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Abstract—An agent in pursuit of a task may work with a
corpus of documents with linked subjective content descriptions.
Performing the task of document retrieval for a user or aiming
to extend its own corpus, an agent so far relies on similarity
measures to identify related documents. However, similarity may
not be appropriate if looking for new information or different
aspects of the same content. Therefore, this paper focuses on
complementarity, specifically, contributing (i) a formal definition
of complementarity using the available subjective content de-
scriptions in the form of relational tuples as well as a taxonomy
interrelating the concepts referenced in the tuples, (ii) a problem
definition and solution approach for classifying complementary
documents, and (iii) a case study assessing classification perfor-
mance for complementary documents.

I. INTRODUCTION

An agent in pursuit of a task may work with an individual
collection of documents (corpus) as a reference library. We
assume that the individual collection of documents represents
a specific context in which the agent performs its task and
documents are associated with location-specific subjective
content descriptions (SCDs) making the content explicit by
providing additional data in support of the agent’s task. As
part of its service, the agent may search for new documents
to extend its corpus, e.g., to add new information or provide a
well-rounded collection of documents given a user request for
document retrieval. We refer to this internal task of an agent
as corpus extension.

To decide on a corpus extension, the agent has to determine
if a document is related to another document. Relatedness
can be captured by some measure of similarity, defined using
words directly or representations derived from them such as
topic-word probability distributions, inferring abstract topics
represented as a distribution over a vocabulary, or SCD-word
probability distributions, representing how often words appear
around the locations of SCDs. Kuhr et al. [1], [2] have worked
with three categories of documents based on similarity defined
on SCD-word probability distributions: (i) quasi copies, a.k.a.
similar documents, (ii) extensions, and (iii) revisions. All
other documents are assumed unrelated. However, classifying
documents on similarity may lead to looking at documents
that only contain more of the same, albeit possibly updated
information.

To avoid being stuck in this bubble of similarity, we need to

define a different measure of relatedness. Therefore, we focus
on complementarity, which unfortunately is hard to define
given simply words or numbers in distributions or vector rep-
resentations. Complementary documents may use a completely
different vocabulary, which may render it as an unrelated
document given similarity measures based on words. In terms
of vector representations, one may think of a complement as
a document having high values in certain dimensions where
another one has low values. This consideration may also apply
to completely unrelated documents, though, making it a not
very effective measure.

To get a grip on complementarity by way of a formal
definition, we turn to SCDs, specifically, SCDs in the form
of relational tuples such as subject-predicate-object (SPO)
tuples together with a taxonomy that specifies a concept
hierarchy for the entities occurring in SCDs. We hypothesize
the following: Complementary documents have SCDs that
contain different constants of the same concept in a taxonomy.
Given this hypothesis, we are able to formally define com-
plementary documents and specify a corresponding document
classification problem, thereby adding another document type
– complement – to the set of document categories mentioned
above. To solve the classification problem, we calculate a
complementarity value between two documents based on their
SCDs and how they interrelate given a taxonomy. Based on
the complementarity value, an agent may decide to extend its
corpus with a document or not. The agent may even use com-
plementary SCDs to highlight points of interest, that is, areas
where complementary SCDs occur frequently. Specifically, the
contributions of this paper are:

(i) a definition of the document classification problem for
complements and, for solving the problem, a definition
of complementarity for SCDs in the form of relational
tuples and a definition of complementarity for documents
based on complementary SCD,

(ii) a solution approach to the problem, which can be used
for corpus extension based on complementarity, and

(iii) a case study regarding the classification performance
of our solution approach, compared against the corpus
extension method of [1] using similarity.

The remainder of this paper is structured as follows: We



start with related work followed by a specification of notations
and a recap of SCDs and document categories. Afterwards, we
specify complementarity based on SCDs and present a solution
approach to classifying complementary documents. Next, we
present a case study and end with a conclusion.

II. RELATED WORK

Over the past 20 years, a considerable number of automatic
(semantic) annotation systems have been developed. Generally,
these annotation systems attach additional data to various
concepts, e.g., people, organizations, or places, in a given
text, enriching the documents with machine-processable data.
Some famous automatic annotation systems are YEDDA [3],
Slate [4], MINTE [5], and YAGO [6]. For further annotation
systems, please refer to [7]. Some annotation systems like
OpenCalais [8] even automatically attach data from DBpe-
dia [9] acting as external knowledge base (KB) to extractable
named entity (NE) in the text. That is, the extractable NEs are
matched to data in a KB to add additional data from the KB
to the document. Adding additional data to documents might
increase the performance of a document retrieval system.

