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Abstract

The estimation of the qualitative behaviour of frac-
tional Brownian motion is an important topic for mod-
elling real-world applications. Permutation entropy is
a well-known approach to quantify the complexity of
univariate time series in a scalar-valued representa-
tion. As an extension often used for outlier detection,
weighted permutation entropy takes amplitudes within
time series into account. As many-real world prob-
lems deal with multivariate time series, these measures
need to be extended though. First, we introduce multi-
variate weighted permutation entropy, which is consis-
tent with standard multivariate extensions of permuta-
tion entropy. Second, we investigate the behaviour of
weighted permutation entropy on both univariate and
multivariate fractional Brownian motion and show re-
vealing results.

1 Introduction
Time series data are part of many real-world applications,
such as forecasting weather and stock markets or analysing
medical signals or industrial sensor data. Modelling of time-
dependent dynamical systems with the specific properties of
long-range dependence, fractality, or self-similarity is com-
monly described by fractional Brownian motion (fBm). Its
foundations are based on a strong theory and proved to be
successfully applicable in many use-cases (Nourdin 2013;
Rostek 2009; Doukhan, Oppenheim, and Taqqu 2002). For
the investigation of the qualitative behaviour of fBm, effi-
cient mappings from a dynamical system to a set of scalar-
valued representations or features that capture specific prop-
erties are usually considered. Entropies, a representation
from information theory, are promising through an encod-
ing that preserves information content (Amigó 2010). Per-
mutation entropy (PE) is a robust, scalar-valued representa-
tion for measuring the degree of complexity of a time se-
ries by analysing the distribution of ordinal patterns, i.e., by
analysing its up and downs (Bandt and Shiha 2007). While
classical time series analysis focuses on the time series itself,
a non-parametric transformation into a sequence of ordinal
patterns can reveal underlying dynamics of the generating
system to detect causal information (Traversaro et al. 2018).
While the associated entropy is low for a deterministic time
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series, it approaches its maximum value in case of uncorre-
lated randomness or correlated complexity in the time series.

In the univariate case, PE on fBm is well understood
(Zunino et al. 2008; Sinn and Keller 2011). Not only PE,
but also the distribution of ordinal patterns of certain lengths
yield interesting parameter functions, e.g., for descriptive
purposes of autocorrelation (Bandt and Shiha 2007). The
limitation of PE is mainly the inability to distinguish be-
tween different patterns of a given motif in amplitudes. Fad-
lallah et al. (2013) introduce weighted permutation entropy
(WPE), which takes into account patterns that differ in am-
plitudes by assigning weights to each extracted pattern.

Furthermore, in many fields of applications, multivariate
measurements are performed such as in economic time se-
ries (Gil-Alana 2003), or functional Magnetic Resonance
Imaging of several brain regions (Achard et al. 2008). There-
fore, representations need to be extended. First, this paper
contributes a definition of multivariate weighted permuta-
tion entropy (MWPE) that is consistent with canonical mul-
tivariate extensions of PE. Second, this paper investigates
the behaviour of WPE on univariate and multivariate fBm.
We show that in case of ordinal patterns of order d = 2
weighting has no effect, while in case of order d = 3 certain
ordinal patterns have greater impact on WPE.

2 Related Work
Bandt and Shiha (2007) and Zunino et al. (2008) con-
tribute significantly to an understanding of the underlying
behaviour of PE under known structures such as fBm. They
investigate the distribution of ordinal patterns of different
orders and, if possible, provide closed formulas for entropy
calculation as well as specific characteristics and relation-
ships that are used to prove the theorems in this work.

Since many real-world problems involve multivariate time
series, Mohr, Finke, and Möller (2020) investigate the be-
haviour of PE on fBm in a multivariate setting as well as
on multiple scales, but without considering effects of am-
plitudes. When introducing univariate WPE, Fadlallah et al.
(2013) also evaluate their method on multivariate data, but
calculate WPE from a univariate point of view per variable,
followed by an analysis of correlations. In this sense, we in-
troduce and appropriate definition of MWPE and analyse its
behaviour in the special case of fBm or multivariate frac-
tional Brownian motion (mfBm).



