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and Diedrich Wolter2[0000−0001−9185−0147]
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Abstract. Recent approaches for knowledge-graph embeddings aim at
connecting quantitative data structures used in machine learning to the
qualitative structures of logics. Such embeddings are of a hybrid nature,
they are data models that also exhibit conceptual structures inherent
to logics. One motivation to investigate embeddings is to design concep-
tually adequate machine learning (ML) algorithms. This paper investi-
gates a new approach to embedding ontologies into geometric models
that interpret concepts by closed convex cones. As a proof of concept
this cone-based embedding was implemented in a ML algorithm for weak
supervised multi-label learning. The system was tested with the gene on-
tology and showed a performance similar to comparable approaches, but
with the advantage of exhibiting the conceptual structure underlying the
data.

Keywords: Concept Learning · Knowledge Graph Embedding · Multi-
Label Learning.

1 Introduction

Recent approaches to knowledge-graph embeddings [11] aim at linking quanti-
tative data structures used in machine learning (ML), such as (low-dimensional)
Euclidean spaces, to the qualitative structures of logics. Conceptual structures
of logics like that of first-order logic (FOL) are characterized by the respective
domain of models considered, specific individuals, as well as the relations and
functions defined. By restricting the language of FOL, several specialized logics
can be defined, each giving rise to a certain repertoire of structures that can
be expressed. In this work we consider a subclass of description logics (DL) [2]
that is particularly suited to the representation of concept structures. There-
fore, DL presents an ideal candidate when investigating the link between data
models and structures of logics. Once a link between a specific embedding and
a specific logic has been established, embeddings induce logic structures in the
quantitative domain, say Euclidean space.
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Embeddings present a promising approach to the development of concept-
level machine learning. Assume a knowledge graph is given, i.e., triples stating
relations between objects, then specific concept definitions learned by means of
ML techniques get enhanced by the structure of the knowledge graph. Put dif-
ferently, one obtains a grounding of abstract entities mentioned in the knowledge
graph that respects the relational structure of that graph. Pushing the idea even
further, one may even consider embedding to go beyond capturing single know-
ledge graphs, but to represent whole ontologies—as is the case for the convex
region based geometric models of [6].

In this paper we consider geometric models based on convex cones as possi-
ble groundings of concepts. One reason for considering convex entities is their
adequacy from a linguistic-cognitive point of view to model natural concepts, as
has been argued by Gärdenfors in his book on conceptual spaces [4]. We are mo-
tivated to consider cones as they enable us to define negation (using polarity [8])
which pushes forward the expressivity of structures exhibited by embeddings.
We note that Gärdenfors [4, p. 202] considered the representation of negation
(and quantification) as particularly difficult. Most importantly, for this paper,
convex regions are computationally attractive as efficient methods from the area
of convex optimization [3] become available to realizing ML algorithms.

The contribution of this paper is to show how cone-based geometric models
can be used for the important ML task of (weak) supervised multi-label learning
[5], while retaining the conceptual structures defined by an ontology. We present
a cone-based semantics for DL ontologies defined in the language of propositional
ALC [2]. Based on this semantics we propose a new ML method for acquiring an
embedding. This paper concentrates on the application of the cone-based em-
bedding to Machine Learning. The theoretical basis of the cone-based approach
like characterizing the link of cone models to models in the sense of logics is not
in the scope of this paper. For these aspects we refer the reader to our [7] which
considers full ALC (not just propositional ALC).

Multi-label problems are problems in which each entity has to be attached
one or more labels. They may be regarded as a generalization of the ML task of
classification, which assigns exactly one label to each object. The multi-labeling
problem is considered to be a hard ML task [5], but is particularly important
for mastering non-trivial conceptual structures: every entity may be a member
of several conceptual classes.

There are several types of weak supervised learning problems. We concentrate
on handling inexact data, i.e., the training data set may include labels that are
not fine-grained [12]. This represents a typical case of how humans would label
an entity: we may claim a lion to be a carnivore, but omit class labels such as
mammal or animal. A particular feature of our cone models is their ability to
express partial knowledge: elements are not required to be labeled with respect
to every class. In case of the lion the ML method may thus refrain from assigning
a class label like “can swim” or its negation “cannot swim”, if neither evidence
is given in the training data. By linking a given ontology to the ML model by
means of an embedding it is guaranteed that the result, i.e., the grounding of
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entities, conforms to the ontology. Coming back to the example of animals, we
would be able to guarantee that no animal will be labeled herbivore if it is known
to eat other animals.

