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Abstract

We consider an intelligent agent that receives a continuous in-
put from a signal-generating system and aims for estimating
the discrete latent state of that system. The agent includes a
switching linear dynamical system modeled as a hybrid fac-
tor graph for performing state estimation by determining the
inference algorithm. We investigate the agent’s performance
in relation to two Gaussian mixture reduction methods re-
stricting Gaussian mixture growing while message passing,
namely, the naive pruning implemented in the past and the
realization of the Kullback-Leibler (KL) discrimination based
approach defined by Runnalls (2007). For evaluation, we use
simulated data provided with various signal-to-noise ratios.
Reviewing the metrics, the agent reaches an improvement
in state estimation accuracy by using the KL discrimination
based method with minimally increasing computational ef-
fort. The findings of our work let us take one step towards
establishing intelligent systems for modeling real-world sys-
tems with switching behavior capable to analyze noisy data
sets.

1 Introduction
Agents used in artificial intelligence often reach their capa-
bility limits due to data-heavy computations. To avoid over-
loading their processing capabilities, they may use approxi-
mations which may lead to a critical loss of information. In
this context, we consider an agent investigating a real-world
switching system to assist humans in planning actions in the
future. The system generates a continuous signal based on
its internal states. The agent receives this signal as continu-
ous sensor input data. The agent then aims at identifying the
discrete switches of the signal-generating system in the en-
vironment over time by estimating the system’s latent state
using the signal as evidence. The performance of the agent
is measured based on accuracy and computation time. The
mathematical model the agent uses for state estimations in
this scenario is a hybrid factor graph that models a switch-
ing linear dynamical system (SLDS). The discrete states be-
tween which the system switches are modeled as categories
of a discrete random variable and the continuous inputs as
Gaussian distributions. Initially, for every discrete category
in the discrete random variable, a single Gaussian distri-
bution models the continuous latent state. While answering
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queries on the hybrid factor graph using an inference algo-
rithm such as so called message passing, the initial Gaus-
sians become Gaussian mixtures by multiplication and sum-
mation. In every time step, the number of Gaussian mixture
components grows in an exponential way causing the agent
to reach its capability limits and no longer be able to perform
state estimation in a reasonable amount of time. To keep the
agent’s performance at a maximum, the exponential growth
of the Gaussian mixtures has to be curbed by a way of Gaus-
sian mixture reduction (GMR). Stender et al. (2021) use a
naive pruning strategy to discard Gaussian mixture compo-
nents of the Gaussian mixture that are presumed insignifi-
cant by deleting those Gaussian components with smallest
weights. However, such a strategy can lead to fatal informa-
tion loss as a Gaussian component containing a small weight
could still carry an important amount of information in the
Gaussian mixture. For example, a Gaussian component may
contain a small weight and at the same time a small variance,
implying a peaky Gaussian curve and thus a high informa-
tion content in the Gaussian mixture. If, based on the small
weight, this Gaussian component is removed from the mix-
ture, the mixture loses a significant amount of information.

In this paper, we transfer the merging GMR method de-
veloped by Runnalls (2007) for multi-target tracking to the
context of artificial intelligence, specifically an agent inves-
tigating a switching system. The merging GMR method is
based on Kullback-Leibler (KL) discrimination, considering
both the weights and the means and variances of the Gaus-
sian mixture components. In particular, for deciding which
pairs to merge, the dissimilarity between pairs of Gaussian
components is calculated (Runnalls 2007). We investigate
this method’s suitability for maximizing the agent’s perfor-
mance regarding accuracy and computation time. We apply
the merging GMR to the inference algorithm on the SLDS
modeled in hybrid factor graphs, show the increase of accu-
racy and consider its computational effort in an example on
simulated data.

The remainder of this paper is structured as follows: In
Section 2, we cover related work regarding GMR. After-
wards, we briefly describe functionalities of hybrid factor
graphs, the modeling of the SLDS based on the work of
Stender et al. (2021), and the naive pruning approach. Sec-
tion 4 deals with the implementation of Runnalls’ merging
GMR (Runnalls 2007) in hybrid factor graphs. We evaluate



the benefit for the state estimation of the two GMR methods
in a simulation example on the SLDS modeled in hybrid fac-
tor graphs in Section 5. We end this work with a summary
of the findings, and conclude with future investigations.

