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Abstract
An agent in pursuit of a task repeatedly perceives its environ-
ment through sensors, updates its state based on observations,
and then decides which action to take, given the current state
of the environment. Observations have in common that they
are made at a given time point and thus referred to as temporal
data. Usually, such temporal data is provided as stream data
if the agent continuously receives the data, or it is provided
as historic data if the stream data is stored in, for instance, a
database the agent has access to. DBMSs are especially de-
signed to process static data (i.e. non-temporal data) given a
declarative query language such as SQL. However, if the aim
is to exploit temporal data as required in time series analysis,
SQL has its limits because it does not provide useful abstrac-
tions such as a window operator. Hence high-level declarative
stream query languages, equipped with time-based window
operators were designed. A challenge of those abstractions
is the additional overhead of the algorithms that automati-
cally transform high-level queries into low-level queries exe-
cutable over DBMSs. If not handled properly those transfor-
mation algorithms may result in low-level queries with pro-
cessing times too long for agents to make decisions. We de-
scribe a robust and optimized transformation algorithm for a
high-level declarative stream query language and show that it
leads to low-level queries with feasible processing times on
real-world data.

Introduction
Observations can be of any type, such as, but not limited to,
raw or event based data, and they have in common that they
are made at a given time point. Usually, such observations
are stored as historical data in a DBMS to be analyzed later
or directly processed as stream data at a data stream manage-
ment system (DSMS) at which a registered query is continu-
ously executed on incoming streams of data. Historical data
can be very large and be associated with tens or even hun-
dreds of other, possibly non-temporal, datasets stored in a
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DBMS. For instance, a medical database contains thousands
of historical datasets, containing observations at intervals of
a few milliseconds, associated with static data about the ob-
served patients. Manually writing queries to be executed by
a DBMS on such large and diverse datasets can be cumber-
some and might lead to very long processing times, too long
for an agent to make decisions, if not all optimizations possi-
ble are exploited for reducing the time it takes to process the
data. Such optimizations include knowledge about the exact
schema of the database containing the to be processed data,
all features a query language provides, and of how a query
is translated into an execution plan by a database. Among
others, some features of standardized DBMS implementa-
tions are mostly unknown, such as procedural code that can
be combined with SQL, running directly on database side.

Access to complex, diverse, and distributed, usually non-
temporal data stored in a DBMS can be facilitated by
Ontology-Based Data Access (OBDA). High-level queries
are answered by transforming them into queries on data
source level. A query is transformed by first rewriting it,
where knowledge from an ontology about a specific domain
is incorporated into the query, and then unfolding it with
respect to a set of mappings. The ontology is a knowledge
base and can be maintained by an expert of a specific do-
main such as an engineer. Mappings map ontology predi-
cates into a query on data source level such as SQL. Our
system builds on Ontop (Calvanese et al. 2017) for rele-
vant OBDA tasks—in particular for transforming SPARQL
queries to SQL queries on data-source level.

This work deals with a robust transformation algorithm
for STARQL (Streaming and Temporal ontology Access
with a Reasoning-based Query Language), a high-level
declarative stream query language (Özçep, Möller, and
Neuenstadt 2014). Via ontology and time-based window op-
erators, STARQL adds additional abstraction layers that sup-
ports users in expressing their information needs. A chal-
lenging aspect of the abstraction layer is the added overhead
in transforming it to data-source level queries.

So, one would like to ensure that the transformation
of a STARQL query—and in general, of queries of any
other high-level stream query language following the OBDA
paradigm—leads to an efficiently processable query on data-
source level. In particular, feasible query answering on data-
sources is of utmost importance for decision-making agents



acting in an environment where quick decisions need to be
made based on historical data. Execution times for trans-
formed STARQL queries should be no longer than as if the
information need of the user is expressed as a data-source
level query by an IT-expert.

In this paper we present three different optimized al-
gorithms for transforming a STARQL query into a set of
queries executable at a DBMS. These new algorithms do not
only minimize the overhead of the abstraction layer intro-
duced by the transformation with respect to an ontology, but
additionally they reduce the processing times of resulting
queries by implementing efficient incremental time-based
window operators on data-source level matching the seman-
tics of STARQL window operators. As we show in the evalu-
ation, our optimizations reduce processing times all together
from hours to a few minutes.

