
Faster Graph Algorithms Through1

DAG Compression2

Max Bannach Envelope3

European Space Agency, Advanced Concepts Team, Noordwijk, The Netherlands4

Florian Andreas Marwitz Envelope5

Institute of Information Systems, Universität zu Lübeck, Germany6

Till Tantau Envelope7

Institute for Theoretical Computer Science, Universität zu Lübeck, Germany8

Abstract9

The runtime of graph algorithms such as depth-first search or Dijkstra’s algorithm is dominated10

by the fact that all edges of the graph need to be processed at least once, leading to prohibitive11

runtimes for large, dense graphs. We introduce a simple data structure for storing graphs (and12

more general structures) in a compressed manner using directed acyclic graphs (dags). We then13

show that numerous standard graph problems can be solved in time linear in the size of the dag14

compression of a graph, rather than in the number of edges of the graph. Crucially, many dense15

graphs, including but not limited to graphs of bounded twinwidth, have a dag compression of size16

linear in the number of vertices rather than edges. This insight allows us to improve the previous17

best results for the runtime of standard algorithms from quasi-linear to linear for the large class of18

graphs of bounded twinwidth, which includes all cographs, graphs of bounded treewidth, or graphs19

of bounded cliquewidth.20

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory21

of computation → Data structures design and analysis; Theory of computation → Parameterized22

complexity and exact algorithms23

Keywords and phrases graph compression, graph traversal, twinwidth, parameterized algorithms24

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.4425

Funding Florian Andreas Marwitz: The research for this paper was funded by the Deutsche26

Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy27

– EXC 2176 “Understanding Written Artefacts: Material, Interaction and Transmission in Manuscript28

Cultures”, project no. 390893796. The research was conducted within the scope of the Centre for29

the Study of Manuscript Cultures (CSMC) at Universität Hamburg.30

© Max Bannach, Florian Andreas Marwitz, and Till Tantau;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov; Article No. 44;
pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.bannach@esa.int
https://orcid.org/0000-0002-6475-5512
mailto:marwitz@ifis.uni-luebeck.de
https://orcid.org/0000-0002-9683-5250
mailto:till.tantau@uni-luebeck.de
https://orcid.org/0000-0002-3946-8028
https://doi.org/10.4230/LIPIcs.STACS.2024.44
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Faster Graph Algorithms Through DAG Compression

1 Introduction31

Graph traversal or graph searching is a fundamental subroutine in algorithmic graph theory.32

Given a directed graph (digraph) and a source vertex, the task is to explore the graph33

following a predefined strategy. Two famous incarnations of such algorithms are depth-first34

search (dfs) and breadth-first search (bfs), which, as the names suggest, explore the graph35

by following long paths first or by unraveling the graph layer by layer. Both algorithms36

have a broad range of applications, including the computation of connected components or a37

topological ordering of the input, identifying separators, testing whether the input is planar,38

finding shortest paths, computing maximum flows, and many more [10]. They are also central39

in more applied fields and, for instance, are a crucial building block in garbage collection [8],40

artificial intelligence [15, 20], and web crawling [7, 9]. It is well-known that both algorithms41

can be implemented in time O(m), where m is the number of edges of the input graph [12,42

Chapter 5.5]. In particular, for the class of sparse graphs, where m = O(n), both algorithms43

run in time linear in the number of vertices. Many (but by far not all) natural graph classes44

are sparse, including planar graphs, d-degenerate graphs, series-parallel graphs, or graphs of45

bounded treewidth [17]. In contrast, for very dense graphs, where m = Ω(n2), until recently,46

only relatively trivial examples (such as cliques) were known for which these problems could47

be solved in time o(n2).48

In this paper, we propose a simple data structure, dubbed dag compression, that will49

prove useful in computing a bfs or dfs on dense graphs G = (V, E). The idea is to represent50

complete bipartite subgraphs of G by storing compressed edges, which are just pairs of51

vertices of a dag. Formally, a cluster dag for G is a directed acyclic graph C = (V ′, A)52

whose sinks are exactly the vertices in V and each vertex v′ ∈ V ′ represents a cluster C(v′),53

which is the set of sinks reachable from v′ in C. A compressed edge is a pair (u′, v′) ∈ V ′ × V ′
54

that encodes that there are edges in G from each vertex in C(u′) to each vertex in C(v′);55

and to encode all edges in G, we use a compressed (edge) relation E′ ⊆ V ′ × V ′ such that56

E = C(E′) :=
⋃

(u′,v′)∈E′ C(u′) × C(v′), see Figure 1 for an example. In case G contains57

multiple edge relations E1, E2, . . . , Ek (like red edges and blue edges), we compress each Ei58

separately using a compressed relation E′
i (but using the same cluster dag).59

Crucially, we will show that bfs and dfs can be implemented in a way such that their60

time complexity is linear in the total number |A| + |E′| of edges in the dag compression61

(called the size of the dag compression in the following) and no longer necessarily linear in62

the number |E| of edges of the original graph. Thus, whenever we can find a dag compression63

of a graph whose size is linearly bounded by the number n of vertices in the original graph,64

we can lower the runtime of bfs and dfs from O(m) to O(n).65

A powerful motivation for studying dag compressions comes from its relation to the66

prominent class of graphs of bounded twinwidth. Twinwidth is a structural graph parameter67

introduced in 2020 by Bonnet et al. [5] to measure the distance of a graph from being a68

cograph (detailed definitions will be given later). The importance of this parameter lies in69

the fact that for many graph classes commonly studied in the literature this parameter is70

bounded (so the class of graphs of bounded twinwidth is large), but the model checking71

problem for first-order logic on structures of bounded twinwidth is still fixed-parameter72

tractable (so many problems are still in FPT on this class). However, graphs of bounded73

twinwidth are not only interesting in the context of powerful logical characterizations and74

algorithmic meta-theorems: It was recently shown [4] that in unweighted graphs of bounded75

twinwidth, the single-source shortest path problem (sssp) can be solved in time O(n log n),76

despite the fact that such graphs can easily have Ω(n2) edges. Consequently, the diameter of77

M. Bannach, F. A. Marwitz, and T. Tantau 44:3

1
2

3

4
5

6

7
8

9

Graph G = (V, E),
black edges are in E

1
2

3

4
5

6

7
8

9

10 11 12

13

14

Cluster dag C = (V ′, A),
gray edges are in A

1
2

3

4
5

6

7
8

9

10 11 12

13

14

dag compression (V ′, A, E′),
compressed edges in E′

depicted as double lines

Figure 1 Example of how a dag compression works: For the graph G with vertex set V =
{1, . . . , 9}, one possible cluster dag is the shown C with vertex set V ′ = {1, . . . , 14}. Note that
the sinks of C are exactly the vertices in V . The cluster edges of C, shown as straight gray lines,
determine subsets of V (“clusters”) via reachability: The cluster C(10) of vertex 10 is the set {2, 3};
and C(11) = {4, 5}, C(12) = {5, 6}, C(13) = {4, 5, 6}, C(14) = {8, 9} and note that, for instance,
C(1) = {1}. Pairing C with a relation E′ ⊆ V ′ ×V ′, shown as double lines, yields a dag compression
of G: Each edge (u, v) ∈ E′ adds C(u) × C(v) to E. For instance, the edge (12, 14) ∈ E′ implies
that in E there is a complete bipartite graph with shores C(12) = {5, 6} and C(14) = {8, 9}.

a graph of bounded twinwidth, i.e., the maximum length of a shortest path, can be computed78

in time O(n2 log n), while it is also known [4] that it cannot be computed in time O(n2−ε)79

unless the strong exponential time hypothesis fails. Hence, there is a log(n)-gap between the80

known lower and upper bounds for determining the diameter of graphs of bounded twinwidth.81

One of our main results will be that graphs of bounded twinwidth admit a linear-size82

dag compression. Combining this with our bfs implementation that runs in time linear83

in the size of the dag compression, we see that on graphs of bounded twinwidth, one can84

actually solve sssp in time O(n) and, thus, can solve the diameter problem in time O(n2).85