2 Related Work
There are many approaches in the literature that address the
challenge of reducing the number of Gaussian mixture com-
ponents in Gaussian mixtures while preserving as much in-
formation as possible.

Assa and Plataniotis (2018) identify and merge similar
Gaussian components using an averaging method based on
the Wasserstein distance (WD) with the goal of preserving
the geometric shape of the mixture. Williams and Maybeck
(2003) use the Integral Square Difference (ISD) cost mea-
sure in a cost-function based method for GMR. The ISD dis-
tance enables a closed form evaluation of the cost function
of GMR. Runnalls (2007) applies an upper bound on the KL
discrimination as a measure of similarity to decide which
Gaussian components to merge to reduce the Gaussian mix-
ture to the desired number of components. In comparison
to the KL discrimination based reduction method, the WD-
based method reaches higher similarity to the original Gaus-
sian mixture but results in a higher computational com-
plexity. The ISD-based approach of Williams and Maybeck
(2003) leads to 30% greater dissimilarity between the orig-
inal and merged Gaussian mixture compared to the KL dis-
crimination based merging method (Runnalls 2007). Com-
paring upper bound measures based on ISD, Square Dis-
tance (SD), and KL discrimination, Valverde, Tortós, and
Terzija (2012) draw the conclusion that the KL upper bound
discrimination is most efficient in terms of computational
demands and accuracy.

Due to the findings presented in the literature, we have
decided to apply Runnalls’ merging GMR method for pre-
venting exponential growth of the Gaussian mixtures while
passing messages over the hybrid factor graph.

3 Gaussian Mixture Reduction in the Hybrid
Factor Graph Model of the SLDS

In this section, we give an insight into the agent’s mathemat-
ical model used for performing state estimation over time.
We briefly introduce the functionalities of factor graphs, deal
with the modeling of an SLDS as a hybrid factor graph, and
depict the naive pruning by Stender et al. (2021). The fol-
lowing description of the functionalities of factor graphs is
based on the work of Loeliger et al. (2007).

Fundamentals on Factor Graphs Factor graphs belong
to the set of probabilistic graphical models, which encode
a joint probability density function (JPDF) over all vari-
ables in a model as a product of local functions, which
depend only on a subset of variables (Kschischang, Frey,
and Loeliger 2001), exploiting the conditional independence
structure of the probability density function. Such models
mainly fulfill the goal to determine the marginal probabil-
ity density function (MPDF) of a subset of variables given
the joint probability density function (JPDF) encoded by the
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Figure 1: Graphical representation of Eq. (1) with −→µ as for-
ward and←−µ backward messages on the edges towards X3,
where the sub-graphs are highlighted as dashed boxes.

model. Instead of solving the integral over all variables for
computing MPDFs, we can apply message passing, which
exploits the conditional independence structure of the prob-
ability density function, integrating variables in messages
without ever realising the full joint.

In Fig. 1, a factor graph for the factorized JPDF

f(x1, . . . , x7) = f1(x1)f2(x2)f3(x1, x2, x3)f4(x4) (1)
· f5(x3, x4, x5)f6(x5, x6, x7)f7(x7)

of continuous random variables X1, . . . , X7 is shown, where
lowercase xi refer to values each variable can take. The vari-
ables in factor graphs label the edges and the functions to
apply to the variables – implying mathematical operations
– are represented by nodes. The messages µ on the edges
of the factor graph are determined by message passing. For
setting up the message passing algorithm, we use the sum-
product rule: For acyclic factor graphs, messages are com-
puted from leaves inward, where the direction of the mes-
sage is indicated by the definition and the mathematical op-
eration of the used nodes.

The MPDF for the variable/edge X3 in Fig. 1 is deter-
mined as the product of the forward message −→µ C(x3) and
the backward message←−µ D(x3) on the edge X3:

f3(x3) ∝ −→µ C(x3)
←−µ D(x3) (2)

The repeated application of the sum-product rule allows to
combine nodes to sub-graphs (dashed boxes in Fig. 1) by
eliminating variables.