The basic transformation algorithm we start with (Özçep,
Möller, and Neuenstadt 2014; Neuenstadt 2017) was tested
on streaming and historical data from industrial partners in
the domain of turbine monitoring and wellbore-related data
(Giese et al. 2015). The first refined algorithm optimizes
the original transformation algorithm by reducing the num-
ber of required joins and the size of intermediate results.
However, even with this refined algorithm, processing times
and the size of intermediate results are still high. Hence,
in a second refinement, we enhance the query generation
by incorporating optimizations relying on the scripting lan-
guage Procedural Language/PostgreSQL structured query
language (PL/pgSQL). The size of intermediate results does
no longer depend on the size of the to be processed data,
and all joins required for implementing a time-based win-
dow operator are eliminated. The adaptation of PL/pgSQL
implementations, to be executed on other DBMS, is rather
minimal, as PL/pgSQL is similar to the SQL/PSM standard-
ized language that can be executed on other DBMS imple-
mentations.

A last refinement is specially meant to deal with big data
by parallelizing the data-source level queries resulting out of
the transformation. The possible degree of parallelization is
almost unlimited, without great loss of performance, except
that with a very high degree of parallelization, reading data
and writing results to disk can become a bottleneck.

Using synthetic data and real-world data from various use
cases, we can show that our refinements result in processing
times that grow linearly rather than polynomially with input
size, as is the case with the basic transformation algorithm,
which is a big step toward transforming high-level queries
into efficient queries on data source-level.

STARQL Query Language
STARQL is a high-level declarative stream query language
(Özçep, Möller, and Neuenstadt 2014) getting streams of as-
sertions as input and outputting such streams.

It is a high-level declarative language, as streams are pro-
cessed with respect to background knowledge in form of an
ontology. In description logic (DL), an ontology consists in
general of a terminological box (tbox) T , containing axioms
representing given background knowledge, and an asser-
tional box (abox) A containing assertions, thus facts, about

the actual world. When considering streams, we make a dis-
tinction between static and temporal aboxes. Whereas the
static aboxAstatic contains time independent facts, the tem-
poral abox contains (part of) time-dependent streams. Thus,
the ontology O is defined as O = {T ,Astatic}.

An example ontology is the semantic sensor network
(SSN) ontology presented in (SSN 2008). SSN specifies sen-
sors and observations on them having some measured value.
Each sensor is a system that runs on a platform that is part
of a deployment. A sensor produces a stream of abox asser-
tions of the form hasSimpleResult(o1, 93)⟨0s⟩, asserting
that 93 is observed as o1 at 0s. Here is an example of an
ontology O (in DL notation) that uses SSN vocabulary and
consists of the tbox T
{Observation ⊑ ∃madeBySensor.Sensor,

Sensor ⊑ System,

System ⊑ ∃isHostedBy.P latform,

P latform ⊑ ∃inDeployment.Deployment}

(1)

and a static abox Astatic

{Sensor(TC260), Deployment(Generator),

P latform(Turbine)} (2)

The tbox stores intensional information that allows to com-
plete the abox. For example, it directly follows from the tbox
expressed in (1) that TC260 is a System in addition to be-
ing a Sensor.

STARQL has a framework character, as different query
languages can be embedded into the language, and a
STARQL query can refer to a wide range of ontology
DL languages. Here, STARQL embeds SPARQL (SPARQL
2008) and refers to DL-Lite ontologies (Calvanese et al.
2007) in OWL 2 QL format (OWL 2004), the standard pro-
file tailored towards classical OBDA.

Typically, historical data consists of tuples with an asso-
ciated schema. However, a STARQL query has virtual abox
assertions as input. Here, by “virtual” we mean that abox as-
sertions from the user point of view are actually data points
with an associated timestamp and are not materialized but
only presented in an SQL-view-like manner as logical (time-
stamped) facts to the user. Mappings map ontology predi-
cates such as abox assertions into a query on data source
level. To bridge the gap between historical data and virtual
abox assertions, the STARQL query Q is answered by, first
rewriting the query into Qrew with respect to an ontology,
then unfolding the query into query Qunf with respect to
a set of mappings. During rewriting, knowledge stored in
the ontology is incorporated into the query. The mappings
actually bridge the gap between the ontology and database
world. This approach is called OBDA (Poggi et al. 2008)
and is visualized in Figure 1.