In particular, we close the gaps in the runtime left open by previous work.86

However, one has to be careful regarding the exact claims of the just-mentioned results: All87

known algorithms working on graphs of twinwidth d, including our algorithm for computing88

a linear-size dag compression of a graph of bounded twinwidth, need access to a so-called89

contraction sequence. Such a sequence is a linear-size witness that a graph has twinwidth d90

and, indeed, they can be used to show that deciding whether a graph has twinwidth d lies91

in NP (and it is known [3] that at least for d = 4 the problem is NP-complete). For instance,92

the algorithm from [4] for the diameter problem needs access to a contraction sequence93

witnessing a twinwidth of d, in order to run in time O(d · n2 log n); but the lower bound of94

O(n2−ε) also still holds when a contraction sequence is given.95

Our Contributions. Our first main contribution is conceptual: We propose the already96

mentioned dag compression data structure and study their basic properties. The size of97

these compressions (the number |A| of cluster edges plus the number |E′| of compressed98

edges) will be of particular interest since we will show that important problems can be solved99

in a time that is linear with respect to this size.100

The central tool underlying our algorithms is a construction that uses a dag compression101

D = (V ′, A, E′) of a graph G = (V, E) to build an edge-weighted graph S = (V ′′, E′′, w′′)102

with V ⊆ V ′′ and w′′ : E′′ → {0, 1}, called the switching graph of D (since paths in this103

graph repeatedly switch between two parts of it, see Figure 2 for an example).104

STACS 2024

44:4 Faster Graph Algorithms Through DAG Compression

1
2

3

4
5

6

7
8

9

Graph G

1
2

3

4
5

6

7
8

9

10 11 12

13

14

A dag compression D of G

Switching graph S of D

1
2

3

4
5

6

7
8

9

10 11 12

13

14

10 11 12

13

14

1
2

3

4
5

6

7
8

9

Figure 2 The example graph G = (V, E), dag compression D = (V ′, A, E′), and cluster dag
C = (V ′, A) from Figure 1. The switching graph S = (V ′′, E′′, w′′) results from first taking the
disjoint union of C and the copy C̄, where all edges are reversed, and unifying the vertices in V .
This results in 2|A| many edges (shown in gray in S above) and we set their weight to 0. In addition,
for each edge (u′, v′) ∈ E′ there is a switching edge (ū′, v′) in E′′, shown in black, that leads from
the lower part to the upper part and has weight 1. A path in G of length 2, like the path 3 → 5 → 9,
corresponds to a path 3 → 10 → 11 → 5 → 12 → 14 → 9 in S of weight 2 as it contains two switching
edges (black edges of weight 1).

I Theorem 1.1. Let G = (V, E) be a directed graph, let D = (V ′, A, E′) be a dag compression105

of G, and let S = (V ′′, E′′, w′′) be the switching graph of D. Then for every pair (u, v) ∈ V ×V106

we have dG(u, v) = dS(u, v), that is, the distance from u to v is the same in G and in S.107

Since it will be immediate from the construction that the number |E′′| of edges in the108

switching graph is 2|A| + |E′| and thus at most double the size of the dag compression D,109

we easily get fast dfs and bfs algorithms for graphs that admit a dag compression of linear110

size:111

I Theorem 1.2. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E) we112

can visit the vertices in V both in bfs and dfs order in time O(|V ′| + |A| + |E′|).113

As graphs with bounded twinwidth have a linearly bounded dag compression, a direct114

consequence of Theorem 1.2 is that we close the gap between the lower and upper bound for115

computing the diameter of graphs of bounded twinwidth:116

I Corollary 1.3. On input of a contraction sequences that witnesses that a graph G has117

twinwidth at most d, we can compute the diameter of G in time O(d · n2).118

Access to a fast depth-first search allows us to implement other operations from algorithmic119

graph theory in time O(n). For instance, the strongly connected components of a digraph120

can be computed by two consecutive depth-first searches using Kosaraju’s algorithm [22]:121

I Corollary 1.4. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E), the122

strongly connected components of G can be computed in time O(|V ′| + |A| + |E′|).123

Another traditional application of the depth-first search is the detection of cycles in124

directed graphs as well as the computation of a topological sort of the input [23]:125

I Corollary 1.5. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E),126

we can test in time O(|V ′| + |A| + |E′|) whether G contains a cycle and, if not, compute a127

topological sorting of G.128

M. Bannach, F. A. Marwitz, and T. Tantau 44:5

It is well-known that a bfs can compute the shortest path between two vertices in129

unweighted graphs. However, this is different in weighted graphs, in which a more refined130

algorithm must be used. Generalizing the dag compression to weighted graphs, we obtain:131

I Theorem 1.6. On input of a dag compression D = (V ′, A, E′, w′) of a weighted graph132

G = (V, E, w) with w : E → N, the single-source shortest path (sssp) problem can be solved133

in time O
(
(|V ′| + |A| + |E′|) log(|V ′| + |A| + |E′|)

)
.134

Related Work. Many graph compression methods are known in the literature; the one most135

similar to ours is by Toivonen et al. [26]. They also introduce supernodes and superedges with136

the idea that an edge between two supernodes represents all edges between vertices within137

these supernodes. However, they partition the vertex set into a set of supernodes, whereas138

our compression allows for nested vertex combinations. The representation of Navlakha139

et al. is similar to the one of Toivonen et al. with an additional set of edge corrections, i.e.,140

edges that must be deleted or added to retrieve the original graph [18]. Tian et al. provide141

two operations: One for creating a graph compression based on user-given attributes and142

another to further control the compression [25]. Zhang et al. further refine this compression143

to include numerical attributes and add more automation [27].144

Using distance-equivalent graphs to speed up routing algorithms is commonly done in145

theory and practice [24]. However, the objective is usually to replace a large input graph146

with a smaller graph in which distances are approximately the same as in the input. In147

contrast, our use of distance-equivalent graphs does not involve any approximations: The148

distances in the switching graphs are precisely as in the original graph.149

Twinwidth was introduced in 2020 for graphs and digraphs by Bonnet et al. [5] and150

interest quickly increased as witnessed by dozens of new research papers each year since151

then. One of the earliest and most remarkable results is an fpt-algorithm for the model-152

checking problem of first-order logic [5]. Graphs of twinwidth 0 and 1 can be recognized153

in polynomial time [28, 14], but deciding whether a graph has twinwidth at most 4 is154

NP-complete [3]. Besides the aforementioned meta-theorem, dedicated dynamic programs155

are known to compute maximum cliques, independent sets, and minimal dominating sets on156

graphs of bounded twinwidth [4]. It is also known that all triangles of a graph of twinwidth157

at most d can be counted in time O(d2n + m) if a corresponding contraction sequence is158

given [16]. Ahn et al. [2] study the twinwidth of random graphs. Schidler and Szeider provide159

the first practical strategies to compute contraction sequences using a sat-solver [21] and160

Ganian et al. show that weighted model counting can be done efficiently on formulas of161

small twinwidth [13]. Bonnet et al. introduced twin-models [6], which can also compress162

graphs and is similar to our result in Theorem 4.4. However, one main thrust of defining dag163

compressions is the usefulness independently of twinwidth, which is also one of the reasons164

we consider dag compressions rather than tree compressions.165

Structure of this Paper. We define dag compressions and have a look at some basic166

properties and operations in the next section. In Section 3 on algorithms, we define the167

switching graph and show how it can be used to implement fast versions of bfs and dfs, and168

related algorithms. In Section 4, we show how we can build linear-size dag compressions. Our169

particular focus will be on graphs of bounded twinwidth, where we turn a given contraction170

sequence into a dag compression of linear size.171

STACS 2024

44:6 Faster Graph Algorithms Through DAG Compression

2 DAG Compressions: Definition, Examples, and Basic Constructions172

The idea behind dag compressions is – as already pointed out in the introduction – to173

compress complete bipartite subgraphs of a given graph by single “compressed edges” that174

link vertices of the cluster dag. The cluster dag has the job of encoding sets of vertices via175

the reachability relation: Each vertex of the cluster graph encodes all sinks that are reachable176

from it. In the following, we formalize these ideas and give examples. We also show how177

basic update and construction operations on dag compressions can be implemented.178