In this paper, we investigate a different but related problem,
namely estimating the complementarity of a new document
with respect to the documents in a reference library of an
agent. The complementarity of a document is based on NEs
extractable from the text of the document and the NEs avail-
able in documents from the reference library. An agent can
decide to extend a reference library with a new document
complementary to documents in its library. In general, other
automatic annotation systems ignore the context of a reference
library and add data to documents already available in the
reference library of an agent.

Surveying methods of text mining, one can base a decision
if a new document provides a value for an agent on different
aspects, e.g., (i) similarity of text in the spirit of tf.idf [10],
comparing a vector representation of a new document with
vector representations of the documents in the corpus, (ii) sim-
ilarity of topics in the spirit of latent Dirichlet allocation
(LDA) [11], comparing an estimated topic distribution of a
new document with topic distributions of documents in a
given corpus, or (iii) entity matching [12] using named-entity
recognition (NER), comparing entities (and relations) retrieved
from the new document with entities (and relations) from
SCDs in the corpus. We aim at providing an approach to esti-
mating the complementarity of a new document using a given
concept hierarchy and entities. The first two approaches has
drawbacks regarding identifying complementary documents:
Both are bag-of-words approaches, i.e., they ignore the order
of words and extractable NE. Thus, we use elements from
entity matching to link entities from a document to an external
concept hierarchy.

Another class of related work deals with HMM-based clas-
sification. Classification and statistical learning using hidden
Markov models (HMMs) has achieved remarkable progress
in the past decades. Using an HMM is a well-investigated
stochastic approach for modeling sequential data, and the

generation process of HMMs has been successfully applied in
a variety of fields, such as speech recognition [13], character
recognition [14], finance data prediction [15], [16], credit card
fraud detection [17], and workflow mining [18]. Most systems
learn an HMM by the Baum-Welch algorithm [19], which is a
special case of the EM algorithm [20]. The goal of an HMM
is estimating the most likely sequence of hidden states in a
dynamic programming fashion by the Viterbi algorithm [21].

III. PRELIMINARIES

This section specifies notations, defines SCD-word proba-
bility distributions, and recaps how an SCD-word probability
distribution can be used to classify documents.

A. Notation

We define the following terms to formalize the setting
of a corpus containing documents, where each document is
associated with SCDs.

• A word w is a basic unit of discrete data from a vocabu-
lary V=(w1, . . . , wV ), V ∈ N, and can be represented as
a one-hot vector of length V having a value of 1 where
w = wi and 0’s otherwise.

• A document d is a sequence of words (wd1 , . . . , w
d
N ),

N ∈ N. Function #words(d) returns the total number
of words in d, i.e., N

• A corpus D represents a set of D ∈ N documents
{d1, . . . , dD} and VD returns the corpus-specific vocabu-
lary containing all different words occurring in documents
of corpus D.

• An SCD t is a relational tuple of the form subject-
predicate-object and t can be associated with a position
ρ in a document d. We represent a located SCD t by the
tuple (t, {ρi}li=1), where {ρi}li=1 represents the l ∈ N
positions in d that t is associated with.

• For each located SCD tj ∈ g(d) exists a corre-
sponding SCD window wind,ρ referring to a sequence
of words in d surrounding position ρ in d, i.e.,
wind,ρ=(wd(ρ−i), ..., w

d
ρ, ..., w

d
(ρ+i)), i ∈ N and ρ marks

the middle of the window.
• For each document d ∈ D there exists a set g de-

noted as SCD set containing a set of m located SCDs
{(tj , {ρi}

lj
i=1)}mj=1. Given a document d or a set g,

the terms g(d) and d(g) refer to the set of located
SCDs in document d and the corresponding document d,
respectively. The set of all located SCDs tuples in corpus
D is then given by g(D) =

⋃
d∈D g(d).