A query Q(x, y) = System(x) ∧madeBySensor(o, x)
∧hasSimpleResult(o, y)⟨t⟩ returns sensors together with
values they have observed at time points t. Query Q
has a sequence of abox assertions of the form of
hasSimpleResult(TC260, 93)⟨0s⟩ as input. Ontology O
contains the tbox T from (1) and the abox Astatic from
(2). A database, containing two relations, has the schema as
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Figure 1: Ontology-Based Data Access

stream(obs, timestamp, sensor, value)
sensor(id, assemblypart, name, type)
assemblypart(id, assembly, name)
assembly(id, name)
stream.sensor→ sensor.id
sensor.assemblypart→ assemblypart.id
assemblypart.assembly→ assembly.id

Table 1: Schema of a PostgreSQL database

listed in Table 1. Five mappings bridge the database world
to the ontology world:
m1: Sensor(x)← SELECT name FROM sensor

m2: madeBySensor(o, x) ← SELECT stream.obs
AS o, sensor.name AS x FROM stream,
sensor WHERE stream.sensor = sensor.id

m3: hasSimpleResult(o, x) ← SELECT stream.obs
AS o, stream.value AS x FROM stream

m4: isHostedBy(x, y)← SELECT sensor.name AS
x, assemblypart.name AS y FROM sensor,
assemblypart WHERE sensor.assemblypart
= assemblypart.id

m5: inDeployment(x, y) ← SELECT
assemblypart.name AS x, assembly.name
AS y FROM assemblypart, assembly WHERE
assemblypart.assembly = assembly.id

The heads of the mappings are in DL notation, while the
tails are in a query language of the back-end database
(here SQL). Query Q contains the atom System(x), but
none of the mappings m1≤i≤5, contain System(x) in their
head. However, the ontology O contains a tbox, where
Sensor ⊑ System states that every sensor is a system.
Query Q can be rewritten into Qrew(x, y) = Sensor(x) ∧
madeBySensor(o, x) ∧ hasSimpleResult(o, y)⟨t⟩ with
respect to the ontologyO. Using mappings m1, m2, and m3,
query Qrew is unfolded into a query Qunf of a back-end
(here SQL), as listed in Table 2. A logical ∧ is transformed
into a NATURAL JOIN, and a logical ∨, if necessary, into a
UNION. Query Q can be executed over abox assertions from
an ontology perspective and query Qunf can be executed
over historic data from a relational database perspective.

STARQL queries have (possibly infinite, synchronous)
streams of abox assertions as input and output. Each abox of
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Figure 2: Window with wr = 4s, sl = 1s, and pulse with
st = 0s, end = 5s, fr = 2s

an input stream has an associated timestamp t from a flow
of time (T,≤), where≤ is a linear order. STARQL provides
a time based window operator, which groups the abox asser-
tions of each input stream into streams of finite sets. Syn-
tactically, a window is declared for an input stream S as S
[NOW - wr, NOW] -> sl, where wr denotes the range, sl
the slide, and NOW the current local time tstr of a window. A
global time tpulse can be declared by the PULSE declaration
as START = st, END = end, FREQUENCE = fr for syn-
chronising input streams. Only abox assertions of the input
stream, with an associated timestamp t : st ≤ t ≤ end, are
processed. The global time tpulse evolves over time:

tpulse = st→ st+ fr → st+ 2fr → . . . (3)

Each local time tstr of each window evolves over time and
is maximal with respect to the current global time tpulse:

tstr = tpulse − (tpulse mod sl) (4)

The global time tpulse evolves and each window slides m
times until m is maximal in such a way that tstr +m · sl ≤
tpulse holds. Each window with local time tstr contains

{a⟨t⟩ | tstr − wr ≤ t ≤ tstr} (5)

where a⟨t⟩ denotes the abox assertion with associated time-
stamp t. A given STARQL query should return the same re-
sult for each input, as defined, regardless of whether the in-
put is a stream or a historic dataset. Therefore, tstr ≤ tpulse
is only allowed while processing historic data and streams
in near real time (Kharlamov et al. 2019). If tstr > tpulse
holds, then a window could contain abox assertions with an
associated timestamp t > tpulse, which is impossible while
processing streams in near real-time.