Basic Terminology. Before we proceed, let us fix some terminology and notation: To179

simplify the presentation, a graph is always a pair (V, E) consisting of a non-empty finite180

set V of vertices together with a relation E ⊆ V × V . In other words, by “graph” we always181

refer to a simple, non-empty, directed graph; undirected graphs are just directed graphs with182

a symmetric edge relation. Throughout this paper, n will refer to the size |V | of the graph G183

currently under consideration and m will refer to |E|.184

An (edge-)weighted graph is a triple (V, E, w), where w : E → N maps edges to nonnegative185

integers. The weights are binary if w(e) ∈ {0, 1} holds for all e ∈ E. An unweighted graph186

can also be seen as a weighted graph in which all weights are 1. A walk of length l in a graph G187

is a sequence (v0, . . . , vl) of vertices such that (vi−1, vi) ∈ E holds for all i ∈ {1, . . . , l}. For188

s = v0 and t = vl, the walk is also called an s-t-walk and we say that t is reachable from s.189

The weight of a walk is the sum
∑l

i=1 w
(
vi−1, vi

)
. Note that for unweighted graphs the190

length and the weight of a walk are the same.191

A walk is called a path if all vertices are distinct. A walk is called a cycle if l ≥ 3, v0 = vl,192

and (v0, . . . , vl−1) is a path. The distance function for G is the function dG : V ×V → N∪{∞}193

that maps each pair (u, v) of vertices to the minimum weight of any walk u-v-walk in G (or194

to ∞, if no such walk exists).195

A graph is a directed acyclic graph (a dag) if there is no walk in G of length at least 1196

with v0 = vl. A sink in a dag is a vertex s ∈ V of out-degree 0, that is, without edges197

leaving s. Note that a dag must always have at least one sink.198

2.1 Definition of DAG Compressions and Examples199

In order to formalize the notion of dag compressions, we start with cluster dags:200

I Definition 2.1 (Cluster DAGs and Compressed Edges). A cluster dag for a set V is a201

dag C = (V ′, A) such that V is exactly the set of sinks of C. Given a vertex v′ ∈ V ′, the202

cluster C(v′) of v′ is the subset of V of all sinks that are reachable from v′ in C. A pair203

(u, v) ∈ V ′ × V ′, not necessarily an element of A, is called a compressed edge.204

I Definition 2.2 (DAG Compression). Let G = (V, E) be a graph. Let C = (V ′, A) be a205

cluster dag for V . A dag compression of G is a triple D = (V ′, A, E′), where E′ ⊆ V ′ × V ′
206

is a compressed (edge) relation, such that E =
⋃

(u′,v′)∈E′ C(u′) × C(v′). The size of D is207

the number |A| + |E′|.208

We already gave an example of a dag compression of a graph in Figure 1. In the following209

we consider three more examples in order to explain the concept.210

I Example 2.3 (No Compression). A trivial way of compressing any graph G = (V, E) is to211

do no compression at all, that is, to use (V ′, A, E′) with V ′ = V , A = ∅, and E′ = E. Note212

that, indeed, if there are no edges in the cluster dag, each vertex is a sink.213

M. Bannach, F. A. Marwitz, and T. Tantau 44:7

This trivial example shows that we can always come up with a dag compression of size m214

for any graph G. In particular, for any class C of graphs that has only a linear number of215

edges (that is, for which there is a constant c such that for all (V, E) ∈ C we have |E| ≤ c · |V |),216

all graphs in C admit linear-size dag compressions. A prominent example of such classes are217

classes of graphs of bounded treewidth.218

A slightly more interesting example are complete graphs, which have a superlinear number219

of edges, but a linear-size dag compression:220

I Example 2.4 (Cliques). Let Cn := (V, E) with E = V × V be the complete graph on n221

vertices. Note that m = |E| = n2. A linear-size (n + 1 to be precise) dag compression for222

it is (V ′, A, E′) with V ′ = V ∪ {c}, where c is a fresh vertex, A = {(c, v) | v ∈ V } contains223

an edge from c to every vertex of V , making all of them sinks, and E′ = {(c, c)} contains a224

single loop. Indeed, we then have E =
⋃

(u′,v′)∈E′ C(u′) × C(v′) = C(c) × C(c) = V × V .225

A more involved and interesting example are cographs, which are the natural “base class”226

to define twinwidth (which we will discuss in more detail later):227

I Example 2.5 (Cographs). The class of cographs is defined inductively as follows: First,228

any single vertex is a cograph. Second, if G and H are cographs, so are their disjoint union229

and also their disjoint union with all edges between vertices in G and vertices in H added.230

This inductive definition can be used to obtain a linear-size (5n − 4 to be precise) dag231

compression of any cograph: Compressing single vertex graphs is trivial, so let G = (VG, EG)232

and H = (VH , EH) be cographs and let DG and DH be dag compressions of sizes 5nG − 4233

and 5nH − 4, respectively. We will ensure (and assume) that the cluster dags CG and CH234

are actually trees with roots rG and rH .235

A dag compression of the disjoint union is then obtained by taking the disjoint union of236

the two compressions, adding a new root r and adding the edges (r, rG) and (r, rH), that is, by237

considering
(
V ′

G∪V ′
H ∪{r}, AG∪AH ∪{(r, rG), (r, rH)}, E′

G∪E′
H

)
and always assuming that all238

vertex names are distinct. Note that the resulting size is 5nG−4+5nG−4+2 = 5n−6 ≤ 5n−4.239

The interesting case is to obtain a dag compression of the disjoint union with all edges240

between G and H added. However, this is easy to achieve by taking the same construction and241

just adding the edges (rG, rH) and (rH , rG) to E′ as this will cause C(rG)×C(rH) = VG ×VH242

and also the reversed edges C(rH) × C(rG) = VH × VG to be added to E, exactly as needed.243

This adds two more edges to the size of the dag compression, meaning that the size is244

5nG − 4 + 5nG − 4 + 2 + 2 = 5n − 4 as claimed.245

Compressing Weighted Graphs and Arbitrary Structures. It is straightforward to extend246

the definition of a dag compression to weighted graphs: Simply add a weight function247

w′ : E′ → N that assigns weights to compressed edges. The obvious semantics is then that248

for (u′, v′) ∈ E′ all edges in C(u′) × C(v′) should have weight w′(u′, v′). However, we then249

run into the problem that different weights may now be assigned to the same edge (u, v),250

namely when (u, v) ∈ C(u′
1) × C(v′

1) and also (u, v) ∈ C(u′
2) × C(v′

2) for some compressed251

edges (u′
1, v′

1) and (u′
2, v′

2) with w′(u′
1, v′

1) 6= w′(u′
2, v′

2). We resolve this case by assigning the252

minimum weight to (u, v) of the weights of all compressed edge that uncompress to (u, v).253

Formally, we require that for a weighted graph (V, E, w) a weighted dag compression is a254

tuple (V ′, A, E′, w′) such that (V ′, A, E′) is a dag compression of (V, E) and for all e ∈ E255

we have w(e) = min(u′,v′)∈E′,e∈C(u′)×C(v′) w′((u′, v′)
)
.256

As mentioned in the introduction, it is straightforward to define dag compressions of257

graphs with multiple edge relations Ei by using multiple compression relations E′
i (but still258

using a single cluster dag). It makes also sense to use dags to compress not only binary259

STACS 2024

44:8 Faster Graph Algorithms Through DAG Compression

edge relations, but also unary relations (subsets of V , that is, colors): We can compress a260

color X ⊆ V using a set X ′ ⊆ V ′ such that X =
⋃

x′∈X′ C(x′), that is, by representing X as261

the union of some clusters described by the cluster graph. In the other direction, is it also262

possible to compress ternary relations R ⊆ V × V × V using a relation R′ ⊆ V ′ × V ′ × V ′
263

such that R =
⋃

(u′,v′,w′)∈R′ C(u′) × C(v′) × C(w′); and note that this potentially allows one264

to compress relations with |R| = O(n3) using dag compressions of size O(n). All told, dag265

compressions can be used to compress arbitrary logical structures as well, but for simplicity,266

we restrict our attention to (weighted) graphs in the following.267

Cluster Trees Versus Cluster DAGs. In all of the above examples, the cluster dag was268

actually a tree. The following is an important example of a graph for which we appear to269

need a dag to compress it to linear size (we believe that one can prove that a linear-size270

compression using trees is not possible, but are not aware of any simple proof for this claim):271