• Each word wd ∈ wind,ρ is associated with an influence
value I(wd, wind,ρ) representing the distance between
a word wd and position ρ. The closer a word wd is
positioned to the position ρ in wind,ρ, the higher its cor-
responding influence value I(wd, wind,ρ) is. Generally,
the function to estimate the influence value of a word
depends on the specific task of an agent.



Algorithm 1 Forming SCD-word matrix δ(D)
1: function BUILDMATRIX(Corpus D)
2: Input: D
3: Output: δ(D)
4: Initialize an m× V matrix δ(D) with zeros
5: for each d ∈ D do
6: for each t ∈ g(d) do
7: for ρ of t do
8: for each w ∈ wind,ρ do
9: δ(D)[t][w] += I(w,wind,ρ)

10: Normalize δ(D)[t]
11: return δ(D)

B. SCD-Word Probability Distributions

We define an additional representation for each SCD by
taking a vector of length V , where V = |VD| s.t. each vector
entry refers to a word in the vocabulary V of all documents
in corpus D. The vector entry itself is a probability value
describing how likely it is that a word occurs in an SCD
window surrounding the position associated with the SCD,
yielding in an SCD-word probability distribution for each
SCD associated with documents in D. In other words, given
a corpus containing documents associated with SCDs, we can
correlate SCDs and words in a window around the SCDs from
documents in the corpus resulting in SCD word frequency
vectors, one vector for each SCD. We use a word frequency
vector to represent each SCD instead of a bit vector, since
SCDs are not exclusively associated with a single document
in a corpus and might occur more than once.

Algorithm 1 generates the SCD-word probability distribu-
tion for all m SCDs in the SCD set g(D). Equation (1)
represents the SCD-word probability distribution by an m×V
matrix δ(D), with the SCD-word probability distribution vec-
tors forming the rows of the matrix:

δ(D) =



w1 w2 w3 · · · wV

t1 v1,1 v1,2 v1,3 · · · v1,V

t2 v2,1 v2,2 v2,3 · · · v2,V
...

...
...

...
...

...
tm vm,1 vm,2 vm,3 · · · vm,V

 (1)

Faced with a document having no SCDs, an agent may
want to enrich the document with SCDs from the corpus
based on the SCD-word probability distribution. To this end,
the agent divides the new document into M windows and
generates a word frequency vector from the words in each
window. The agent compares the word frequency vector of
each window with the word frequency vector of each SCD
associated with documents in the corpus. The SCD where
the word frequency vector has the smallest distance (highest
cosine similarity) to the word frequency vector of the window
is associated with the window. We refer to this associated
SCD as the most probably suited subjective content description

Algorithm 2 Estimating MPSCDs

1: function ESTIMATEMPSCD(new document d′, Number
of SCDs M , matrix δ(D))

2: Input: Document d′, Number M , matrix δ(D)
3: Output:W containing MPSCDs t, MPSCD similarity

values s, window details wind′,ρ
4: σ ← words(d′)

M , W ← ∅
5: for ρ← σ

2 ; ρ ≤ words(d); ρ = ρ+ σ do
6: δ(wind′,ρ)← new zero-vector of length V
7: for w ∈ wind′,ρ do
8: δ(wind′,ρ)[w]+ = I(w,wind′,ρ)

9: t← argmaxi
δ(D)[i]·δ(wind′,ρ)
|δ(D)[i]|·|δ(wind′,ρ)|

in wind′,ρ

10: s← maxi
δ(D)[i]·δ(wind′,ρ)
|δ(D)[i]|·|δ(wind′,ρ)|

11: W ←W ∪ {(t, s, wind′,ρ)}
12: return W

(MPSCD). Moving over all M windows, this procedure results
in a sequence of MPSCDs, where each MPSCD is associated
with a location in the new document. Algorithm 2 outlines
the procedure, which not only returns the MPSCDs but also
the cosine similarity values of each MPSCD and information
about the windows.

C. Corpus Extension using Similarity

Using the sequence of MPSCD similarity values, Kuhr et
al. [1], [2] present a method with which an agent can classify
a new document d′ by one of the following four categories:
• Quasi copy: Document d′ is classified as sim if the values

in the MPSCD similarity sequence are mostly high and
contain only few entries with slightly lower values.

• Extension: Document d′ is classified as ext, representing
an extension of another document d ∈ D, if d′ is
generated by appending a document d, i.e. d′ represents
an updated version of d.