Figure 1: (a)–(c) Examples for fractional Brownian motion with different Hurst parameters H and (d) multivariate fractional
Brownian motion with variable-dimension m = 5 and Hurst parameters Hi = 0.4.

3 Preliminaries
We shortly formalise fractional Brownian motion and define
key concepts of weighted permutation entropy.

3.1 Multivariate Fractional Brownian Motion
This work focuses on a class of special stochastic processes,
namely the unique mean-zero Gaussian process, which is
zero at origin and has stationary and self-similar increments,
called fBm. A stochastic process, or more generally a math-
ematical object that is similar to itself at all scales, is called a
fractal. When you zoom in on a fractal, it looks exactly like
the original shape. The mathematical property is called self-
similarity and is expressed by the so-called Hurst parameter
H ∈ (0, 1). In case H = 1/2, fBm corresponds to the or-
dinary Brownian motion. In case H > 1/2, the process has
a persistence property and positively correlated increments,
i.e., an upward jump is more likely followed by another up-
ward jump and vice versa. For H → 1, the process becomes
smoother, less irregular and more trendy. In case H < 1/2,
the process has negatively correlated increments and an anti-
persistence property. Figure 1 (a)–(c) shows three fBms with
different Hurst parameters H .

Definition 1 (Multivariate fractional Brownian motion
(Amblard et al. 2013)). An m-multivariate process
((Xi(t))mi=1)t∈R is called multivariate fractional Brownian
motion (mfBm) with Hurst parameter H = (H1, . . . ,Hm),
Hi ∈ (0, 1) for i = 1, ...,m, and denoted as Bm

H(t) , if it is

1. Gaussian distributed,
2. self-similar with Hurst parameter H , i.e.,

(X1(αt), .., Xm(αt))t∈R

∼ (αH1X1(t), .., α
HmXm(t))t∈R

for any α > 0, where ∼ denotes the equality of finite-
dimensional distributions and it has

3. stationary increments, i.e., Bm
H(t)−Bm

H(s) ∼ Bm
H(t−s).

Multivariate self-similarity imposes many constraints on
the covariance structure of mfBm (Lavancier, Philippe, and
Surgailis 2009). The covariance structure is characterised
by parameters σi > 0, ρij ∈ (−1, 1) and ηij ∈ R for

i, j = 1, ...,m. Parameter σi > 0 is the standard devia-
tion of the i-th variable at time 1. Parameter ρij = ρji is
the correlation coefficient between the variables i and j at
time 1. Parameters ηij = −ηji are antisymmetric and linked
with the time-reversibility of mfBm. Multivariate fractional
Brownian motion can be characterised by its covariances
and cross-covariances of its variables as follows.
Lemma 1 (Covariance Function of mfBm (Amblard and
Coeurjolly 2011)). The mfBm Bm

H(t) is marginally a fBm,
such that the covariance function of the i-th variable BiHi

of
mBfm is as in the univariate case

Cov(BiHi
(s), BiHi

(t)) =
σ2
i

2
(|s|2Hi + |t|2Hi − |t− s|2Hi).

(1)
where σ2

i = V ar(BiHi
(1)). The cross-covariances of mfBm

for all (i, j) ∈ {1, ...,m}2 and i 6= j are given by

Cov(BiHi
(s), BjHj

(t))

=
σiσj
2

(wij(−s) + wij(t)− wij(t− s))
(2)

where the function wij(h) is defined as

wij(h)

=

{
(ρij − ηij sign(h))|h|Hi+Hj if Hi +Hj 6= 1,
ρij |h|+ ηijh log |h| if Hi +Hj = 1.

(3)

Figure 1 (d) shows an mfBm with m = 5. For m = 1,
Definition 1 matches the univariate fBm denoted as BH(t).
Moreover, setting ρij = 1 and ηij = 0 in Eqs. (2) and (3) is
matching with the univariate case in Eq. (1).

3.2 Ordinal Pattern Symbolisation
For the investigation of the qualitative behaviour of fBm
in this paper PE and WPE are used. To calculate the en-
tropy of a time series it is necessary to encode the sequence
of real-valued measurements into a sequence of symbols.
As far as current research is concerned, there are two gen-
eral approaches of symbolisation (Mohr et al. 2020). On the
one hand, classical symbolisation approaches use threshold
values and data range partitioning for symbol assignment,



(0, 1, 2), (2, 1, 0), (1, 0, 2), (2, 0, 1), (0, 2, 1), (1, 2, 0)

Figure 2: All possible ordinal patterns of order d = 3.