In this paper we consider a medical scenario based on the gene ontology [1]
that could for example be used to make disease predictions. The ML method
described in this paper demonstrates that learning with cone-based models is
competitive to related approaches for multi-label learning [10]. Above all, we are
able to demonstrate that a given ontology can be exploited and leads to better
results in learning.

2 Preliminaries

The family of description logics is a family of variable-free fragments of FOL
that are designed, in particular, for the representation of ontologies. Hence, DLs
provide a good balance of expressivity and computational feasibility. They can be
classified by the set of concept-constructors offered. Any DL vocabulary contains
a set of constants Nc, a set of (concept names) NC and role names (corresponding
to binary relations). We consider here the propositional part of the logic ALC
[2]. The set of Boolean ALC concepts C is defined according to the following
context-free grammar:

C → A | ⊥ | > | C t C | C u C | ¬C, (1)

with atomic concepts A ∈ NC and an arbitrary concepts C. An ALC interpre-
tation (∆, ·I) consists of the domain ∆ (the space of possible elements) and
an interpretation function ·I mapping constants to elements in ∆ and concept
names to subsets of ∆. The semantics of arbitrary concepts is given in Table 1.

Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

negation ¬C ∆I \ CI

Table 1. Syntax and semantics for Boolean ALC for an interpretation I

An ontology O is a pair (T ,A). The terminological-box (T -box) T contains
general concept inclusions of the form C v D stating that C is a subconcept of
D, for arbitrary concepts C and D. The assertional-box (A-box) A consists of
facts of the form C(a), a ∈ Nc, which says that a is in the extension of C.
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3 Geometric Models

In our cone-based models, Boolean ALC ontologies are embedded into geometric
models of a Euclidean vector space with a linear product 〈·, ·〉 that measures
the similarity of vectors (representation of objects) by the cosine. The geometric
model I represents the T -box axioms in a geometric way and is region-based,
that means in particular, when AI v BI , then A is a subspace of B in the model.
The main idea is to split the vector space into convex regions. To preserve the
convexity under disjunction and negation, a special convex structure—namely
an axis-aligned cone (al-cone)—is used.

Definition 1. An al-cone is a special case of a closed convex cone. An al-cone
in the n-dimensional space is of the form

(X1, ..., Xn) where each Xi ∈ {R,R+,R−, {0}}. (2)

The negation of arbitrary cones X (and in particular of an al-cone), is defined
by its polar cone [8] X◦, which is the set of all vectors leading to a negative or
zero similarity with all vectors in X.

X◦ = {v ∈ Rn|∀w ∈ X : 〈v, w〉 ≤ 0}. (3)

For better readability, subsequently R,R+,R−, {0} are replaced by u,+,−, 0.
Every concept of an ontology is assigned to an al-cone as defined in (2) with

respect to the T -box axioms. An operation on an al-cone assignment of a concept
is executed dimension-wise. So, e.g., the intersection of (+,−) and (+,+) reduces
to considering the intersection of the first components + and + (giving +) and
the intersection of the second components − and +, giving 0. The constants are
placed in a region were the corresponding A-box axioms are valid. Special cases
are the top concept >, represented as {u}n which thus covers the whole space
and the bottom concept ⊥, which is represented as the point of origin {0}n.

A special feature of this geometric model is its ability to model partial know-
ledge. It is not obligatory that an element is an instance of a concept or of
its negation, its assignment can also be unknown. When representing negation
with polarity, any point neither contained in an al-cone A nor its polar cone A◦

represents an entity for which class membership of the class A is unknown.
Figure 1 is an example of a geometric model for an empty T -box and two

concepts A and B. The A-box consists of B(a1), B(a2) and ¬A(a2). The element
a1 is in a region where it is neither in A nor in ¬A.

The geometric model for a given T -box is constructed based on the set K of
all possible fully specified concepts k in the ontology. A concept is fully specified
when it contains every atomic concept or its negation. The geometric model

has the dimension d =
⌈
|K|
2

⌉
. No conjunction between fully specified concepts

is possible, so every k is placed on one half-axis. The al-cone for each atomic
concept can be determined by constructing the union of all k in which it appears
positively. The corresponding negative concept can be found by negating the
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x− axis = A 6↔ B

y − axis = A↔ B

BA

¬B ¬A
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u
B

¬
A
u
¬
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⊥

A tB
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>

A t ¬B ¬A tB

a1

a2

Fig. 1. Example of a geometric model

positive concept. With an empty T -box with n concepts this results in 2n fully
specified concepts and thereby in a geometric model with d = 2n−1 dimensions.