I Example 2.6 (Rook Graph). The rook graph on n vertices, where n = s2 is the square of272

some integer s =
√

n, is a graph G with V = {1, . . . , s}2 and with
(
(i, j), (k, l)

)
∈ E iff i = k273

or j = l, that is, if a rook could be moved from position (i, j) to position (k, l) in a chess274

game in a single move. Another way of viewing a rook graph is as an intertwined union of275

cliques: Every row is a clique and every column is a clique, but there are not other edges.276

Note that the rook graph has (2s)s2 = Θ(n3/2) edges.277

We can easily construct a linear-size dag compression for the rook graph: Consider278

(V ′, A, E′) with V ′ = V ∪ {r1, . . . , rs} ∪ {c1, . . . , cs}, so we add a row vertex ri for each279

row and similarly a column vertex ci for each column; we set A =
{

(ri, (i, j)) | i, j ∈280

{1, . . . , s}
}

∪
{

(cj , (i, j)) | i, j ∈ {1, . . . , s}
}

, that is, each row vertex and each column281

vertex is directly connected to all vertices of their row or column, respectively; and we282

set E′ = {(ci, ci) | i ∈ {1, . . . , s}} ∪ {(ri, ri) | i ∈ {1, . . . , s}}, that is, we add self-loops283

at all row and column vertices, resulting in cliques in E for each row and each column284

– exactly, what we are looking for. The total size of the described dag compression is285

|A| + |E′| = 2s2 + 2s = 2n + 2
√

n = O(n).286

There is a deeper reason why we can compress the rook graph so well using dags rather287

than trees: Using dags in compressions allows us to implement the union operation on edge288

sets by uniting the dag compressions. The formal statement is the following:289

I Lemma 2.7. Let G = (V, E1 ∪E2) and let D1 = (V ′
1 , A1, E′

1) and D2 = (V ′
2 , A2, E′

2) be dag290

compressions of (V, E1) and (V, E2), respectively, that use distinct vertex sets for non-sink291

vertices, that is, V ′
1 ∩ V ′

2 ⊆ V . Then (V ′
1 ∪ V ′

2 , A1 ∪ A2, E′
1 ∪ E′

2) is a dag compression of G292

whose size is at most the sum of the sizes of D1 and D2.293

Proof. Since V ′
1 ∩ V ′

2 ⊆ V , the edges of the cluster dags A1 and A2 do not “interfere,” that294

is, in the new compression dag for any v′ ∈ V ′
1 the set C(v′) with respect to reachability in295

A1 ∪ A2 is the same as C(v′) with respect to just A1; and symmetrically for v′ ∈ V ′
2 . This296

implies that for any compressed edge (u′, v′) ∈ E′
1 ∪ E′

2, the set C(u′) × C(v′) is the same as297

before. In particular, the union of all of these sets is exactly E1 ∪ E2. The claim concerning298

the sizes follows directly from the construction. J299

By the lemma, the rook graph can be compressed simply because it is the union of 2
√

n300

cliques, each having
√

n vertices and, hence, allowing a dag compression of size 1 +
√

n by301

Example 2.4; so the lemma tells us that a size of 2
√

n(1 +
√

n) = O(n) suffices for the union302

of all these cliques – no matter how they are intertwined.303

M. Bannach, F. A. Marwitz, and T. Tantau 44:9

2.2 Updating DAG Compressions304

When defining a new data structure, a natural question is how difficult it is to update it.305

That is, suppose we have already constructed a dag compression D of a graph G, with306

D being stored in memory while G is not stored directly, and we now wish to modify G307

by adding or deleting edges or vertices. How difficult is it to update D instead (without308

decompressing it)? In other words, given D, we wish to compute a dag compression D̃ of G̃,309

where G̃ results from G by some small change.310

Let us start with simple modifications that are easy to implement. First, we may wish to311

add an edge, meaning that G̃ =
(
V, E ∪ {(u, v)}

)
. It is then fairly simple to compute D̃ in312

this case: We can add the edge as a compressed edge, that is, let Ẽ′ = E′ ∪ {(u, v)}. Note313

that the size increases only by one. Second, we may wish to add a new vertex. This turns314

out to be even simpler: Just add it to V ′, where it will become an isolated sink. This does315

not even change the size of the compression. Third, we may wish to delete an existing vertex316

v from V along with all adjacent edges in E. This is also simple to achieve: Simply delete v317

from V ′ and all its occurrences in A and in E′.318

One operation is suspiciously missing: Deleting an edge (u, v) from E. It turns out that319

this can be a difficult operation to implement: If (u, v) ∈ C(u′)×C(v′) for several compressed320

edges (u′, v′) ∈ E′, we need to “break up” these compressed edges, meaning that we need to321

remove the compressed edge (u′, v′) and to then add new compressed edges that cover exactly322

the set (C(u′) × C(v′)) \ {(u′, v′)}. It is currently unclear to us what the exact complexity of323

this operation is.324

Another suspiciously missing aspect is the question of what happens when we have325

multiple edge additions in a row. Clearly, it is not optimal to simply add each edge as a326

compressed edge that only compresses itself: If we add all edges of, say, a cluster C(v′)327

and thereby making it a clique, we would like to end up with a dag compression in which328

there is a single compressed edge (v′, v′) in E′ to represent this clique. Undoubtedly, greedy329

heuristics exist for locally compressing sets of newly inserted edges, but finding a minimum-330

size dag compression (V ′, A, E′) for a given graph (V, E) appears to be a difficult problem.331

The following theorem shows that minimizing |E′| is NP-complete and we conjecture that332

minimizing |A| + |E′| (which is the more important question from a practical point of view)333

is also NP-complete:334

I Theorem 2.8. It is NP-complete to decide on input G = (V, E) and a number k whether335

there is a dag compression (V ′, A, E′) of G with |E′| ≤ k.336

Proof. Reduce from the NP-complete problem of covering a bipartite graph with at most337

k complete bipartite graphs [19]. By definition, a dag compression (V ′, A, E′) of G with338

|E′| ≤ k immediately yields a cover of E by at most k complete bipartite graphs; and given339

such a cover of size k, we can easily construct a cluster dag such that for each complete340

bipartite graph X×Y in this cover there are vertices x′ and y′ with C(x′) = X and C(y′) = Y ,341

allowing us to put the edge (x′, y′) into E′. J342

3 DAG Compression: Algorithms343

Given a dag compression D of some graph G, we wish to solve typical algorithmic problems344

on G, for instance, we would like to compute a topological ordering of G. The objective is,345

of course, to do so without “decompressing” the graph, that is, without storing the large346

graph G in memory. Rather, we would like to directly work on D and would like to have347

linear or quasi-linear runtimes in terms of the size of D.348

STACS 2024

44:10 Faster Graph Algorithms Through DAG Compression

At first sight, dag compressions seem rather ill-suited for this purpose: Even deciding349

whether there is an edge between two given vertices u, v ∈ V is not straightforward. Indeed,350

to answer this simple question using only D = (V ′, A, E′), we have to determine whether351

there is a compressed edge (u′, v′) ∈ E′ such that u is reachable from u′ in A and v is352

reachable from v′ in A. If A is a complex graph containing long paths, this is a nontrivial353

problem. Indeed, even very simple problems like determining the degree of a vertex are354

difficult if only D is given, as we may need to consider all vertices v′ ∈ V from which v is355

reachable – and this set may have linear size.356

Nevertheless, it turns out that many problems involving the whole graph G can be solved357

in linear-time with respect to D. The core idea behind these algorithms is the construction358

of the switching graph, whose core property is that it is distance-equivalent to G.359

Distance Equivalence and the Switching Graph. In order to solve bfs in G using only D,360

we first construct a new graph S that is distance equivalent to G, but has few edges.361