Figure 3: Ordinal pattern determination of order d = 3 and
time delay τ = 20 in a univariate time series.

such as the well-know Symbolic Aggregate ApproXima-
tion (SAX) representation introduced by Chiu, Keogh, and
Lonardi (2003). Ordinal pattern symbolisation is another ap-
proach based on an idea of Bandt and Pompe (2002) and
uses the total order between two or more neighbours in a
time series, encoded by permutations. The formalism and
the advantages of the ordinal symbolisation scheme are in-
troduced as follows. Compared to the previously used cap-
italisation Xi for random variables in a dynamical system
such as fBm, we use a small notation xi for observations of
random variables, also called paths.

Ordinal patterns describe the total order between two or
more neighbours in a path, encoded by permutations.
Definition 2 (Univariate Ordinal Pattern). A vector
(x1, ..., xd) ∈ Rd has ordinal pattern (r1, ..., rd) ∈ Nd of
order d ∈ N if xr1 ≥ ... ≥ xrd and rl−1 > rl in the case
xrl−1

= xrl .
Note that equality of two values within a pattern is not al-

lowed. In this case, for example, the newer value is replaced
with a smaller value. Figure 2 shows all possible ordinal pat-
terns of order d = 3 of a vector (x1, x2, x3). To symbol-
ise a time series (x1, x2, ..., xT ) ∈ RT each point in time
t ∈ {d, ..., T} is assigned its ordinal pattern of order d. The
order d is chosen to be much smaller than the total length
T of the time series to look at smaller windows within the
series and their distributions of up and down movements.
To asses the overarching trend, the delayed behaviour is of
interest. The time delay τ ∈ N is the delay between succes-
sive points in the symbol sequences. Different delays show
different details of the structure of a time series. Figure 3
visualises the ordinal pattern determination of order d = 3
and time delay τ = 20 of four different time points in a
univariate time series.

The ordinal approach has notable advantages in its practi-
cal application. First of all, the method is conceptually sim-
ple. Second, it is not necessary to have previous knowledge

about the data range or type of time series. Third, the ordinal
approach supports robust and fast implementations (Keller
et al. 2017; Piek, Stolz, and Keller 2019). Fourth, it allows
for an easier estimation of a good symbolisation scheme
compared to the classical symbolisation approaches (Keller,
Maksymenko, and Stolz 2015; Stolz and Keller 2017).

Not the ordinal patterns themselves, but their distributions
in different parts of a univariate time series (xt)

T
t=1 are of

interest. Thus, each pattern is identified with exactly one of
the ordinal pattern symbols j = 1, 2, ..., d!. Using the dis-
tribution of the ordinal pattern symbols, its entropy can be
calculated using the well-known formula of (Shannon) en-
tropy resulting in the definition of permutation entropy:
Definition 3 (Permutation entropy (Bandt and Pompe
2002)). The permutation entropy (PE) of order d ∈ N and
delay τ ∈ N of a univariate time series x = (xt)

T
t=1, T ∈ N

is defined by

PEd,τ (x) = −
d!∑
j=1

pτ,dj ln pτ,dj , (4)

where pτ,dj is the frequency of ordinal pattern j in the time
series.

Depending on the area of research, entropy is a measure
for quantifying inhomogeneity, impurity, complexity and
uncertainty or unpredictability. For time series with maxi-
mum random ordinal pattern (resulting in a uniform pattern
distribution due to uniqueness), PE is ln(d!). For time series
with regular pattern, PE is equal to zero (Amigó 2010).