With a non-empty T -box the number of possible k decreases, but it is still
exponential in the most cases. The construction of the model is similar to the
empty case (using the Lindenbaum-Tarski algebra induced by the T -box).

For example the construction of the geometric model with an empty T -Box
is conducted as follows: The fully specified concepts are {A,B}, {A,¬B},
{¬A,B}, and {¬A,¬B}. The geometric representation of each of this fully spec-
ified concepts is placed on an individual half axis. Thus the geometric represen-
tation Ψ(·) is

Ψ({A,B}) = (0,+) (4)

Ψ({A,¬B}) = (−, 0) (5)

Ψ({¬A,B}) = (+, 0) (6)

Ψ({¬A,¬B}) = (0,−). (7)

(8)

The representations of the other concepts are unions of the representations of
the fully specified concepts and thus the resulting model is the one shown in
Figure 1.

4 Multi-label Classification with a Geometric Model

The geometric model can be used in combination with theA-box axioms given by
the training data to train a classifier. To this end, every element x of the training
data is mapped to a subspace of the vector space by creating a code vector cv(x)
with cv(x) = {+,−, 0, u}d. In this way an element is not represented by an
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individual point in space but by an al-cone. In every al-cone there could be several
individuals. Thus the training elements are embedded into the geometric model,
and therefore into the ontology space. The main idea is to use the knowledge
incorporated in the geometric model to train a classifier for each dimension of
the geometric model.

For each dimension of the code-vectors a classifier is trained separately to
divide the code-vectors in classes determined by their entry in this dimension,
because elements with the same region in one dimension should have some shared
attributes. For each dimension 1 ≤ i ≤ d all elements are separated into classes
as follows:

Xpos,i = {x | cv(x)i = +} (9)

Xneg,i = {x | cv(x)i = −} (10)

Xzero,i = {x | cv(x)i = 0} (11)

A code-vector with an u at dimension i is ignored.
Training of the classifier is done as follows: For each dimension i the separa-

tion of Xpos,i, Xneg,i, and Xzero,i is computed as follows. When only one of the
three classes in dimension i is used, then training of the classifier is not possible
and all elements are assigned to the existing class. When in one dimension there
are only two of the three labels chosen, then a binary classifier is trained and the
third class is ignored. For three existing classes two classifiers are trained, one
separating + from the rest, one separating − from the rest. This is explained in
more detail at the end of this chapter.

For classification the classification result for the test element is determined
for each dimension separately. The results of every dimension are concatenated
and produce a code-vector (an al-cone) for the test element. This code vector is
then placed in the geometric model. An element e is said to belong to a concept
C if the code-vector of e is covered by the code-vector of C.

Our approach is used for weak supervised learning. In the weak supervised
learning scenario, some labels are given, but they can be incomplete or inaccurate
and it is possible that not all labels are determinable for a given element. In
particular, an individual which is not labeled with a specific concept could be
contained in it or its negation.

Each entry in code-vectors shows information about its properties. Our aim
is to find a separation of 0 vs. + vs. −. So why should this be possible?

First we note that an element whose code-vector is u in dimension i is ignored
in this dimension because it does not represent a single piece of information. In a
geometric model, every operation can be executed per dimension. By definition,
in each dimension, 0 is covered by + and −. So + and − are not disjoint. This
means that their separability depends on the training data and is not necessarily
given. Individuals which are labeled as + (or −) could be in fact 0, but never
− (or +). But when a code vector is 0 in the specific dimension, then it stays 0
even after gaining new knowledge. This property is used for the separation task.

One option for training this separation for all three classes existing is to
train two classifiers. The first one separates + from the rest, the second one
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separates − from the rest. Of course there are some + (−) which are not fully
classified and thus wrongly appear in an area which is in fact 0. By increasing the
misclassification cost for a 0 this error is mitigated. The classifier is interpreted
as + only when one classifier is + and the second 0 and analogue for −. In the
other cases it is classified as 0.

It follows that even the elements which are incompletely classified and thus
have a + or − which in fact is a 0 give information because the probability for
their appearance is higher close to their actual region.

