Risks, vol. 3,
no. 4, pp. 455–473, 2015.

[21] A. Srivastava, A. Kundu, S. Sural, and A. Majumdar, “Credit card fraud detection us-
ing hidden markov model,” IEEE Transactions on dependable and secure computing,
vol. 5, no. 1, pp. 37–48, 2008.

[22] M. Lange, F. Kuhr, and R. Möller, “Using a Deep Understanding of Network Ac-
tivities for Workflow Mining,” in KI 2016: Advances in Artificial Intelligence - 39th
Annual German Conference on AI, Klagenfurt, Austria, September 26-30, ser. Lec-
ture Notes in Computer Science, vol. 9904. Springer, 2016, pp. 177–184.

[23] T. Blum, N. Padoy, H. Feußner, and N. Navab, “Workflow mining for visualization
and analysis of surgeries,” International journal of computer assisted radiology and
surgery, vol. 3, no. 5, pp. 379–386, 2008.

[24] R. Silva, J. Zhang, and J. G. Shanahan, “Probabilistic workflow mining,” in Proceed-
ings of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining. ACM, 2005, pp. 275–284.

[25] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In-
dexing by latent semantic analysis,” Journal of the American society for information
science, vol. 41, no. 6, pp. 391–407, 1990.

[26] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of
Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[27] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language
model,” The journal of machine learning research, vol. 3, pp. 1137–1155, 2003.

[28] R. Collobert and J. Weston, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” in Proceedings of the 25th interna-
tional conference on Machine learning, 2008, pp. 160–167.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[30] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

	Introduction
	Preliminaries
	Subjective Content Descriptions
	SCD-word Distribution

	Identifying Inline SCDs
	Inline SCD Problem
	General Procedure
	Estimating an MPSCD Sequence
	Estimating iSCDs

	Context-specific Dictionary Selection
	Dictionary Selection Problem
	Dictionary Selection Approach

	Case Study
	iSCD Detection
	Data Sets
	iSCD Detection Workflow
	Results

	Dictionary Selection
	Data Sets
	Dictionary Selection Workflow
	Results

	Related Work
	Conclusion