3.3 Weighted Permutation Entropy
The main shortcoming in the above definition of PE is that
no other information is preserved during the extraction of
the ordinal patterns except for the order structure. Informa-
tion about the amplitude in a time series is lost. However,
ordinal patterns with large differences in amplitude should
contribute in different ways to the calculation of PE. The
weighted permutation entropy introduced by Fadlallah et al.
(2013) allows for weighting of ordinal patterns by exploit-
ing amplitude information resulting from small fluctuations
in the time series due to the effect of noise to be weighted
less than ordinal patterns with large amplitudes.
Definition 4 (Weighted permutation entropy (Fadlallah et al.
2013)). The weighted permutation entropy (WPE) of an uni-
variate time series x = (xt)

T
t=1, T ∈ N, with order d ∈ N

and delay τ ∈ N is defined as

WPEd,τ (x) = −
d!∑
j

wpτ,dj lnwpτ,dj (5)

with wpτ,dj

=

∑
t≤T wt · [(xt−(d−1)τ , ..., xt−τ , xt) has pattern j]∑

t≤T wt · [(xt−(d−1)τ , ..., xt−τ , xt)]
,

(6)
where wt = 1

d

∑d
k=1(xt−(k−1)τ − x

d,τ
t )2 is the empirical

variance of the sub-sequence and xd,τt denotes the arithmetic
mean that is xd,τt = 1

d

∑d
k=1 xt−(k−1)τ and [x] = 1 if x, 0

otherwise.



4 Multivariate Weighted Permutation
Entropy

In this section we introduce a definition for multivari-
ate weighted permutation entropy based on an unweighted
canonical multivariate extension of PE introduced by Keller
and Lauffer (1999) called pooled permutation entropy
(PPE). The idea of PPE is to pool the frequencies of d! or-
dinal patterns with respect to all m variables as input for
multivariate entropy calculation. In addition to PPE and by
analogy with WPE, in a canonical definition of multivari-
ate weighted permutation entropy, the patterns have to be
weighted before frequencies are determined.

More specifically, the determination of MWPE has to be
carried out as follows. (I) For each variable i = 1, ...,m and
for each ordinal pattern j = 1, ..., d! select all time steps
in the time series t ∈ [dτ − τ + 1, T ], for which the vari-
able time pair (i, t) has the ordinal pattern j. (II) Add up
the weights wt, i.e., wij =

∑T
t=dτ−τ+1 wt for all selected

ordinal pattern vectors j and for each variable i = 1, ...,m.
Note that the total count of weights wit for each variable i
is δ := T − (dτ − τ). (III) Divide the weighted sum wij

by the total sum of all m · δ weights to obtain the weighted
frequencies for every pattern j. (IV) Store the weighted fre-
quencies in a weighted pooling matrix P τ,dw ∈ Rm×d!, which
reflects the weighted distribution of the ordinal patterns in
the multivariate time series across its m variables. Based on
the weighted pooling matrix P τ,dw , the multivariate weighted
permutation entropy can be calculated as follows.
Definition 5 (Multivariate weighted permutation entropy).
The multivariate weighted permutation entropy (MWPE) of
a multivariate time series X = ((xit)

m
i=1)

T
t=1 is defined as

PE of the marginal weighted frequencies P τ,dw·j =
∑m
i=1 P

τ,d
wij

for j = 1, ..., d! describing the distribution of the weighted
ordinal pattern and can be calculated as

MWPEd,τ (X) = −
d!∑
j

P τ,dw·j lnP
τ,d
w·j . (7)

5 Weighted Permutation Entropy Applied to
Fractional Brownian Motion

In the following, we investigate the behaviour of WPE on
fBm as well as MWPE on mfBm in theoretical terms. For
this purpose, we use univariate results by Bandt and Shiha
(2007), who show that first, for fBms the ordinal patterns of
order d = 2 are equally distributed, more specifically

pτ01 = pτ10 = 1/2 (8)
for all τ . Second, the distribution of ordinal patterns of order
d = 3 of univariate fBms is given by

pτ012 = 1/π arcsin 2H−1 := u (9)
for all τ . Then, for all τ it is

pτj =

{
u if j = (0, 1, 2), (2, 1, 0),
(1− 2u)/4 otherwise. (10)

The distribution of ordinal patterns of order d = 4 can
also be expressed in a more complex formula, which can be
looked up in the work of Bandt and Shiha (2007). For order
d > 4, there are no closed formulas.

5.1 The Univariate Case
We first consider the behaviour of WPE of order d = 2 on
fBm before transferring theory to patterns of order d = 3.