Each abox at each window is grouped into mini-
bags depending on a sequencing method SEQUENCE BY
seqMethod, such as the standard sequencing StdSeq.
StdSeq groups each abox assertion a⟨t⟩ with the same
timestamp t into the same mini-bag. An example is depicted
in Figure 2, at where only those abox assertions are pro-
cessed that fall under the dashed areas of the windows.

The having and where part of a STARQL query is trans-
formed into SQL as described, at where the concept System
is rewritten in our example query into Sensor and finally
the query is unfolded into SQL. The transformed SQL query
needs to be applied on each grouped set of virtual abox as-
sertions, depending on the pulse and window declaration of



Qrew Qunf

Qunf (x, y) = SELECT x, y FROM
Sensor(x) (SELECT name AS x FROM sensor) m1
∧ NATURAL JOIN

madeBySensor(o, x) (SELECT stream.obs AS o, sensor.name AS x FROM stream, sensor
WHERE stream.sensor = sensor.id) m2

∧ NATURAL JOIN
hasSimpleResult(o, y) (SELECT stream.obs AS o, stream.value AS y FROM stream) m3;

Table 2: Unfolding of query Qrew into Qunf

a STARQL query. However, historic data stored in a Post-
greSQL database is not grouped already into finite sets de-
pending on a window operator part of a STARQL query and
PostgreSQL does not provide a time based window operator,
matching the semantics of our STARQL window operator. In
the next section we describe how we implement an efficient
STARQL window operator that can be executed on a Post-
greSQL database. Our implementation can be adapted easily
to be executable on other database implementations as well,
such as Apache Spark.

Efficient STARQL Window Operators
The first implementation of transforming STARQL queries
into SQL (Özçep, Möller, and Neuenstadt 2014; Neuen-
stadt 2017), is based on the creation of different relations
depending on the pulse, window, and sequencing strategy.
These relations are joined with historic data, referred by
a STARQL query, to group the abox assertions of historic
data stored in a PostgreSQL database into finite sets. This
approach only makes use of SQL which leads to compati-
bility with other DBMS implementations, providing a stan-
dardized SQL interface. As a drawback, many joins are in-
volved and disk space is needed for intermediate results.
Every abox assertion of historic data needs to be grouped
into one or more sets depending on a window declaration
of a STARQL query. Instead of creating a new relation for
each grouped set, all grouped sets are stored in one sin-
gle relation. Therefore, a window id is needed to distin-
guish between every grouped set. Additionally, an abox id
column is created for intra abox sequencing at each win-
dow. More specifically, a relation groups(wid, abox,
left, right) is created via SQL depending only on the
range and slide of a window, and frequency of the pulse as
declared by a STARQL query. Column wid is a numeri-
cal unique identifier for each window. Relation groups is
joined on relation stream with left <= timestamp
AND timestamp <= right. Column abox is a unique
numerical identifier assigned to each timestamp in each win-
dow. The unfolded where and having part of a STARQL
query is executed on relation groups. Finally, the result is
joined with relation pulse(timestamp, wid) for as-
sociating each window with the timestamp declared by the
frequency of a STARQL query.

A new idea presented in this paper is to optimize queries
that use standard sequencing StdSeq. Instead of using
a window id wid to distinguish grouped sets stored in-
side a single relation, we use for each window the current

time tpulse, depending on the pulse declaration PULSE as
START = st, END = end, FREQUENCE = fr, because it
is needed anyway in the output. An additional column for
abox ids is omitted, as the existing timestamp of an abox as-
sertion is sufficient for intra abox sequencing, using standard
sequencing StdSeq, where each abox assertion with the
same timestamp is grouped into the same mini-box. There-
fore, instead of creating an extra column for the abox ids,
the existing column of timestamps associated with the abox
assertions is used. The number of intermediate relations is
reduced to a single one, containing the grouped sets of abox
assertions, to reduce disk space needed for intermediate re-
sults and to reduce the number of required joins. This new
idea leads to considerably shorter processing times (as can
be seen in the next section).

Even though the new idea leads to shorter processing
times, disk space is needed for intermediate results. For
omitting intermediate results at all and for reducing the
processing times further, we forgo to transform STARQL
queries into plain SQL. Instead, queries are transformed
into a combination of SQL and procedural code based on
PL/pgSQL.