• Revision: Document d′ is classified as rev, representing
a revision of another document d ∈ D generated by
replacing or removing parts of d.

• Unrelated document: Document d′ is classified as unrel
if the values in the MPSCD similarity sequence of d′ are
mostly low.

IV. ESTIMATING COMPLEMENTARY DOCUMENTS

This section presents a new approach for identifying docu-
ments containing complementary content with respect to the
content of documents in a given corpus. We use the task of
corpus extension as the application scenario for complemen-
tary documents. However, the given definitions and algorithms
can be tweaked with minimal effort for other tasks such as
document retrieval. First, we define a document classification
problem for complementary documents. Second, we provide
a definition of complementary documents based on SCD
similarity values to solve the problem. Third, we present an
approach to classifying a new document d′ as complementary



by analyzing the structure of SCDs associated with d′ and
those SCDs associated with documents in D.

A. Document Classification Problem: Complement

Given an unknown document d′ and a corpus D, an agent
might be interested in whether d′ is a complement to docu-
ments in D. Formally, we ask whether d′ is a complement
to d (Complement = true) or not (Complement = false),
making the document classification problem to a binary clas-
sification problem s.t.

argmax
v∈{true,false}

P (Complement = v | d′,D). (2)

Since it is non-trivial to get the necessary probability
distributions, we solve the problem of Eq. (2) by looking at
SCDs, defining complementarity in terms of SCDs similarity
values and defining a complement by using the notion of
complementary SCDs. Based on these definitions, we specify
a solution approach for corpus extension.

B. Complementary Documents

To classify a document as providing complementary content
with respect to the documents in the corpus of an agent,
we need a formal definition of complementarity, for which
we use the SCDs that are available in an SPO format and
a taxonomy for interrelating entities occurring in them. As
such, we transform the problem given in Eq. (2) by defining a
complement as a document with a complementarity value that
exceeds a certain threshold. Focussing on SCDs in the SPO
format also has the upside that we can automatically extract
relational structures using available NE extraction methods
such as OpenIE [22] to generate SCDs for documents. We
can even use a lexical database of semantic relations and use
hierarchies to interrelate those entities.

Before presenting a definition of complementary SCDs and
documents, let us consider an example for a new document d′

containing complementary content to the content of documents
in corpus D. We will pick up the example again in the course
of this article.

Example 1. Assume that an agent is working with an indi-
vidual collection of documents in corpus D. The documents
contain text about competitions at the Olympic Games 2021 in
Tokyo. Thus, vocabulary VD is mainly characterized by words
in the context of sports. The vocabulary of a new document d′

giving a description about the occurrence of infection of
SARS-CoV-2 in Tokyo is different from VD. In the context of
similarity, d′ would probably be classified as unrelated since
the vocabularies VD and Vd′ might be very different. However,
the content of d′ might be complementary to the content of
some documents in D and thus, might support an agent to
interpret content from documents in D more suitably.

Definition 1 (Complementary SCDs). Given two documents
d, d′ and a taxonomy ξ, an SCD ti ∈ g(d′) is complementary
to an SCD tj ∈ g(d) if the entities in ti and tj are different
but the entities are instances of the same concept in ξ or the

predicates between the entities share a common meaning. For-
mally, the following seven types of complementarity between
SCDs ti and tj exist:
(1) s-complementary: ti = (si, p, o), tj = (sj , p, o),
(2) p-complementary: ti = (s, pi, o), tj = (s, pj , o),
(3) o-complementary: ti = (s, p, oi), tj = (s, p, oj),
(4) sp-complementary: ti = (si, pi, o), tj = (sj , pj , o),
(5) so-complementary: ti = (si, p, oi), tj = (sj , p, oj),
(6) op-complementary: ti = (s, pi, oi), tj = (s, pj , oj), and
(7) spo-complementary: ti = (si, pi, oi), tj = (sj , pj , oj),
where, with ↑ referring to the concept in ξ that an entity
belongs to, o↑i = o↑j , s↑i = s↑j , and pi is a synonym that shares
a common meaning with pj . Let X refer to the set of the
different complementarity types {s,p,o,sp,so,op,spo}.

An indicator function Cx(ti, tj), x ∈ X , returns 1 if ti and
tj fulfil the conditions mentioned above for x-complementarity
and otherwise 0, including when ti or tj is not in SPO format.