5 Experiments

Data The method can be used for any ontology expressed in Boolean ALC. Here
the Gene Ontology (GO) [1] is used. It does not contain negation or union and
is hence a directed acyclic graph. The relations of GO have not been considered.
The data set for the experiments is that of Saccharomyces cerevisiae [9]. First
the concepts of the training elements are extended in the way that all ances-
tor concepts of the given concepts are contained. Then every concept without
enough elements representing it was deleted to facilitate the training process.
The number of concepts was reduced to eight and for every element the most
specific concepts were determined. With these concept labels the training and
testing was conducted.

Implementation For classification a support vector machine with a polynomial
kernel is used, because it is an established method for handling bioinformatic
datasets like the one used. For the test of the method the assumption is used
that not having a positive label means that it could be contained or not.

For comparison purposes we implemented the approach of Wan and Xu [10].
The approach presented in [10] does not use ontology information. It is based
on a variant of the 1-vs-1-classifier. Any two concepts are compared to each
other in a ternary way. A separation of elements of concept A, of concept B,
and of concept A uB is learned for all concepts A,B. Via a voting-scheme and
a threshold the concepts of an element are obtained. This approach is used for
comparison because of its high similarity to the presented approach. Its main
difference is that the ontology information is not used. In this way the advantage
of using this information is investigated. For better comparability—instead of
the Tri-class SVM as used in their approach—we use in our implementation the
SVM-architecture presented above.

Results and Discussion Classification of the test set using a six-fold cross vali-
dation results in similar performance measures for the presented and the com-
parison approach (see Table 2).

An advantage of the presented approach is that it can only have ontological
correct results, while the other approach can result in contradictions. In every
dimension more training elements and thus more information than in normal
1-vs-1 can be used, because not only elements with the same concept, but also
with some similar attributes are used in the same class for training.
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The similarity in the results of both approaches is caused by the simple struc-
ture of GO, which incorporates no negation or disjunction. Only subsumption
needs to be considered. Without negated elements or negated concept inclusions
there is no knowledge about concept exclusions and therefore the space of pos-
sible concepts per element cannot be restricted. Another reason could be the
choice of the binary classifier, which could perhaps improve the generalization
quality.

The presented approach has improvement potential w.r.t. the error tolerance.
Concepts at the bottom of the tree have only a small al-cone where the elements
could be placed. This means, that even a small misclassification in one dimension
could prevent the correct classification. One possible solution is to incorporate
knowledge of the certainty of the classification for each dimension. For a test
element an uncertain result in a dimension could be changed to 0 to reduce its
influence.

In a second experiment our method was tested with an empty T -box. This
resulted in an accuracy near to zero and demonstrates the usefulness of the on-
tology information for training. Without this information the knowledge about
dependencies of elements cannot be used and elements which have similar at-
tributes can not be separated from elements without similar attributes. With an
empty T -box impossible separations are tried to be learned as well. Therefore
classifying a test element results in a code-vector not containing any information
and thus no assigned concept. This shows that the approach can actually use
the knowledge represented in the ontology.

Accuracy Precision Recall

This approach 0.185± 0.03 0.190± 0.02 0.164± 0.03
Wan, Xu [10] 0.197± 0.03 0.199± 0.03 0.278± 0.08

Table 2. Results for the presented method and the approach of Wan and Xu [10]

6 Conclusion

The paper presented a proof-of-concept implementation of an algorithm for weak
multi-label learning that relies on a geometric model of a Boolean ALC ontology.
As the test results showed, having a geometric model of a non-empty T -box leads
to useful information that can be exploited for multi-labeling.

The tests were conducted for an ontology over a very weak logic (not even
containing negation) to show its general applicability for weak supervised learn-
ing, but our approach is applicable for general BooleanALC-ontologies—whereas
an approach such as that of [10] can not be used because it can not incorpo-
rate ontological knowledge. We expect to get even better results for ontologies
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that allow for full negation (and disjunction) because of the higher amount of
ontological information contained.

Future work concerns incorporating a method for dimension reduction in
order to reduce the exponential size (w.r.t. the number of atoms in the Boolean
algebra of concepts induced by the T -box) of the geometric model. Moreover, we
plan to improve the approach by using a different classifier for the dimensions
instead of the ternary SVM: the idea is to consider certainty of the answer for
each dimension and to improve the dimension-wise separation quality.
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