The rewritten and unfolded where and having part of
a STARQL query is executed on each window, using
PL/pgSQL, as listed in Algorithm 1. Here, Qunf is the
rewritten and unfolded query Q, st/end the start/end at
where the stream is being processed, fr the frequency, wr
the range of the windows, and sl the slide of the windows.
No window id, abox id, or an intermediate relation is re-

Algorithm 1 Execute SQL
1: procedure EXECUTESQL(Qunf , st, end, fr, wr, sl)
2: tstr ← st
3: while tstr ≤ end do
4: we← tstr − (tstr mod sl)
5: ws← we− wr
6: PROCESSWINDOW(Qunf , stream[ws : we])
7: tstr ← tstr + fr

quired. Processing times are reduced and are linear instead
of polynomial as it is the case for the two previous ap-
proaches.

For further reducing the time required it takes to pro-
cess each window, the procedure listed in Algorithm 1 is
executed in parallel. That allows for answering STARQL
queries horizontally scaled across all cores available on a



node or even across several nodes, if the data is stored in an
appropriately distributed manner.

Finally, we transform STARQL queries to plain SQL that
can be executed on Apache Spark (Zaharia et al. 2016). As
well as PostgreSQL, Apache Spark lacks of a window op-
erator matching the semantics of the STARQL window op-
erator. The available window operators do not allow for ex-
ecuting arbitrary SQL queries that originate from the trans-
formation of the where and having part of a STARQL query
on each grouped set of historic data. Hence, we reuse our
approach of transforming STARQL into a plain SQL query,
at where no window and abox ids are generated, for using
Apache Spark as a back-end.

Evaluation
We evaluate our approach based on two different historic
datasets. One is synthetic and the other one stems from real
world material sciences:
Synthetic SSN-data The data has the same schema as

listed in Table 1, and queries are answered with respect
to the tbox listed in (1) and virtual aboxes listed in (2).

Real-world data The data stems from use cases in mate-
rials sciences. Those use cases were developed in the
project SmaDi1 aiming at the digitalization of smart ma-
terials. The use cases involve different types of queries
possible, ranging from parameter values at specific time
points, e.g., steps in an experiment, to input or output val-
ues of models and it is also possible to query values cal-
culated on-the-fly based on user defined functions which
complicates the query answering additionally. The data
resides in a PostgreSQL-database and is accessed via an
ontology incorporating approximately 230 classes and 30
relations and 600 axioms in total.

The evaluation results are similar for the synthetic and the
real-world data. For visualization, in the following, the syn-
thetic data is used for the general evaluation, as the size of
the data and the number of observations per time step can
be chosen arbitrarily and thus our approaches can be tested
under different conditions.

We evaluate all our presented approaches on synthetic
data, at where 20 sensors made minute wise observations
300 days long and measure of how long it takes to process
the data given the STARQL query listed in (6).

SELECT x

FROM stream [NOW - 20m, NOW] -> 1m

WHERE System(x) ∧madeBySensor(o, x)

HAVING FORALL ti, tj, y1, y2

IF hasSimpleResult(o, y1)⟨ti⟩
AND hasSimpleResult(o, y2)⟨tj⟩
AND ti < tj THEN y1 <= y2

(6)

For simplicity, the frequency fr is set equal to the slide sl
of the window. The query returns all sensors x that have ob-
served monotonic increasing values in the last 20 minutes at
each time step in the data.

1https://www.materialdigital.de/project/10

Figure 3: Processing times

The node we use in our experiments has a single AMD
Ryzen 5 3600 6-Core Processor with up to 3.6 GHz, 64
GB-Ram, running Ubuntu 22.04, PostgreSQL 14.6, Apache
Spark 3.3.1, Apache Hadoop 3.3.4, and Apache Hive 3.1.3.
We use Ontop 5.0.1 (Calvanese et al. 2017) for rewriting
and unfolding queries with respect to the ontology O listed
in (1) and (2). Results are depicted in Figure 3. Surpris-
ingly, all four approaches based on the PostgreSQL back-
end are faster than using Apache Spark. The processing of
stream data that has a length of more than 152 days, using
Apache Spark, was terminated after more than three hours.
Processing times could be reduced by using more than one
node, as Apache Spark is able to scale across many nodes.
Although it is disadvantageous to require more computing
power, more than one node can be used.