Generally, it might be possible to adapt the return value of
the indicator function Cx(ti, tj) to include uncertainty. Next,
we give an example on complementary SCDs.

Example 2 (Complementary SCDs). Assume that document
d is in the agent’s corpus and the agent is faced with a new
document d′. Additionally, both documents are associated with
SCDs yielding to g(d) = {t2, t4} and g(d′) = {t1, t3} where:
• t1 = (Olympic Games 2021, in, Tokyo),
• t2 = (SARS-CoV -2, spreading in, Tokyo),
• t3 = (UEFA Euro 2020, in, Europe), and
• t4 = (Covid-19, spreading in, London)
Given the following hierarchy, where solid lines represent

the hierarchy between classes of a given taxonomy and dashed
lines represent instances of classes from the taxonomy,

continent

country europe

city

london tokyo

the indicator function Co(ti, tj) returns 1 for i = 1 and j = 4
since both london and tokyo are instances of class city.
Additionally, the indicator function returns 1 for i = 3 and
j = 4 since london is a city and city is a subclass from
continent, which is true for europe, too. Thus, we have
a o-complementary for t1 and t3 and for t2 and t4.

The different types of complementarity form a lattice as
depicted in Fig. 1 with the first three types composing the
lowest level, the next three types following on the next higher
level, and the spo-type constituting the top entry. Up the
lattice, the SCDs share fewer and fewer identical entities, with
the top entry only requiring that the three positions are filled
with different instances of the same concept, i.e., what falls
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Fig. 1: The complementarity types of Def. 1 in a lattice.

under complementarity of lower levels also falls under com-
plementarity of higher levels. Next, we define complementary
documents based on Def. 1.

Definition 2 (Complement). The complementarity value
c(d′, d) between documents d′ and d is given by

c(d′, d) =
∑

ti∈g(d′)

∑
tj∈g(d)

∑
x∈X

wxCx(ti, tj). (3)

where wx ∈ [0, 1] is a weight assigned to each complemen-
tarity type, with

∑
x∈Xwx

= 1. Given a threshold θd, d′ is
complementary to d and therefore called a complement if

c(d′, d) > θd. (4)

Given the complementarity lattice, it is reasonable to have
non-zero weights only between complementarity types of the
same level. E.g., given spo-complementarity, wx should be
set to zero for every other complementarity type, i.e., ∀x ∈
X , x 6= spo, as these types x would be covered by spo. E.g.,
for the lowest level, wx = 0 for all x ∈ {sp,so,op,spo}
while ws, wp, and wo can be chosen freely as long as they
add up to 1. The threshold θd depends on a given corpus and
may reflect the agent’s need for new documents. With a need
for more documents, an agent may choose a low threshold
in combination with the broadest sense of complementarity,
spo. Looking explicitly for complementary documents about
a certain subject s, a high threshold and op-complementarity
might be a fitting choice.

Given the decision criterion in Eq. (4), we solve the
document classification problem of Eq. (2). Assuming that
complements are considered a subset of unrelated documents,
we could focus computing Eq. (4) for those documents that are
otherwise classified as unrelated. How well this classification
works, we showcase during the case study of Section V. Next,
we present how to use the definitions of complementarity for
the task of corpus extension and briefly discuss what else can
be done with the setting available.

C. Corpus Extension with Complements

Corpus extension as a task so far has used similarity
values, specifically the sequence of MPSCD similarity values
over a document, to classify an unknown document as either
of the document types of sim, ext, rev, and unrel, and
then decide its inclusion based on this outcome. Similar
and unrelated documents were ignored whereas extensions

Algorithm 3 Corpus Extension with Complements

1: function EXTENDCOMPLEMENT(D, d′, θD, {wx}x∈X )
2: if g(d′) = ∅ then
3: Add SCDs to d′ using OpenIE
4: c← 0
5: for each ti ∈ g(d′) do
6: for each d ∈ D do
7: for each tj ∈ g(d) do
8: for each x ∈ X do
9: c← c+ wxCx(ti, tj)

10: if c > θD then
11: return true
12: return false

and revisions were added or exchanged with the originals.
An agent performing corpus extension with complementary
documents has to answer the same question about possibly
including an unknown document. However, now the agents
aims to extend its corpus with complements, which it may
have previously classified as unrelated. To perform the task,
the agent applies the definitions above for reaching a decision.

