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Abstract
This paper presents an embedding of ontologies ex-
pressed in the ALC description logic into a real-
valued vector space, comprising restricted existen-
tial and universal quantifiers, as well as concept
negation and concept disjunction. Our main re-
sult states that anALC ontology is satisfiable in the
classical sense iff it is satisfiable by a partial faithful
geometric model based on cones. The line of work
to which we contribute aims to integrate knowl-
edge representation techniques and machine learn-
ing. The new cone-model of ALC proposed in this
work gives rise to conic optimization techniques for
machine learning, extending previous approaches
by its ability to model full ALC.

1 Introduction
The idea of embedding words into low-dimensional continu-
ous vector spaces has been implemented successfully in vari-
ous algorithms with various applications in the realm of infor-
mation retrieval [Goldberg and Levy, 2014; Pennington et al.,
2014; Levy and Goldberg, 2014]. However, these approaches
are insensitive to the relational—or more generally: to the
predicate-logical—structure of documents. The embedding
idea was pushed further (see, e.g., Nickel et al.; Bordes et al.
[2011; 2013] and, for an overview, Wang et al. [2017]) in
order to design embeddings of knowledge graphs, i.e., of sets
of triples of the form (a R b) for objects a and b and relations
R, or even embeddings of knowledge graphs with additional
background knowledge, say an ontology consisting of axioms
in some (expressive) logic [Mehran Kazemi and Poole, 2018;
Kulmanov et al., 2019].

Many classical approaches of knowledge graph embed-
dings such as TransE [Bordes et al., 2013] suffer from a
lack of full expressivity in the sense laid down by Mehran
Kazemi and Poole [2018]: given a knowledge graph and a set
of triples known to be true (positive set) as well as triples that
are known to be false (negative set), the embedding is said to
be fully expressive if it maps the relations and constants into a
space such that (a R b) holds in the embedding iff it is in the
positive set and (a R b) does not hold iff it is in the negative
set. The lack of (full) expressivity of classical approaches to
knowledge graph embeddings is due to a decision on how to

model relations R: rather than following the classical logic
approach, relations are modelled with computationally feasi-
ble data structures (e.g., in case of TransE by vector trans-
lations) that fit into the general mathematical framework of
continuous embeddings. In fact, following the translation ap-
proach of TransE one can see that the induced logic is not that
of arbitrary relations but that of functional relations.

These observations motivate the research on embeddings
that give a better compromise between the geometrical mod-
els that can be constructed by means of learning and the de-
mands of ontologies. This paper proposes a new embedding
of ontologies expressed in the ALC description logic into a
real-valued vector space, providing restricted forms of exis-
tential and universal quantifiers as well as concept negation
and concept disjunction. Our main result states that an ALC
ontology is satisfiable in a classical sense iff it is satisfiable
by a geometric model that interprets all concept descriptions
as cones (concretely: axis-aligned cones). We derive this re-
sult by first considering the Boolean part of ALC ontologies
and then generalizing this toALC with concepts up to a fixed
quantifier rank. The geometric models we use are partial and
thus allow some uncertainty to be retained, i.e., if x is only
known to be a member of the union of two atomic concepts,
then our partial model will not commit to saying to which
atomic concept x belongs. Put differently, we need partial
models in order to represent the knowledge contained in the
ontology faithfully: exactly those axioms derivable from the
ontology should be represented in a partial model.

This paper continues by reviewing related approaches.
Section 3 summarizes ALC, Section 4 introduces al-cones
and discusses their motivation. In Section 5 we present an
embedding for propositional ALC and show its complete-
ness. Section 6 then considers the non-propositional case.
The paper concludes with a brief discussion of the results.

2 Related Work
When combining knowledge representation (KR) and ma-
chine learning (ML) techniques, ML algorithms are either
used to learn an ontology or they exploit the ontologies as
constraint specifications in order to optimize statistical mod-
els. One recent approach along this line that is based on the
geometric interpretation of knowledge graph embeddings is
presented in Kulmanov et al. [2019]. Here, the lightweight
logic EL++ is considered. The method is based on a geo-



metric interpretation of TransE [Bordes et al., 2013], which
interprets objects as vectors and relations as translations of
these vectors. A concept is in this case an open n-ball with a
fixed radius and relations are translations of the n-balls. The
method is limited due to the restricted constructions available
in EL++, which in particular has no full concept negation.