Generally, the use of various types of distributions as mes-
sages is possible in factor graphs. Loeliger (2004) describes
the basic nodes for the use of discrete or continuous (Gaus-
sian) variables and enables the state estimation of either dis-
crete or continuous latent system states.

SLDS in Hybrid Factor Graphs For modeling switching
systems and allowing for estimating discrete and continu-
ous latent system states, discrete and continuous variables
need to be combined in so called hybrid factor graphs. Sten-
der et al. (2021) model the SLDS – a general model of a
switching system with wide area of application – in hybrid
factor graphs, which represents an expansion of the findings
of Loeliger (2004). They combine discrete and continuous
variables to so-called cluster messages, which consist of a
discrete and a continuous part, and define hybrid nodes en-
abling message passing with hybrid cluster messages. The



cluster message – representing the combined distribution of
the discrete random variable Ht and the continuous normal
distributed random variable Xt – is defined as a tuple of the
parameters weights w

(l)
Xi

, means m
(l)
Xi

, and variances V
(l)
Xi

,
depicting l sums of n Gaussian components, where i repre-
sents the respective Gaussian component in the sum, and l is
the category of the discrete variable Ht. The semantics of a
cluster message is given by:

pX,H(x, h) =
∑
i,l

w
(l)
Xi

δ
(
h− h(l)

)
N
(
x;m

(l)
Xi

, V
(l)
Xi

)
, (3)

with w
(l)
Xi
≥ 0.

Index l refers to the category of the discrete variable Ht.
Each discrete category l corresponds to a Gaussian mixture
in the cluster message (Stender et al. 2021).

Figure 2 shows the SLDS modeled as hybrid factor
graph, where blue dashed edges/nodes are discrete, and red
edges/nodes are continuous variables/functions (Stender et
al. 2021). The observed variable is depicted as Ŷt and mod-
eled as Gaussian. The name Ht denotes the discrete and the
name Xt the continuous latent variable, which are combined
into the so-called cluster message. The continuous part of
the cluster message is modeled as a Gaussian mixture, which
is defined as a tuple of the parameters weights wXi , means
mXi

, and variances VXi
, representing a sum of n Gaus-

sian components, where i represents the respective Gaussian
component in the sum. The semantics of a Gaussian mixture
is:

pX(x) =

n∑
i=1

wXi · N (x;mXi , VXi), with wXi ≥ 0. (4)

The node pHt,Xt|Ht−1,Xt−1
contains the transition model for

the discrete as well as the continuous part of the cluster mes-
sage, the node pYt|Ht,Xt

contains the measurement model –
thus the confidence in the measurement – and the node high-
lighted as ”=” is called equality node, which can be under-
stood as a branching point that enables the use of a variable
in more than two nodes (Loeliger 2004). The variables are
all indexed by a time step t and thus make up a time slice.
For an interval of time points [t1, t2], the time slice can be in-
stantiated by replacing t with values within [t1, t2]. Arrows
highlight the direction of the arithmetic operation of nodes.
Nevertheless, the factor graph is still an undirected graph.

Exponential Gaussian Mixture Growing over Time To
achieve the agent’s goal of estimating the discrete latent sys-
tem state of the signal-generating system, the message pass-
ing algorithm as the inference algorithm is run on the hy-
brid factor graph. The agent copies the hybrid factor graph
(Fig. 2) time slice and receives the continuous sensor input
as a signal in the node Ŷt in every time step t. By querying
the inference algorithm for the distribution of the estimated
latent states, the agent invokes the application of the sum-
product rule from the leaves inwards and the calculation of
the estimation of the discrete and continuous latent state on
the edge H ′′

t , X
′′
t .
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Figure 2: An SLDS modelled with a hybrid factor graph.

During message passing, due to the distributive property,
the cluster message processing (multiplication and summa-
tion) results for each category l in a combination of every
Gaussian component iA in the Gaussian mixture of clus-
ter message A with every Gaussian component iB in the
Gaussian mixture of cluster message B. Thus, the combined
Gaussian mixtures in the cluster messages grow in an expo-
nential way over time, i.e., with factor l in every time step
t with l referring to the number of categories in the discrete
random variable, resulting in increased computational costs
for the agent. To ensure maximum performance of the agent,
applying GMR methods is necessary to slow down the ex-
ponential growth of the Gaussian mixtures over time. The
goal is to find an approximation of the original Gaussian
mixture with fewer components while preserving as much
information as possible and implement it as a so-called RE-
DUCE function as part of the inference algorithm enabling a
reduction induced by the agent at any time during message
passing.