I Definition 3.1 (Distance Equivalence). Let G1 = (V1, E1, w1) and G2 = (V2, E2, w2) be two362

weighted graphs. They are distance equivalent (on V1 ∩ V2) if for all u, v ∈ V1 ∩ V2 we have363

dG1(u, v) = dG2(u, v).364

The key observation, to be formalized later, is that computing, say, a bfs ordering of the365

vertices in G1 will also yield a bfs ordering of the vertices in V2 in G2 because the ordering366

in which vertices need to be visited depends on the distances.367

Let us now define the switching graph of a dag compression D and prove that it is368

distance equivalent to the uncompressed graph G.369

I Definition 3.2 (Switching Graph). Let D = (V ′, A, E′, w′) be a dag compression of a370

weighted graph G = (V, E, w). For each v′ ∈ V ′ let v̄′ be a new vertex, except when v′ ∈ V ,371

in which case v̄′ = v′. The switching graph S of a dag compression D = (V ′, A, E′, w′) of a372

weighted graph G = (V, E, w) is a weighted graph S = (V ′′, E′′, w′′) such that373

1. the vertex set V ′′ is the union of the three sets374

upper part Vupper = {v′ | v′ ∈ V ′ \ V },375

middle part Vmiddle = {v | v ∈ V } = {v̄ | v ∈ V }, and376

lower part Vlower = {v̄′ | v′ ∈ V ′ \ V },377

2. the edge set E′′ is the union of the three sets378

upper cluster edges {(u′, v′) | (u′, v′) ∈ A} in the upper part,379

lower cluster edge {(v̄′, ū′) | (u′, v′) ∈ A} in the lower part, and380

switching edges {(ū′, v′) | (u′, v′) ∈ E′},381

3. and the weight function w′′ : E′′ → N with w′′((u′, v′)) = w′′((ū′, v̄′)) = 0 for the cluster382

edges resulting from (u′, v′) ∈ A and with w′′((ū′, v′)) = w′((u′, v′)) for the switching383

edges resulting from (u′, v′) ∈ E′.384

An example of a switching graph is depicted in Figure 2, where the weights in G are385

all 1 and, hence, the weights in S are either 0 (for cluster edges, depicted in gray) or 1 (for386

switching edges, shown in black). For further reference, we note a trivial observation:387

I Lemma 3.3. For very switching graph we have |V ′′| ≤ 2|V ′| and |E′′| = 2|A| + |E′|.388

Let us now prove the main property of switching graphs:389

I Theorem 3.4. Let S be the switching graph of a dag compression D of G. Then S and G390

are distance equivalent.391

M. Bannach, F. A. Marwitz, and T. Tantau 44:11

Proof. Let u and v be a pair of vertices in V .392

First, consider a minimum-weight u-v-walk (v0, . . . , vl) in G and let k be its weight. We393

will construct a u-v-walk in S of the same weight, starting at v0 = u and extending it for394

each i ∈ {1, . . . , l} each time to vi. For a given i, we must have (vi−1, vi) ∈ E as we have a395

walk in G. Since D is a dag compression of G, there must exist (v′
i, v′

i+1) ∈ E′ such that396

vi−1 ∈ C(v′
i−1) and vi ∈ C(v′

i) and w((vi−1, vi)) = w′((v′
i−1, v′

i)). Extend the new walk as397

follows: From vi−1 = v̄i−1 use (reversed) cluster edges to reach v̄′
i−1 in the lower part (which398

must exist since vi−1 ∈ C(v′
i−1) means that vi−1 is reachable from v′

i−1 using non-reversed399

cluster edges, so v̄′
i−1 is reachable from v̄i−1 using reversed cluster edges), use the switching400

edge (v̄′
i−1, v′

i) to get to the upper part, and use cluster edges in the upper part to get to vi.401

We only use exactly one switching edge during this extension of the new walk, meaning that402

the weight of the walk increases exactly by the weight of this edge. This immediately yields403

the claim concerning the total walk weight.404

Second, consider a minimum-weight u-v-walk (v′′
0 , . . . , v′′

l) in S and let k be its weight.405

Since u = v′′
0 and v = v′′

l , we start and end in the middle part of V ′′. We cut the walk into406

subwalk P1, . . . , Pp of minimal lengths (but at least 1) such that each Pi starts and ends407

with a vertex in the middle part (that is, in V), while all other vertices are in the lower or in408

the upper part. Each subwalk (except for P1) begins with the last vertex of the previous409

subwalk. As an example, the example 3-9-walk (3, 10, 11, 5, 12, 14, 9) in Figure 2 would be410

cut into the subwalks P1 = (3, 10, 11, 5) and P2 = (5, 12, 14, 9) since V contains only the411

single digit numbers. Observe that the number of subwalks is exactly the number of positions412

j ∈ {1, . . . , l} for which v′′
j ∈ V holds, that is, how often the walk crosses the middle part.413

We claim that each Pi contains exactly one switching edge and all other edges are cluster414

edges. To see this, let Pi = (p1, . . . , pz) and observe that only p1 and pz lie in the middle415

part by construction. From p1, all non-switching edges point to a vertex in the lower part –416

and this is true also for all vertices in the lower part. Thus, up to the first switching edge417

on Pi, all edges are (reversed) lower cluster edges. Then, at some point, a switching edge418

(p̄′, q′) ∈ E′′ must be used for some (p′, q′) ∈ E′ since, otherwise, we could not exit the lower419

part (pz is not in the lower part – and we also not allowed to just “rest” at p1 since we must420

make at least one step as the length of all Pi is at least 1). Note that p̄′ is reachable from p1,421

meaning p1 ∈ C(p′). By construction, the switching edge brings us to the upper part (or to422

the middle part, but then we stop and are done). In the upper part, we can only follow upper423

cluster edges until we reach the middle part; but then we stop one more, having reached pz.424

This implies that pz ∈ C(q′).425

We see that each Pi consists of cluster edges (having weight 0) and a single switching426

edge (p̄′, q′) ∈ E′′ of some weight w′′((p̄′, q′)) = w′((p′, q′)) for (p′, q′) ∈ E′. Furthermore,427

(p1, pz) ∈ E must hold since p1 ∈ C(p′) and py ∈ C(q′). All told, for each subwalk Pi starting428

at some vertex p ∈ V and ending at a vertex q ∈ V , we see that there is an edge (p, q) ∈ E.429

Furthermore, the weight of this edge is at most the weight of the switching edge used in Pi.430

However, it also cannot be smaller than this weight: Otherwise, we could replace the walk431

by another walk from p to q in S of lesser weight (simple walk from p to the switching edge432

having this smaller weight and then walk to q). This shows that the minimal weight of a433

u-v-walk in G is k. J434

Our first main theorem from the introduction, Theorem 1.1, is just a restatement of the435

above theorem.436

I Corollary 3.5. Given a dag compression D = (V ′, A, E′) of a graph G = (V, E), we can437

run a bfs in time O(|V ′| + |A| + |E′′|).438

STACS 2024

44:12 Faster Graph Algorithms Through DAG Compression

Proof. Run Dijkstra’s algorithm [11] on the switching graph S of D, which has size at most439

2|V ′| vertices and 2|A| + |E′| edges by Lemma 3.3. Since all weights are 0 or 1, we can run440

the Dijkstra algorithm in time O(|V ′| + |A| + |E′|). J441

I Corollary 3.6. Given a dag compression D = (V ′, A, E′) of a graph G, we can run a dfs442

in time O(|V ′| + |A| + |E′′|).443

Proof. Modify Dijkstra’s algorithm in Corollary 3.5 to extract the maximum instead of the444

minimum. J445

Theorem 1.2 directly follows from Corollaries 3.5 and 3.6. When the graphs we study446

are weighted, as in Theorem 1.6, we can still run the Dijkstra algorithm, but the runtime447

is no longer linear in the size of the dag compression, but of the order O(s log s), where448

s = |V ′| + |A| + |E′|. We obtain Theorem 1.6 from the introduction.449

4 DAG Compressions: The Link to Twinwidth450

We have shown that several standard algorithms can be implemented in time linear in the451

size of the dag compression of a graph, and we also saw examples of graphs such as cographs452

or the rook graph that allow us to compress graphs with n1+δ edges for δ > 0 to size O(n).453