Algorithm 3 shows an outline of the workflow the agent
follows when presented with an unknown document d′ for
possible inclusion into its corpus D on the condition that d′

is a complement in D. The algorithm uses a corpus-specific
threshold θD, which fulfils the same role as the threshold θd
in Eq. (4) but considers that it applies to the whole corpus
and not a single document. The first if-condition asks whether
d′ already contains SCDs. If not, the agent uses OpenIE to
extract SPO tuples from the text of d′. Then follows a for loop
that accumulates the complementarity values for each SCD ti
associated with d′ over all documents in D. Afterwards, the
agent tests the accumulated value against θD to return true
if it considers d′ a complement based on Def. 2 and false
otherwise.

D. Discussion
The following paragraphs discuss complements in the con-

text of the document types mentioned above, as part of the task
of document retrieval as well as for augmenting user output
by returning positions of interest.

a) Complements as a Document Type: We can introduce
a complement as another document type (compl) to the corpus
extension setting in [1] and [2]. The classification problem
there is defined given the sequence of MPSCD similarity
values W computed by Alg. 2 for an unknown document d′

and a corpus D as follows:

argmax
y∈Y

P (Type = y | W), (5)

with Y = {sim, ext, rev, unrel}.
Generalizing and merging Eqs. (2) and (5), we could

formulate the classification problem as follows:

argmax
y∈Y

P (Type = y | d′,D), (6)



with Y = {sim, ext, rev, unrel, compl}. In Eq. (6), an
unknown document and the corpus are given. A reasonable
workflow to classify an unknown document would then be to
use the document type detection algorithm from [1] and [2]
and then apply Alg. 3 to the unknown document if the previous
classification returns unrel.

b) Document Retrieval: For document retrieval in the
context of complementarity, i.e., complement retrieval, a user
could provide a document d′ for which they want k comple-
mentary documents returned from the corpus D available to
the agent. The agent would then calculate complementarity
values for d′ compared to each document d ∈ D, i.e., c(d′, d)
following Def. 2, and return the top-k documents, i.e., those k
documents with the highest complementary values. In contrast
to Alg. 3, the agent would not accumulate the complementarity
values but rather store the current top-k documents with their
complementarity value and test whether the next document d
has a higher value than the lowest value currently stored and
replace that document if true.

c) Augmenting Enrichment: Positions of Interest: In gen-
eral, it is difficult to understand the reason a new document
is classified as a complementary document by looking at
the content of the document. The only thing we know for
a document being classified as complementary is that some
entities from a new document share a class with entities
from documents in the corpus. Thus, one might highlight
complementary SCDs s.t. it is possible to identify the positions
in a text that are relevant for Alg. 3 classifying a document
as a complementary document. We denote those positions as
positions of interest.

With this definition of complementarity in place and a
solution approach specified with Alg. 3, we turn to evaluating
the setting in a case study.

V. CASE STUDY

In this section, we present a case study illustrating the
potential of the definition of complementary documents. We
demonstrate that document classification using the sequence
of MPSCD similarity values as evidence in an HMM is not
able to detect complementary documents. We show that an
implementation of Alg. 3 performs well on the problem.
Before we look at the results, we describe the corpus and
workflow used in the case study.

A. Corpus

In this case study, we use articles from the English
Wikipedia as documents in a corpus. All documents in the
corpus contain text about car manufacturers1. Thus, documents
about car manufacturers are related documents. We manually
create document extensions by concatenating related and un-
related documents. To create a revised version of a document,
we replace 40% of the sentences in related documents with
sentences from unrelated documents. The class of unrelated
documents contains the following 12 Wikipedia articles: Apple

1https://w.wiki/4FUS

Inc., Apple, IPhone, Microsoft Windows, Google, Donald
Trump, Atlantic Ocean, Angela Merkel, Baltic Sea, SpaceX,
Lawyer, and Titanic. Wikipedia articles about the cities where
each of the car manufacturers’ headquarters are located act as
complementary documents. For example, the document Toyota
City, Aichi, Japan is complementary to Toyota Motor.