Naive Pruning Stender et al. (2021) use as the REDUCE
function a naive pruning method, which discards Gaussian
components of the Gaussian mixture presumed insignificant
depending on the weight of the Gaussian component. For-
mally, given a Gaussian mixture with n Gaussian compo-
nents and for preserving k (with k < n) Gaussian compo-
nents, the naive pruning method searches for the Gaussian
components with the smallest weights and discards them
until only k Gaussian components remain in the Gaussian
mixture. Afterwards, the weights of the remaining Gaussian
components are re-normalized. On the one hand, discarding
Gaussian components in this naive fashion has the advan-
tage of being fast. However, on the other hand it can be a
crude approximation and thus lead to a huge loss of informa-
tion. Specifically, if relevant Gaussian components, which
includes those with small variance, are discarded because of
their minimal weight, the loss of information increases.

As mentioned before, the REDUCE function can be called
at any time in the inference algorithm. Stender et al. (2021)
use the naive pruning method as the REDUCE function and
apply it in every time step t to the cluster messages after
their combination on the edge H ′′

t , X
′′
t , because the edge

connects the time steps t and the combination in the equality



node lets the number of Gaussian components in the Gaus-
sian mixtures grow in an exponential way.

Even though an improvement in computation time is
achieved using this method by Stender et al. (2021), they
still accept a non-negligible loss of information due to the
approximation. The objective of our work is to present an
improved REDUCE function modeled as a KL discrimination
based merging GMR, decreasing the loss of information.

4 Implementation of an Improved Gaussian
Mixture Reduction

In this section, we describe our improved merging GMR
based on the work by Runnalls (2007) using KL discrim-
ination. In particular, we show how to implement the KL
discrimination based merging GMR as part of the REDUCE
function for the inference algorithm on the hybrid factor
graph in Fig. 2, before evaluating our new approach in the
next section.

The purpose of replacing the naive pruning method with
the merging method lies in minimizing the loss of infor-
mation during GMR at the expense of a limited amount
of computation time, for which the merging method poses
as the most promising from the literature. The desired size
of the Gaussian mixture is defined by k, analogous to the
naive pruning method. In the merging method, the objec-
tive is to keep the KL discrimination between the original n-
component Gaussian mixture and the merged k-component
(with k < n) Gaussian mixture as small as possible. Since
there is no closed-form expression for the KL discrimination
of one Gaussian mixture to another, Runnalls (2007) makes
use of an upper bound on the KL discrimination. This results
in the dissimilarity measure B(i, j) in one dimension as

2B(i, j)

wi + wj
= log

[
wi|ij

(
Vi

Vj

)wj|ij

+ wj|ij

(
Vj

Vi

)wi|ij

+ wi|ijwj|ij
(mi −mj)

2

V
wi|ij
i V

wj|ij
j

]
(5)

with

wi|ij =
wi

wi + wj
and wj|ij =

wj

wi + wj
(6)

between two Gaussian components in the Gaussian mixture,
which can be understood as the cost of merging two Gaus-
sian components into one. The indices i and j of the weights,
means, and variances w,m, V depict the moments of the
i−th and j−th component of the Gaussian mixture to be
reduced. Two Gaussian components are merged as follows:

wij = wi + wj (7)

mij = wi|ijmi + wj|ijmj (8)

Vij = wi|ijVi + wj|ijVj + wi|ijwj|ij(mi −mj)
2 (9)

For the reduction to k Gaussian components, the two Gaus-
sian components with the smallest dissimilarity will be
merged iteratively according to Eqs. (7) to (9) until the size

Function 1: Gaussian Mixture Reduction
Input: Gaussian mixture with n Gaussian components,

number k
1: while n > k: do
2: for i in Gaussian Mixture(n) do
3: for j in Gaussian Mixture(n) do
4: Compute B(i, j) ▷ Equations (5) and (6)
5: end for
6: end for
7: Search pair of components with smallest B(i, j)
8: Merge found pair ▷ Equations (7) to (9)
9: end while