Theorem 1. The WPE of order d = 2 for all delays τ ∈ N
on fBm BH(t) is given by

WPE(BH(t)) = − ln(1/2). (11)

Proof. WPE differs from PE in that the ordinal patterns are
weighted depending on their position t according to Eq. (6).
For a weight wt of order d = 2, i.e., of two time steps xt−1
and xt, we have

wt =
1

2

2∑
k=1

(xt−(k−1)τ − x2,τt )2 (12)

=
1

2
(xt − xt−τ )2. (13)

Since xt ∼ BH(t), we conclude from Definition 1, prop-
erty (3), i.e., fBm has stationary increments, that

1

2
(BH(t)−BH(t− τ))2 ∼ 1

2
(BH(τ))2 (14)

with Var(BH(τ)) = σ2τ2H and σ2 = Var(BH(1)) = s2H

as in Eq. (1). Consequently, the weights wt are indepen-
dently distributed from t, i.e.,

wt ∼ N (0,
1

2
(sτ)2H). (15)

Considering the distribution of all possible realisations of
fBm, we see from the use of the weights wt from Eq. (6)
in the calculation of WPE that it cancels out for a constant
delay τ ∈ N.

With Eq. (8) follows WPE(BH(t)) = − ln(1/2).

Note that in the case of d = 3, however, the weighting has
influence due to the lack of symmetry. Moreover, the weight
of order d = 3 is given by

wt =
2

9
(x2t + x2t−1 + x2t−2

−xtxt−1 − xtxt−2 − xt−1xt−2) (16)

=
2

9
(x2t − xt(xt−1 − xt−2)

+x2t−1 + x2t−2 − xt−1xt−2)) (17)

For example, in case of 0 < xt−2 < x′t < xt−1 < xt, it is

x′
2
t − x′t(xt−1 − xt−2) < x2t − xt(xt−1 − xt−2). (18)

It followswx′t < wxt
. Consequently, it is more likely that the

ordinal patterns (0, 1, 2) and (2, 1, 0) have higher weights
than the other four ordinal pattern. For H > 0.5, fBm is
positively correlated, i.e., after an upward jump a further up-
ward jump is more likely to follow and vice versa, which in-
creases the effect. With Eq. (10), WPE decreases faster than
PE. For ordinal patterns with d > 3 analogous behaviour re-
sults. We confirm this theory in an experimental evaluation
in the next section.



Figure 4: Comparison of permutation entropy and weighed permutation entropy of order d = 2 and d = 3 on fractional
Brownian motion in relation to Hurst parameter H in univariate case as well as multivariate case.

5.2 The Multivariate Case
Again, we first consider the behaviour of MWPE of order
d = 2 on mfBm before transferring the theory to patterns of
order d = 3.

Theorem 2. The MWPE of order d = 2 for all delays τ ∈ N
on mfBm Bm

H(t) is given by

MWPE(Bm
H(t)) = − ln(1/2) (19)

for all Hurst parameters Hi and variable-dimensions m.

Proof. As in Definition 5, the calculation of MWPE is based
on the sum of weights wij for a ordinal pattern j and for
each variable i = 1, . . . ,m. The arguments from the proof
of Theorem 1 can be adopted directly. Calculating the fre-
quencies of ordinal patterns for the weighted pooling matrix
P τ,dw ∈ Rm×d! results in a equal distribution with

P τ,2wi,(1,0)
= P τ,2wi,(0,1)

=
1

2m
(20)

for all i = 1, ..,m. By calculating the marginal relative fre-
quencies, the number of variables m is reduced, i.e.,

P τ,2w·j =
1

2
(21)

for j = {(0, 1), (1, 0)}. It follows

MWPE(Bm
H(t)) = −

2∑
j

P τ,2w·j lnP
τ,2
w·j = − ln(1/2). (22)

In summary, MWPE of order d = 2 does not depend on
the delay τ , the Hurst parameterH or on the number of vari-
ables m, nor does the weighting have any influence on the
calculation of MWPE.