Generally, the context of the corpus we are interested in
can be described by cars and their manufacturers. Unrelated
documents like Apple Inc. do not represent the manufacturing
of cars and a profession like Lawyer neither represents cars nor
manufacturing. We argue that complementary documents used
in the evaluation fulfill our definition of complements, as the
production of cars influences the city where the manufacturer
is located, e.g., employees working at the manufacturer will
reside in the city, the manufacturer pays taxes, and geo-
graphical conditions or historical circumstances of the city
may originate from the manufacturer. However, some of the
unrelated documents might be also a bit complementary, e.g.,
Apple Inc. contains a short paragraph about an autonomous car.
In contrast, the fruit Apple contains no content about cars or
manufacturers. In this manner, it is important to notice that our
definition of complementarity is universal and is not dependent
or trained on a specific corpus.

B. Workflow and Implementation

Algorithm 2 in combination with the HMM-based clas-
sification and Alg. 3 are implemented using Python. We
use OpenIE [22] to extract SCDs in the SPO format from
each window over the word sequences from the articles.
Additionally, we use the WordNet [23] interface, provided by
the Natural Language Toolkit2, to detect if entities share the
same concept or a common meaning in the sense of Def. 1.

Our implementation is optimized to run on multiple proces-
sor cores and uses the libraries Gensim3, NumPy4, SciPy5 and
Pomegranate6. We run all experiments in a Docker container
on a machine featuring 8 Intel 6248 cores at 2.50GHz (up to
3.90GHz) and 16GB RAM.

Before forming the SCD-word matrix using Alg. 1, we pre-
process all documents by (i) removing punctuation, (ii) low-
ercasing all characters, (iii) stemming words, (iv) tokenizing
the result, and (v) eliminating tokens from a stop-word list
containing 179 words. OpenIE and WordNet’s morphological
processing Morphy use their own default preprocessing.

a) Corpus Extension using Similarity [2]: A new docu-
ment may be classified belonging to one of the four classes
sim, rev, ext or unrel. In this scenario, we assume truly
unrelated documents and complementarity documents are both
unrel documents. The sequence of MPSCD similarity values
is calculated for each new document and transformed into a
sequence of observations. Then, the Viterbi algorithm [21] is
used to calculate the probability of the most likely sequence

2https://www.nltk.org/
3https://radimrehurek.com/gensim/
4https://numpy.org/
5https://www.scipy.org/
6https://pomegranate.readthedocs.org/

https://w.wiki/4FUS
https://www.nltk.org/
https://radimrehurek.com/gensim/
https://numpy.org/
https://www.scipy.org/
https://pomegranate.readthedocs.org/
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Fig. 2: Left: Average scaled similarity values per class gained from the MPSCD-based approach. Middle: Average scaled
complementarity values per class. Right: Accuracy, precision, recall, and F1-score detecting complementary documents in the
set of unrelated and complementary documents.

given the observations for each of the four HMMs, repre-
senting sim, rev, ext or unrel. We understand the probability
of the most likely sequence of an HMM for a sequence of
observations as sequence similarity. Using this similarity, we
classify the new documents, e.g., by taking the most probable
HMM’s class or using a threshold on the similarity value.

b) Corpus Extension using Complementarity: Using the
similarity for corpus extension, we classify truly unrelated
documents and complementary documents in a single class
unrel. Def. 2 detects complementary documents and thus
allows to separate truly unrelated documents from comple-
mentary documents. The implementation of Alg. 3 considers
each pair of SCDs, i.e., SPO tuples, between ti ∈ g(d),
d ∈ D and tj ∈ g(d′). Due to the huge amount of pairs, we
randomly sample 100 pairs from each set and consider each
of their combinations. Then, we calculate all complementarity
types x ∈ {s,p,o,sp,so,op,spo} for each pair ti, tj and
return continuous values from the indicator function Cx. For
each item in the SPO tuples of ti, tj , we use the library
Morphy to extract matching entities in WordNet. If there are
multiple possible entities, we consider all possible entities
and use the path similarity from WordNet to detect if the
entities share the same concept or a common meaning. Entities
with path similarities smaller than 0.1 are treated as different.
Finally, we return the average or maximum across all path
similarities as complementarity value Cx. For example, if
the object of ti is represented by the entities e1, e2 and
the object of tj by the entities e′1, e

′
2, the complementarity

value max is given by max{simpath(e1, e
′
1), simpath(e1, e

′
2),

simpath(e2, e
′
1), simpath(e2, e

′
2)}. We normalize the comple-

mentarity values after each sum of Definition 2 such that
c(d′, d) ∈ [0, 1]. Furthermore, we also calculate cx(d

′, d) only
considering complementarity type x.