Our new approach of transforming STARQL queries into
plain SQL supersedes the old approach at where window
and abox ids are generated. However, both approaches grow
polynomially in terms of the time it takes to process the data,
and space required for storing intermediate results is enor-
mous. Transforming STARQL queries into a combination of
SQL and PL/pgSQL leads to processing times that grow lin-
early with increasing size of the data and space required for
intermediate results is bound to the maximum size of data
fitting within the range of a specific time window. Process-
ing times are further reduced by executing the PL/pgSQL
function in parallel. In case of processing 300 days of data,
the old SQL approach needs 111 minutes and the combina-
tion of parallel SQL and PL/pgSQL only three minutes.

STARQL embeds SPARQL and refers to DL-Lite ontol-
gies in OWL 2 QL format. In case of the STARQL query
listed in (6), we use Ontop for rewriting and unfolding em-
bedded SPARQL queries, such as the query listed in (7).

Q(x, o) = System(x) ∧madeBySensor(o, x) (7)

If we extend the STARQL query listed in (6) to the one in
(8), it yields the exact same results, as all sensors are hosted



by a platform, and a platform is always part of a deployment.

SELECT x

FROM stream [NOW - 20m, NOW] -> 1m

WHERE

System(x) ∧madeBySensor(o, x)

∧ isHostedBy(s, p)

∧ inDeployment(p, d) ∧Observation(o)

∧ Platform(p) ∧Deployment(d)

HAVING FORALL ti, tj, y1, y2

IF hasSimpleResult(o, y1)⟨ti⟩
AND hasSimpleResult(o, y2)⟨tj⟩
AND ti < tj THEN y1 <= y2

(8)

In case of the extended SPARQL query listed in (8), it is not
wrong to use Ontop for rewriting the SPARQL query listed
in (9) to SQL.

Q(x, o, s, p, d) = System(x)

∧madeBySensor(o, x) ∧ isHostedBy(s, p)

∧ inDeployment(p, d) ∧Observation(o)

∧ Platform(p) ∧Deployment(d)

(9)

However, variables s, p, and d are unbound in the
STARQL query, and not further required in the result set
of the SPARQL query. Ontop returns a SQL query at
where relations stream, sensor, assemblypart, and
assembly are joined. If we rewrite query Q(x, o, s, p, d)
to Q′(x, o) the result is the same and Ontop returns a SQL
query at where only the relation stream is referred in the
query without any join at all. Answering Q′(x, o) requires
only x and o which are mapped to the relation stream and
with the constraints in the database listed in Table 1, Ontop
can conclude automatically that a sensor only exists iff it is
part of an assemblypart, and that an assemblypart
only exists if it is part of an assembly. Depending on
the size of the historic data to be processed, and the win-
dow range and slide of the STARQL query, such optimiza-
tion can make a huge difference. Processing one week of
stream data at where 20 sensors made minute-wise obser-
vations with the STARQL query listed in (8) needs 53 min-
utes to be processed when not optimized. If the use of On-
top is optimized, then it takes only 16.55 seconds to pro-
cess the query. This can also be observed for the real-world
data set, where it takes 12.01s without such optimizations,
and 11.07s with such optimizations. Though, the data set is
smaller than the synthetic one and has a more complex struc-
ture, thus, the effect between optimized and not-optimized
query is not as big as for the synthetic data, but even for
this, an advantage can be seen which will increase when
more data is used as input. Hence, we use Ontop for trans-
forming SPARQL queries, embedded in a STARQL query,
at where only bound variables are added to the SELECT part
of a SPARQL query. That not only reduces the time required
for processing historic data, additionally it reduces the time
required for processing streams as well, as optimizations are
applied for each window.