Note that as in the univariate case with d = 3, weight-
ing has an impact due to lack of symmetry. The weights for
strictly ascending and descending ordinal patterns (0, 1, 2)
and (2, 1, 0), respectively, are likely to be higher than oth-
ers. Analogous to Eqs. (8) and (10), Mohr, Finke, and Möller

(2020) show that the behaviour of PPE of order d = 3
on mfBm depends monotonically on the Hurst parameter
H ∈ Rm. The calculation of the weights as well as the
distribution of the ordinal patterns lead to an increased in-
fluence of certain patterns in the calculation of MWPE. In
particular, if H > 0.5, i.e., fBm is positively correlated, the
effect is again amplified. MWPE decreases faster than PPE.
We confirm this theory in an experimental evaluation in the
next section.

6 Experimental Evaluation
We investigate the behaviour of WPE or MWPE on fBm or
mfBm with respect to its Hurst parameter in an experimental
evaluation. In the univariate case, all experimental calcula-
tions are based on a simulation of fBm using the fbm pack-
age available on PyPI. In the multivariate case, all experi-
mental calculations are based on a simulation of mfBm an
algorithm implemented by Amblard et al. (2013) with a pa-
rameter setting of ρi,j = 0.3, and ηi,j = 0.1/(1−Hi−Hj)
(see Lemma 1). The lengths T = 20000 of fBms and
T = 3500 of mfBms are assumed to be large. For a small
length T the estimates of the probabilities for the ordinal pat-
terns differ from the true values of a hypothetical time series
of infinite length.

As in the upper part of Figure 4(a), WPE of order d = 2
on fBm behaves like PE (normalised in both cases), namely
constant due to the equal distribution of ordinal patterns.
This result confirms Theorem 1. As in the lower part of Fig-
ure 4(a), WPE of order d = 3 decreases with increasing
Hurst parameter H , faster than PE, and also over a larger
data range, resulting from the fact that some of the patterns
(specifically (0, 1, 2) and (2, 1, 0)) have a greater impact
than the others. As in the upper part of Figure 4(b) and (c),
MWPE of order d = 2 behaves like PPE on mfBm, indepen-
dent of the number of variable dimensions m. In particular,
MWPE is constant − ln(1/2) confirming Theorem 2. As in
the lower part of Figure 4(b) and (c), MWPE of order d = 3
decreases faster than PPE, with increasing Hurst parameters
Hi = Hj for all i = j. This confirms once again that the
strictly ascending or descending patterns have a greater im-



pact on the calculation of MWPE than with PPE.
In all sub-figures, larger deviations from the theoretical

value can be seen starting at a Hurst parameter of about
H > 0.75. As discussed by Dávalos et al.; Mohr, Finke, and
Möller (2018; 2020), the larger deviations are due to the ex-
perimental length limitation. In the lower part of Figure 4(c)
the number of variable dimensions m contributes to a better
estimation of the MWPE due to the increasing number of or-
dinal patterns, so that the deviations become smaller. Thus,
the experimental results underpin our theoretical findings.

7 Conclusion and Future Work
In this paper, we proposed a well-defined definition of
MWPE, that is consistent to standard multivariate extensions
of PE. In addition, we presented a theoretical as well as an
experimental analysis of the behaviour of WPE on fBm and
MWPE on mfBm. In case of order d = 2, we have shown
that WPE and MWPE match with PE and PPE. There is no
effect of weighting. In case of order d = 3, we have shown
that strictly ascending or strictly descending ordinal patterns
(0, 1, 2) or (2, 1, 0) have greater weights and thus a greater
impact on WPE and MWPE than the other four possible or-
dinal patterns. As a result, WPE and MWPE of order d = 3
decrease faster than PE and PPE with increasing Hurst pa-
rameter H , and over a larger normalised data range.

The theoretical results provided in this work can simplify
the estimation of the Hurst parameter due to a more pow-
erful representation of WPE and MWPE in contrast to the
unweighted variants. Classical data analysis and machine
learning tasks, such as outlier detection or time series clas-
sification, can also benefit. However, to confirm the overall
effectiveness and efficiency of WPE and MWPE of order
d = 3, especially on other signals from real world applica-
tions, further analyses and tests are necessary. Furthermore,
the canonical definition of MWPE does not take into account
the interaction of different Hurst parameters Hi in form of
cross-correlations from Eqs. (2) and (3). In this case, it may
be useful to consider further multivariate versions of PE us-
ing principle component analysis as proposed by Mohr et al.
(2020).
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