C. Results

In Fig. 2, we present the results of the case study. The
similarity values and complementarity values are scaled to the
interval [0, 1]. In the middle plot, the sequence similarities
gained from the MPSCD-based approach are shown for all five
classes. The similarity value of compl and unrel documents is
nearly equal. Thus, it is not possible to detect complementary
documents using the MPSCD-based approach presented in [2].
In the left plot, the complementarity values max cop(d

′, d) are
shown for all five classes. Complementary documents have a
much higher value than unrelated documents, therefore it is
possible to separate complementary documents from unrelated
documents using a threshold θD. Interestingly, extended doc-
uments are nearly as complementary as unrelated documents
and revisions are similar to complements using our definition
of complementarity.

The MPSCD-based classification has a much smaller run-
time than the complementarity-based classification approach.
The following durations are measured excluding the runtime
of OpenIE. Forming the SCD-word matrix and training the
HMMs takes on the corpus used in the case study 2.5
minutes and the classification of all documents takes 1.7
minutes. Together, 4.2 minutes are needed by MPSCD-based
classification of which 2.5 minutes may be done offline. The
complementarity-based classification approach does not need
any training and reaches a total runtime of 2.25 hours on the
corpus used in the case study. Thereof, the calculation of the
path similarities in WordNet are the most expensive part. To
reduce the runtime it would possible to use a smaller sample
size than 100, since the sample size influences the runtime
quadratically. Small sample sizes do not seem to significantly
worsen the results.

In the right plot of Fig. 2, the classification performance of
Alg. 3 is shown. In terms of an agent’s workflow, we assume
that first the document type detection algorithm from [1] and



[2] is applied to a set of unknown documents and afterwards,
Alg. 3 is applied to those documents where the previous
classification returns unrel. The idea is that an agent does
not need to perform complement detection on all documents
that have to be classified, but only on those documents that
are classified as unrelated.

We use three different scenarios to evaluate the classification
performance for complementary documents. To be classified
as complementary document, the document is detected as
complementary document to:

(i) all documents in the corpus (all),
(ii) exactly its corresponding document in the corpus, i.e.,

the city of the car manufacturer’s headquarter to the car
manufacturer (corresponding), and

(iii) any document in the corpus (any).
In general, it depends on the agent which of the three scenarios
promises the most added value for its task. The corpus-specific
thresholds used in the right plot of Fig. 2 are θD,all = 0.675,
θD,corresponding = 0.65 and θD,any = 0.4.

In all three scenarios the recall is very high, such most
complementary documents are detected. The scenario any
reaches the best scores as it is more robust against document
outliers in the corpus, e.g., the unrelated document Apple Inc.
containing a paragraph about an autonomous car.

In summary, the case study shows that the previous HMM-
based classification method has its limits in terms of support-
ing an agent in choosing documents for corpus extensions that
provide complementary information. Algorithm 3 provides a
good foundation to find complementary documents for an
agent’s corpus.

VI. CONCLUSION

If an agent is presented with a new document, it may decide
whether to extend its corpus with the new document or not by
classifying the document in a context-specific way. This paper
enables the agent to detect complementary documents to avoid
being stuck a bubble of similarity. We argue, complementary
documents present the agent’s context from a different point
of view or provide further information. The approach operates
on the SCDs of the new document and the corpus. This paper
gives a definition of complementary SCDs and defines com-
plementary documents based on their complementary SCDs.
To extend a corpus based on complementary documents, a new
document is checked for complementarity, possibly after is has
first been classified as unrelated based on its similarity to the
corpus. In a case study, we demonstrate that our definition
of complementarity allows an agent to separate unrelated and
complementary documents, while an MPSCD similarity-based
approach can not distinguish complementary and unrelated
documents.

Our future work pursues the goal to associate a document
with complementary SCDs. Then, it would be possible to
form a complementary SCD-word distribution matrix for a
corpus and detect complementary documents without using
WordNet. Additionally, omitting WordNet would circumvent

the time-consuming path similarity calculations, making it also
an interesting point for further research.
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