10: Normalize weights of Gaussian Mixture(k)
Output: Gaussian mixture with k Gaussian components

of the Gaussian mixture corresponds to k. After complet-
ing the merging task, the weights w of the Gaussian compo-
nents are re-normalized as is done with naive pruning. The
Gaussian Mixture reduction by merging based on the dis-
similarity measure offers a more accurate approximation of
the original Gaussian mixture, because it depends on all mo-
ments of the Gaussian components and not just the weight,
and minimizes the information loss by calculating the merg-
ing costs. In Function 1, the implemented merging GMR
method for the inference algorithm on SLDSs modeled in
hybrid factor graphs is presented as pseudo code.

Analogous to the naive pruning approach of Stender et al.
(2021), the KL discrimination based GMR method is mod-
eled in the REDUCE function and can be called by the agent
at any time in the message passing. The decision on when
to reduce the Gaussian mixtures during inference is an im-
portant one that should not be underestimated. Calling the
REDUCE function too frequently may lead to a blurred state
estimation especially on noisy data. A less frequent reduc-
tion results in low performance indicated by high compu-
tational effort. For increased estimation accuracy and useful
evaluation with respect to the naive pruning approach, in our
work the agent calls the REDUCE function at the same point
in the inference algorithm as it is done in the approach by
Stender et al. (2021) on the edge H ′′

t , X
′′
t (Fig. 2).

Next, we compare the naive pruning method with the
merging method regarding accuracy and computation time
in a case study.

5 Empirical Evaluation
This evaluation focuses on the aspects of accuracy and com-
putation time regarding the agent’s performance using the
merging method versus the naive pruning method in the RE-
DUCE function.

As we are interested in accuracy, we need ground truth
and an identical setup to compare the results of the two GMR
methods against. Therefore, we use simulated data. Further-
more, the use of simulated data ensures that we cover bor-
derline cases such as worst and best case scenarios, which
may not be covered by real data sets.

To evaluate the GMR methods for a real-world system,
which in many cases is a switching system, we need to sim-



ulate a combination of discrete and continuous variables.
We use the inference algorithm on the hybrid factor graph
for evaluating the state estimation on 250 data points over
time implemented with empirical selected parameters. The
measurement signal is created by forward simulation of the
mathematical model of the SLDS, refer to Stender et al.
(2021) for the model definition. The SLDS is simulated with
a discrete latent state that consists of three categories. The
switches between the categories are modeled by switching
process noise mean (µ = −1, 0, 1, with constant standard
deviation σ = 0.01) in the modeled system. The time se-
quence of the switches is given by the preset time sequence
of the discrete state. The continuous transition model in the
transition node pHt,Xt|Ht−1,Xt−1

for cluster messages is de-
fined constantly as A = 0.9 for every discrete category, im-
plying that in the current time step the inference algorithm
takes into account a large amount of information of the pre-
diction from the previous time step. The discrete transition
model in the transition node pHt,Xt|Ht−1,Xt−1

is given by
the following matrix

T =

[
0.990 0.005 0.005
0.005 0.990 0.005
0.005 0.005 0.990

]
(10)

which represents the probability that the system switches be-
tween the discrete categories in the next time step t. We sim-
ulate a system that is more likely to remain in a discrete cat-
egory than to switch between the three categories. The mea-
surement model in node pYt|Ht,Xt

is set as C = 1 for every
discrete category, which implies high trust in the measure-
ments. The measurement noise is modeled with a standard
deviation of σ = 0.8 (mean µ = 0).

In Figs. 3 and 4, exemplary state estimations on simu-
lated data using the naive pruning method by Stender et al.
(2021) and using the merging method presented in this paper
is depicted, respectively. Real-world systems are subject to
uncertainties that must be taken into account already in the
evaluation based on a simulation. We add a signal-to-noise
ratio (SNR) of SNR = 15 to the simulated signal for best
visual representation of the distinction between the estima-
tion results of the two GMR methods.