In the following we show that there is a large class of graphs for which a linear-size dag454

compression is always possible: Graphs of bounded twinwidth. Linear-sized dag compressions455

are tightly linked with bounded twinwidth, however, they do not capture the same class456

of graphs (as the rook graph shows). We first define twinwidth and afterwards show how457

we can build the dag compression from a so-called contraction sequence. Readers familiar458

with twin-models [6] will note that the tree compressions developed in the following are very459

closely related to twin-models (the difference is mainly in the terminology). For simplicity,460

we only consider undirected graphs, that is, graphs with a symmetric edge relation.461

Twinwidth and Contraction Sequences. Following Bonnet et al. it will be useful to consider462

trigraphs [4, 5], which are triples (V, B, W, R) such that R, B, and W partition the set of463

possible (non-loop) edges V × V \ {(v, v) | v ∈ V } into red edges, black edges, and white edges.464

The red, black, or white degree of a vertex is the number of its incoming (or, equivalently,465

outgoing) red, black, or white edges, respectively.466

A contraction in a trigraph G merges two arbitrary vertices u and v into a single fresh467

vertex z, forming a new trigraph G′ by removing u and v and coloring for each x ∈ V \ {u, v}468

the edge between x and z (and also the backward edge as the graph is symmetric) as follows:469

If the edges between x and u and between x and v were both black, so is the x-z-edge; if the470

edges were both white, so is the x-z-edge; and in all other cases the x-z-edge becomes red.471

A contraction sequence of a graph G = (V, E) is a sequence (Gn, Gn−1, . . . , G1) of472

trigraphs Gi such that the first Gn =
(
V, E, V × V \ (E ∪ {(v, v) | v ∈ V }), ∅

)
is the trigraph473

in which the edges in E are black and everything else is white and there are no red edges; the474

last graph G1 is just a single vertex; and each Gi results from Gi+1 through the contraction475

of two vertices ui+1 and vi+1 of Gi+1 into a fresh vertex zi. The red degree of a contraction476

sequence is the maximum red degree any vertex in any of the Gi has. The sequence is called477

a d-contraction sequence if its maximum red degree is d. Finally, the twinwidth tww(G) of G478

is the minimal d for which there is a d-contraction sequence of G.479

An example of 1-contraction sequence of the cycle C4 is show in Figure 3.480

M. Bannach, F. A. Marwitz, and T. Tantau 44:13

(1

u4

2

3 4
v4G4

, z3

u3 2

v3

3
G3

,
z2

u2

3

v2

G2

, z1

G1

)

Figure 3 Example of a contraction sequence of the cycle C4. In the first step, u4 = 1 and v4 = 4
are contracted to form the new vertex z3 in G3. The edge from z3 to 2 is black since both the edges
from u4 to 2 and from v4 to 2 were black (that is, present). Similarly, there is a black edge from z3

to 3. In contrast, when v3 = 2 and u3 = z3 are contracted to z2 in G2, the edge from z2 to 3 is red
since there was a (black) edge from u3 to 3 in G3, but a white (not present) edge from v3 to 3. The
sequence is a 1-contraction sequence since the maximum red degree of any vertex in the sequence
is 1, proving that the twinwidth of C4 is at most 1 (it is actually 0 since contracting 2 and 3 in G3

rather than 2 and z3 yields a 0-contraction sequence).

From Contraction Sequence to DAG Compression. Intuitively, contraction sequences481

“form clusters of vertices in a tree-like manner through contractions” and we can use this idea482

to build cluster dags from contraction sequences. Crucially, we can then insert compressed483

edges whenever a black edge is “about to finally disappear” and this will allow us to keep484

their number small (that is, linear in the number of vertices).485

In detail, let us now assume that a fixed d-contraction sequence (Gn, . . . , G1) for a graph486

G = (V, E) is given in which for each i ∈ {n, . . . , 2} we contract ui and vi in the trigraph Gi487

into zi−1 in order to form the trigraph Gi−1. Our objective is to construct a dag compression488

D = (V ′, A, E′) for G using the sequence such that |A| + |E′| ≤ (3d + 4) · n. In particular,489

for every fixed d, the size of D is in O(n).490

The first step is to define the cluster dag C = (V ′, A). This is done as follows, see491

Figure 4 for an example:492

I Definition 4.1. The cluster tree C = (V ′, A) of a contract sequence (Gn, . . . , G1) has493

V ′ = V ∪ {zn−1, . . . , z1} and for each i ∈ {2, . . . , n} there are edges from zi−1 to both ui and494

vi to A, that is, A = {(zi−1, ui) | i ∈ {2, . . . , n}} ∪ {(zi−1, vi) | i ∈ {2, . . . , n}}.495

1 4 2 3

z3

z2

z1

Cluster dag (V ′, A)

1 4 2 3

z3

z2

z1

dag compression (V ′, A, E′)
with E′ depicted as double lines

Figure 4 The cluster dag resulting from the contraction sequence from Figure 3 and the dag
compression of C4 resulting from it. The two compressed edges (z3, 2) and (z3, 3) are both added
when G3 is contracted to G2, but for different reasons: In G3 there is a black edge (z3, 2), but
(α3(z3), α3(2)) = (z2, z2) is not a black edge in G2 (there are no self-loops). In G3 there is also a
black edge (z3, 3), but while in G2 there is an edge (α3(z3), α3(3)) = (z2, 3), it is red.

A simple lemma will be useful in the following:496

STACS 2024

44:14 Faster Graph Algorithms Through DAG Compression

I Lemma 4.2. Let (V ′, A) be the cluster tree of a contraction sequence (Gn, . . . , G1) of497

G = (V, E) and let x′, y′ ∈ V ′ be two different vertices in some Gi. Then there is a black498

edge between x′ and y′ in Gi if, and only if, C(x′) × C(y′) ⊆ E.499

Proof. By induction. The start Gn is trivial. Suppose the claim holds for Gi, we need to show500

that it also holds for Gi−1, where u and v have been contracted to z. Consider two different501

vertices x′ and y′ in Gi−1. If neither of them is z, then the contraction does not change502

whether there is a black edge between them, so the induction hypothesis yields the claim.503

Since the vertices must be different, the only remaining case we need to consider is x′ 6= y′ = z.504

First, suppose that there is black edge (x′, z) in Gi−1. By definition of contractions, the505

existence of this black edge implies that there are black edges (x′, u) and (x, v) in Gi. By506

the induction hypothesis this yields that C(x′) × C(u) ⊆ E and also C(x′) × C(v) ⊆ E. But,507

then, by construction we have C(y′) = C(z) = C(u) ∪ C(v) and hence C(x′) × C(y′) ⊆ E.508

Second, there is no black edge (x′, z) in Gi−1. Then either (x′, u) or (x, v) was not a black509

edge in Gi. By the induction hypothesis, either C(x′) × C(u) 6⊆ E or C(x′) × C(v) 6⊆ E.510

Since we still have C(y′) = C(z) = C(u) ∪ C(v), we get C(x′) × C(y′) 6⊆ E. J511

The second step is to add as few compression edges as possible, that is, to keep E′ small512

(while, of course, D is still a compression of G), by adding compression edges “as late as513

possible”. In detail, for i ∈ {n, . . . , 2} let αi : V ′ → V ′ be the function that maps both ui514

and vi to zi−1 and is the identity otherwise, so αi(ui) = αi(vi) = zi−1 and αi(v) = v for515

v ∈ V ′ \ {ui, vi}. In other words, αi tells us “what became of a vertex v from Gi in Gi−1.”516

We now add a compression edge (u, v) to E′ whenever (u, v) is a black edge in Gi but517

(αi(u), αi(v)) is no longer black or no longer present in Gi−1. Formally:518

I Definition 4.3. The set of compressed edges E′ of a contraction sequence (Gn, . . . , G1)519

is E′ =
{

(u, v) ∈ V ′ × V ′ | there is an i ∈ {2, . . . , n} with (u, v) ∈ BGi , but (αi(u), αi(v)) /∈520

BGi−1

}
.521

I Theorem 4.4. For each (undirected, loop-free) graph G of twinwidth at most d there is a dag522

compression D = (V ′, A, E′) with |V ′| = 2n − 1, |A| = 2n − 2, and |E′| ≤ 2 · (2d + 1) · (n − 1).523

Proof. Since G has twinwidth at most d, there is a d-contraction sequence (Gn, . . . , G1) for524

it. Consider the dag compression D = (V ′, A, E′) where (V ′, A) is the cluster tree from525