Related Work
Ever since the formal foundations of stream processing has
been laid down in the database community with the query
language CQL (Arasu, Babu, and Widom 2006), DSMSs
with CQL languages have become a background engine and
a blueprint for processing high-level streams w.r.t. back-
ground knowledge. For many recent stream engines (as ours
based on STARQL) that background knowledge is an on-
tology represented in OWL 2 or a description logic: exam-
ples are Streaming-SPARQL (Bolles, Grawunder, and Ja-
cobi 2008), SPARQLstream (Calbimonte et al. 2012), C-
SPARQL (Barbieri et al. 2010), CQELS (Phuoc et al. 2011),
RSP-QL (Dell’Aglio et al. 2015), EP-SPARQL (Anicic et
al. 2011), TEF-SPARQL (Kietz et al. 2013), (Borgwardt,
Lippmann, and Thost 2015). Other high-level stream en-
gines rely on background knowledge that is rule-based. In
particular regarding the latter, recent approaches consider
representations formalisms that extend Datalog with tempo-
ral or window operators following early work on deductive
temporal databases (Chomicki and Imieliński 1988; Abadi
and Manna 1989; Toman, Chomicki, and Rogers 1994): ex-
amples are DatalogMTL (Brandt et al. 2017; Wałega et al.
2019; Walega, Kaminski, and Grau 2019; Ronca et al. 2022),
Streamlog (Zaniolo 2012) and LARS/Laser (Bazoobandi,
Beck, and Urbani 2017; Beck, Dao-Tran, and Eiter 2018).
As high-level stream processing w.r.t. a background knowl-
edge adds a further (for sure: useful) abstraction level to the
overall system, it leads to additional challenges. In this paper
we demonstrate how to cope with the overhead generated by
such abstractions in a feasible way, namely by describing
a generic transformation of the window mechanism and by
exploiting parallelism. Further challenges regarding the pro-
duced overhead are space requirements dealt with under the
term “memory-boundedness” (Arasu et al. 2004). Based on
criteria of (Arasu et al. 2004), in (Schiff and Özçep 2020)
bounded memory criteria for streams with application time
are defined that rewritten STARQL queries have as input.
Not only processing times are enormously reduced for a spe-
cific class of rewritten STARQL queries with an unbounded
window, additionally only a bounded amount of memory is
required during processing.

Conclusion and Future Work
A STARQL query is answered by transforming it into a
query which can be executed at a back-end system at where
data is stored/received. This approach is more appropriate
than writing a query over diverse, rapidly changing and dis-
tributed back-end databases manually. As shown in this pa-
per, rewriting and unfolding needs to be done with care, as
otherwise processing times can be too long for an agent to
make decisions. We were able to reduce processing times
from hours to minutes or even seconds by optimizing var-
ious steps during the transformation of a STARQL query.
The size of intermediate results depends on the window op-
erator of a STARQL query and no longer on the data itself,
and grouping data into finite sets based on the window op-
erator no longer requires joins over the complete input data
that can be very large.
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Lange, C.; and Heflin, J., eds., The Semantic Web – ISWC
2017, 87–103. Cham: Springer International Publishing.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. Lars: A logic-
based framework for analytic reasoning over streams. Arti-
ficial Intelligence 261:16–70.
Bolles, A.; Grawunder, M.; and Jacobi, J. 2008. Streaming
sparql - extending sparql to process data streams. In Bech-
hofer, S.; Hauswirth, M.; Hoffmann, J.; and Koubarakis, M.,
eds., The Semantic Web: Research and Applications, volume
5021 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg. 448–462.
Borgwardt, S.; Lippmann, M.; and Thost, V. 2015. Tempo-
ralizing rewritable query languages over knowledge bases.
Journal of Web Semantics 33:50–70. Ontology-based Data
Access.
Brandt, S.; Kalayci, E. G.; Kontchakov, R.; Ryzhikov, V.;
Xiao, G.; and Zakharyaschev, M. 2017. Ontology-based
data access with a horn fragment of metric temporal logic.
In Singh, S. P., and Markovitch, S., eds., Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., 1070–
1076. AAAI Press.
Calbimonte, J.-P.; Jeung, H.; Corcho, O.; and Aberer, K.
2012. Enabling query technologies for the semantic sensor
web. Int. J. Semant. Web Inf. Syst. 8(1):43–63.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Fam-
ily. Journal of Automated reasoning 39(3):385–429.
Calvanese, D.; Cogrel, B.; Komla-Ebri, S.; Kontchakov, R.;
Lanti, D.; Rezk, M.; Rodriguez-Muro, M.; and Xiao, G.
2017. Ontop: Answering SPARQL queries over relational
databases. Semantic Web 8(3):471–487.
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