In both figures, the top plot represents the simulated sig-
nal, which is used as measurements in the node Ŷt in the
hybrid factor graph in Fig. 2. The middle plot shows the real
(simulated) continuous state as solid black line and the re-
sult of the inference algorithm on the hybrid factor graph –
the estimated continuous state – as dashed dark red line. The
bottom plot represents the estimation of the discrete state in
gray scales and the real (simulated) discrete state as solid
blue line. The state estimation for the latent continuous and
discrete states are calculated by the inference algorithm on
the edge H ′′

t , X
′′
t (Fig. 2). The plots in Fig. 3 show more

frequent large artefacts in the estimates of the latent contin-
uous and discrete state than the plots in Fig. 4, which is in-
duced by the loss of information when using the naive prun-
ing GMR.

For analyzing state estimation under uncertainties, we add
different SNRs to the measurement signal and use precision
and recall as metrics for evaluation. We consider the mean
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Figure 3: State estimation on simulated data using the naive
pruning approach as the REDUCE function in the inference
algorithm on the hybrid factor graph of Fig. 2.
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Figure 4: State estimation on simulated data using the merg-
ing method as the REDUCE function in the inference algo-
rithm on the hybrid factor graph of Fig. 2.

deviation of the difference of the state estimation with the
naive pruning and the merging method in percentage points
depending on the number (#) of preserved Gaussian com-
ponents and SNR as shown in Table 1. It turns out that pre-
serving only two Gaussian components in the Gaussian mix-
ture, the merging GMR enables up to 2.47 percentage points
more precise state estimation whereas the accuracy for four
or eight preserved Gaussian components is similar with the
naive pruning. The reason for the more precise state estima-
tion in the setting with two preserved Gaussian components
is that the fewer Gaussian components are retained, the less
information is retained. Reducing the Gaussian mixture to
two Gaussian components by discarding Gaussian compo-
nents leads to an increased loss of information. In the case of
preserving four or eight Gaussian components in the Gaus-
sian mixture, both methods lead to qualitatively suitable re-
sults. Since preserving a high number of Gaussian compo-
nents results in higher computational costs, in practice, the



SNR:
# :

2 4 8

15 2.47 0.47 0.22
20 1.98 0.15 0.19
25 2.12 0.14 0.11
30 1.75 0.10 0.09
35 1.51 0.18 0.18
40 1.99 0.18 0.08
45 1.55 0.15 0.10
50 1.76 0.18 0.07
55 2.29 0.17 0.16
60 2.05 0.23 0.15

Table 1: Evaluation of state estimation accuracy for differ-
ent SNR settings and numbers of preserved Gaussian com-
ponents.

GMR:
# :

2 4 8

Pruning 12.04s 44.28s 389.51s
Merging 13.20s 49.95s 442.47s

Ratio 1.096 1.128 1.136

Table 2: Evaluation of computational time of both GMR
methods for different numbers of preserved Gaussian com-
ponents.

goal is to preserve as few Gaussian components as possible.
Table 2 depicts the computational times of the GMR

methods naive pruning and KL discrimination based merg-
ing depending on the number of preserved Gaussian com-
ponents, which shows that the merging method takes more
time but only at a factor of around 1.1.

In summary, there is a trade-off between computational
costs and accuracy but the more accurate state estimation
costs only a factor of 1.1 of computing time, which is a rea-
sonable trade-off. Thus, we succeed in avoiding information
loss without bringing the agent to the limits of its computa-
tion capabilities. Additionally, the new merging GMR pro-
vides more accurate state estimation results independent of
the SNR.

6 Conclusion
This paper presents an improved Gaussian mixture reduction
modeled as a REDUCE function in the inference algorithm
used on a hybrid factor graph modeling a switching linear
dynamical system. The improved reduction method is based
on KL discrimination and achieves better accuracy by con-
sidering all moments of Gaussian components. Due to the
modularity of factor graphs, the merging GMR method can
be used in any kind of hybrid factor graph without adjust-
ment. The evaluation based on a simulated data set equipped
with various SNRs shows a higher state estimation accu-
racy using the KL discrimination based merging GMR, es-
pecially while reducing the Gaussian mixture to two Gaus-

sian components at the expense of a increased computational
time. Thus, we have taken another step towards developing
intelligent systems that let us model switching systems and
now perform state estimation with higher accuracy.

For future work, we are interested in dealing with apply-
ing the findings of this work to real-world data and advanc-
ing the inference algorithm by implementing automated pa-
rameter learning in hybrid factor graphs.
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