Definition 4.1 for the contraction sequences and E′ is the set of compressed edges from526

Definition 4.3 for the sequence.527

The claim concerning the size of |V ′| follows trivially from Definition 4.1. For the size528

of |A|, just note that a binary tree on k vertices has k − 1 edges. For the size of E′, we must529

count “how many black edges can disappear when Gi is contracted into Gi−1.” First, if there530

is a black edge (ui, vi) in Gi, it will disappear, resulting in (ui, vi) ∈ E′. Second, if there is a531

vertex v ∈ V ′ \ {ui, vi} such that (v, ui) is black, but (αi(v), αi(ui)) = (v, zi−1) is red, we will532

add (v, ui) to E′ (and also (ui, v), the symmetric edge, which is accounted for by the factor533

of 2 in the bound of the theorem). Likewise, if (v, vi) is black, but (v, zi−1) is red, we add534

(v, vi) to E′. Crucially, for any v, when at least one of the at most two black edges (v, ui) or535

(v, vi) is added to E′, the edge (v, zi−1) is red. Since the maximum red degree of any vertex,536

including zi−1, is d, there can be at most d red edges and hence at most 2d black edges may537

have disappeared. All told, from Gi to Gi−1 we add at most 2 · (2d + 1) compressed edges538

to E′.539

It remains to argue that D is, indeed, a dag compression of G. However, Lemma 4.2540

immediately implies that all compressed edges we add to E′ are “correct”, that is, for every541

compressed edge (u′, v′) ∈ E′ we have C(u′) × C(v′) ⊆ E. Furthermore, the lemma also542

M. Bannach, F. A. Marwitz, and T. Tantau 44:15

implies that we do no “miss” any edges from E: Every edge of E is present in G′ as a543

black edge and remains present as an element of some C(u′) × C(v′) until the black edge544

disappears – which is exactly the moment we add (u′, v′) to E′. Finally, G1 is a single vertex545

and contains no edges, so all edges in E will be accounted for in E′ at some point. J546

By the above theorem, all graphs of twinwidth d admit a dag compression (indeed, even547

a tree compression) of size O(d · n). However, computing the dag compression of a graph of548

bounded twinwidth is a potentially difficult problem since it is already NP-hard to decide549

whether the twinwidth of a graph is 4 and, hence, it is also impossible to compute optimal550

contraction sequences in polynomial time unless P = NP. For these reasons, we can only hope551

to be able to compute the dag compression of G when we are given a d-contraction sequence552

already as part of the input – and it is standard practice in the literature for algorithms553

working on graphs of twinwidth d to assume that this is the case.554

However, one needs to be careful how the contraction sequence is represented in the555

input. Clearly, it makes little sense to assume that a string encoding the actual sequence556

(Gn, Gn−1, . . . , G1) is given as input – when G is dense, we wish to avoid explicitly keeping557

all edges of Gn in memory, let alone storing the whole sequence. Also, statements like “bfs558

can be solved in time O(dn) for a graph G when a d-contraction sequence of G is given” are559

much less impressive if this presupposes that the input may take up O(n3) cells of memory.560

On the other hand, it is also not sufficient to just be given, say, for each i ∈ {n, . . . , 2} the561

vertices ui and vi that get contracted to zi−1: We then miss the information which black562

edges got removed.563

What we really need is, in addition to the contraction pairs, for each i ∈ {n, . . . , 2} for564

each red edge (v, zi−1) the color of the edges (v, ui) and (v, vi): We can then reconstruct565

which black edges were lost from Gi to Gi−1. The following definition and theorem make566

these observations explicit:567

I Definition 4.5. Let (Gn, . . . , G1) be a contraction sequence such that in Gi we contract ui568

and vi into zi−1 to get Gi−1. Define the color recording sequence of the contraction sequence569

as a sequence of tuples (tn, tn−1, . . . , t2) such that each ti contains the following:570

1. The vertices ui, vi, zi−1.571

2. The color of the edge (ui, vi) in Gi.572

3. For each vertex v such that (v, zi−1) is a red edge in Gi−1, the colors of the edges (v, ui)573

and of (v, vi) in Gi.574

Observe that for a d-contraction sequence each tuple ti in the color recording sequence575

contains at most 2d + 4 vertices and, hence, the whole sequence can be stored using O(d · n)576

words of memory.577

I Theorem 4.6. There is an algorithm that gets a color recording sequence of a d-contraction578

sequences of a graph G as input and outputs in time O(d · n) a dag compression D of G of579

size O(d · n).580

Proof. Having a look at the definitions of cluster trees (Definition 4.1) and of how the581

compressed edges E′ are derived from a contraction sequence (Definition 4.3), we immediately582

see that the color recording sequence contains exactly the information needed to output583

(V ′, A, E′) in time linear in the size of this output. J584

Of course, the above theorem and definition beg the question of where the “color recording585

sequences” might come from. Firstly, it may be the case that we do have access (perhaps586

only during a preprocessing phase) to the graphs Gi. In this case, assuming that they are587

stored using standard data structures that combine the advantages of an adjacency matrix588

STACS 2024

44:16 Faster Graph Algorithms Through DAG Compression

and list [1] and also assuming that we are told which vertices get contracted in each step, we589

can easily compute the color recording sequence by iterating over the red edges incident to590

each zi−1. Secondly, the graph G and the contraction sequence may be the output of some591

algorithmic process. In this case, one needs to adapt the output or the process so that the592

color recording sequence gets output.593

Graphs with Large Twinwidth and Linear-Size DAG Compressions. The results in this594

section suggest a tight link between twinwidth and linear-size dag compressions: When595

G has twinwidth d, then G also has a size-O(dn) dag compression. Indeed, it even has a596

size-O(dn) tree compression, that is, a dag compression where C = (V ′, A) is a tree. This597

raises the question of whether, perhaps, the reverse is also true: It is true that all graphs598

having a, say, linear-size tree compression, also have low twinwidth? The answer to this is599

negative:600

I Theorem 4.7. There is a sequence of graphs (G1, G2, . . .) such that Gd has twinwidth at601

least d, but each Gd = (Vd, Ed) admits a tree compression of size at most |Vd|.602

Proof. For each d, we can construct a graph Hd that has twinwidth at least d: For instance,603

the rook graph on n vertices from Example 2.6 has twinwidth at least
√

n since contracting604

any two different vertices immediately yields a vertex with
√

n incident red edges.605

Let Gd be the graph Hd to which we add n2
d −nd isolated vertices, where nd is the number606

of vertices of Hd. Then Gd has n2
d vertices and also twinwidth at least d since adding isolated607

vertices does not change the twinwidth. The number of edges in Gd equals that of Hd, so608

it can be at most n2
d. This shows that |Ed| ≤ n2

d = |Vd|; in other words, the graph has a609

linear number of edges. As shown in Example 2.3 we can the “compress” it by simply doing610

nothing to get a size-|Vd| compression. J611

5 Conclusion612

In this paper, we presented a new data structure, the dag compression, that represents613

graphs by storing complete bipartite subgraphs as single compression edges between vertices614

that represent clusters of vertices. We showed that some update operations are possible on615

these compressions, but further research is needed to better understand them. A crucial616

property was that the dag compression of a graph gives rise to another graph, which we617

called the switching graph, that is distance-equivalent to the original graph and is only twice618

the size of the compressed graph.619

When the size of a dag compression is linearly bounded by the number of vertices in620

the original graphs, the compression gives rise to a new framework for graph algorithms621

with running times that are independent of the number of edges in the input: We can run622

breadth- and depth-first search in time O(n) where n is the number of vertices in the input,623

if we have access to a linear-size dag compression. Moreover, extending the definition to624

weighted graphs, we can run Dijkstra’s algorithm in time O(n log n) on such graphs. We625

believe that further algorithms that work directly on dag compressions rather than on the626

original graphs are possible.627

We also showed that all graphs of bounded twinwidth admit a linear-size dag compression.628

The reverse, however, is not true. A natural research avenue would be to extend this result to629

further graph classes: Is it true that all graphs of, say, bounded flip-width admit a linear-size630

dag compression?631

M. Bannach, F. A. Marwitz, and T. Tantau 44:17

References632

1 Faisal N. Abu-Khzam, Michael A. Langston, Amer E. Mouawad, and Clinton P. Nolan. A633

hybrid graph representation for recursive backtracking algorithms. In Proceedings of the 4th634

International Workshop on Frontiers in Algorithmics (FAW 2010), volume 6213 of Lecture Notes635

in Computer Science, pages 136–147. Springer, 2010. doi:10.1007/978-3-642-14553-7_15.636

2 Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, Donggyu Kim, and Sang il Oum.637

Twin-width of random graphs. Technical Report arXiv:2212.07880, arXiv, 2022. doi:10.638

48550/arXiv.2212.07880.639

3 Pierre Bergé, Èdouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is NP-640

complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, Proceedings641

of the 49th International Colloquium on Automata, Languages, and Programming (ICALP642

2022), volume 229 of Leibniz International Proceedings in Informatics, pages 18:1–18:20. Schloss643

Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.18.644

4 Édouard Bonnet, Colin Geniet, Eun J. Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-645

width III: Max independent set and coloring. In Proceedings of the 48th International646

Colloquium on Automata, Languages and Programming (ICALP 2021), volume 198 of Leibniz647

International Proceedings in Informatics, pages 35:1–35:20. Schloss Dagstuhl – Leibniz-Zentrum648

für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.35.649

5 Édouard Bonnet, Eun J. Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:650

Tractable FO model checking. In Proceedings of the 61st Annual Symposium on Foundations651

of Computer Science (FOCS 2020), pages 601–612. IEEE, 2020. doi:10.1109/FOCS46700.652

2020.00062.653

6 Édouard Bonnet, Jaroslav Nesetril, Patrice O. de Mendez, Sebastian Siebertz, and Stephan654

Thomassé. Twin-width and permutations. In Proceedings of the European Conference on655

Combinatorics, Graph Theory and Applications 2023 (EUROCOMB 2023). Masaryk University,656

Brno, Czech Republic, 2023. doi:10.5817/CZ.MUNI.EUROCOMB23-022.657

7 Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: A new658

approach to topic-specific web resource discovery. International Journal of Computer and659

Telecommunications Networking, 31(11-16):1623–1640, 1999. doi:10.1016/S1389-1286(99)660

00052-3.661

8 Chris J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM,662

13(11):677–678, 1970. doi:10.1145/362790.362798.663

9 Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through URL order-664

ing. International Journal of Computer and Telecommunications Networking, 30(1–7):161–172,665

1998. doi:10.1016/S0169-7552(98)00108-1.666

10 Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.667

The MIT Press and McGraw-Hill Book Company, 1989.668

11 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,669

1:269–271, 1959. doi:10.1007/BF01386390.670

12 Jeff Erickson. Algorithms. Erickson, 2019.671

13 Robert Ganian, Filip Pokrývka, André Schidler, Kirill Simonov, and Stefan Szeider. Weighted672

model counting with twin-width. In Proceedings of the 25th International Conference on673

Theory and Applications of Satisfiability Testing (SAT 2022), volume 236 of Leibniz Interna-674

tional Proceedings in Informatics, pages 15:1–15:17. Schloss Dagstuhl – Leibniz-Zentrum für675

Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.15.676

14 Michel Habib and Christophe Paul. A simple linear time algorithm for cograph recognition.677

Discrete Applied Mathematics, 145(2):183–197, 2005. doi:10.1016/J.DAM.2004.01.011.678

15 Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Journal679

of Artificial Intelligence, 27(1):97–109, 1985. doi:10.1016/0004-3702(85)90084-0.680

16 Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting parameterized681

by twin-width. Technical Report arXiv:2202.06708, arXiv, 2022. doi:10.48550/arXiv.2202.682

06708.683

STACS 2024

https://doi.org/10.1007/978-3-642-14553-7_15
https://doi.org/10.48550/arXiv.2212.07880
https://doi.org/10.48550/arXiv.2212.07880
https://doi.org/10.48550/arXiv.2212.07880
https://doi.org/10.4230/LIPICS.ICALP.2022.18
https://doi.org/10.4230/LIPICS.ICALP.2021.35
https://doi.org/10.1109/FOCS46700.2020.00062
https://doi.org/10.1109/FOCS46700.2020.00062
https://doi.org/10.1109/FOCS46700.2020.00062
https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-022
https://doi.org/10.1016/S1389-1286(99)00052-3
https://doi.org/10.1016/S1389-1286(99)00052-3
https://doi.org/10.1016/S1389-1286(99)00052-3
https://doi.org/10.1145/362790.362798
https://doi.org/10.1016/S0169-7552(98)00108-1
https://doi.org/10.1007/BF01386390
https://doi.org/10.4230/LIPIcs.SAT.2022.15
https://doi.org/10.1016/J.DAM.2004.01.011
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.48550/arXiv.2202.06708
https://doi.org/10.48550/arXiv.2202.06708
https://doi.org/10.48550/arXiv.2202.06708

44:18 Faster Graph Algorithms Through DAG Compression

17 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring684

algorithms. Journal of the ACM, 30(3):417–427, 1983. doi:10.1145/2402.322385.685

18 Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization with686

bounded error. In Proceedings of the 2008 ACM SIGMOD International Conference on687

Management of Data (SIGMOD 2008), pages 419–432. Association for Computing Machinery,688

2008. doi:10.1145/1376616.1376661.689

19 James Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes690

Mathematicae (Proceedings), 80(5):406–424, 1977. doi:10.1016/1385-7258(77)90055-5.691

20 Judea Pearl. Heuristics – Intelligent Search Strategies for Computer Problem Solving. Addison-692

Wesley, 1984.693

21 André Schidler and Stefan Szeider. A SAT approach to twin-width. In Proceedings of the694

Symposium on Algorithm Engineering and Experiments, (ALENEX 2022), pages 67–77. Society695

for Industrial and Applied Mathematics, 2022. doi:10.1137/1.9781611977042.6.696

22 Micha Sharir. A strong-connectivity algorithm and its applications in data flow analysis.697

Computers & Mathematics with Applications, 7(1):67–72, 1981. doi:10.1016/0898-1221(81)698

90008-0.699

23 Robert E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,700

6:171–185, 1976. doi:10.1007/BF00268499.701

24 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,702

2005. doi:10.1145/1044731.1044732.703

25 Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient aggregation for graph704

summarization. In Proceedings of the 2008 ACM SIGMOD International Conference on705

Management of Data (SIGMOD 2008), pages 567–580. Association for Computing Machinery,706

2008. doi:10.1145/1376616.1376675.707

26 Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Compression of weighted708

graphs. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge709

Discovery and Data Mining (KDD 2011), pages 965–973. Association for Computing Machinery,710

2011. doi:10.1145/2020408.2020566.711

27 Ning Zhang, Yuanyuan Tian, and Jignesh M. Patel. Discovery-driven graph summarization.712

In Proceedings of the 26th International Conference on Data Engineering (ICDE 2010), pages713

880–891. IEEE, 2010. doi:10.1109/ICDE.2010.5447830.714

28 Édouard Bonnet, Eun J. Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.715

Twin-width and polynomial kernels. In Petr A. Golovach and Meirav Zehavi, editors, Proceed-716

ings of the 16th International Symposium on Parameterized and Exact Computation, (IPEC717

2021), volume 214 of Leibniz International Proceedings in Informatics, pages 10:1–10:16. Schloss718

Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.IPEC.2021.10.719

https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/1376616.1376661
https://doi.org/10.1016/1385-7258(77)90055-5
https://doi.org/10.1137/1.9781611977042.6
https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/10.1016/0898-1221(81)90008-0
https://doi.org/10.1007/BF00268499
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1376616.1376675
https://doi.org/10.1145/2020408.2020566
https://doi.org/10.1109/ICDE.2010.5447830
https://doi.org/10.4230/LIPICS.IPEC.2021.10

	1 Introduction
	2 DAG Compressions: Definition, Examples, and Basic Constructions
	2.1 Definition of DAG Compressions and Examples
	2.2 Updating DAG Compressions

	3 DAG Compression: Algorithms
	4 DAG Compressions: The Link to Twinwidth
	5 Conclusion