In Gutiérrez-Basulto and Schockaert [2018], geometric in-
terpretations are defined as classical interpretations of an on-
tology with two specific constraints: the domain is a Eu-
clidean space of some dimension m and the interpretations
of all (n-ary) relations are constrained to convex sets over n-
wise cartesian products Rnm of Rm. The main difference to
classical knowledge graph approaches is the idea of interpret-
ing n-ary relations (classically) by n-wise cartesian products
and (non-classically) requiring them to be convex sets. Their
approach achieves ontologies expressed as rules in datalog±
[Calı̀ et al., 2009], which admits rules with existentials in the
head of the rule (alias tuple-generating dependencies) and in-
tegrity constraints, i.e., rules of the form ∀~xψ(~x) → ⊥ with
a conjunction of atoms ψ(~x). Their main result is that an on-
tology under some specific constraint (quasi-chainedness) is
satisfiable classically iff it is satisfiable by a geometric inter-
pretation where all relations are interpreted by convex sets.
The use of convex sets for the interpretation of relations can
be justified by their importance as, on the one hand, compu-
tationally feasible data structures as used in convex optimiza-
tion [Boyd and Vandenberghe, 2004] and, on the other hand,
as a linguistically and cognitively justified structure for rep-
resenting concepts [Gärdenfors, 2000].

Convexity is preserved under many operations, in partic-
ular it is preserved under intersection and projection, which
are the main operations expressible in the allowed fragment of
Gutiérrez-Basulto and Schockaert [2018]. Interestingly, due
to the use of integrity constraints, these ontologies implic-
itly use some aspect of negation, namely that of disjointness.
But this is not full negation: implicitly, negation is allowed
to occur on the righthand side as atomic negation, but not as
negation on the lefthand side of a rule. In the latter case nega-
tion allows us to express coverage aspects which amounts to
the use of disjunction. And this restriction in the language
is not surprising as convexity is neither preserved under set
complement nor under set union.

In our approach, we try to keep the cake (stick to convexity)
and eat it (allow for negation). Our approach follows that of
Gutiérrez-Basulto and Schockaert [2018] in interpreting rela-
tions as tuples over a domain. Our approach also presumes
finite satisfiability of the ontology but works dually by con-
structing concepts on the axes and then placing individuals on
these. The reason is that we incorporate an additional struc-
ture, namely a scalar product, which in turn induces the nega-
tion operator. And this one constrains the potential places
in which the negations of concepts can be placed. This, in
particular, prevents adapting the quasi-chainedness property
which was defined for datalog± and not ALC.

3 The Description Logic ALC
We are going to work with the description logic ALC
[Baader, 2003]. We assume that there is a DL vocabulary

Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

negation ¬C ∆I \ CI

universal quantifier ∀R.C {x ∈ ∆I | For all y ∈ ∆I :
If (x, y) ∈ RI then y ∈ CI}

existential quantifier ∃R.C {x ∈ ∆I | There is y ∈ ∆I

(x, y) ∈ RI and y ∈ CI}

Table 1: Syntax and semantics for the DL ALC

given by a set of constants Nc, a set of role names NR and
concept names NC . The ALC concepts (concept descrip-
tions) over NC ∪NR are described by the grammar

C −→ A | ⊥ | > | ¬C | C u C | C t C | ∃R.C | ∀R.C
where A ∈ NC is an atomic concept, R ∈ NR is a role sym-
bol, and C stands for arbitrary concepts. A classical ALC in-
terpretation is a pair (∆, (·)I) consisting of a set ∆, called the
domain, and an interpretation function (·)I which maps con-
stants to elements in ∆, concept names to subsets of ∆, and
role names to subsets of ∆ × ∆. The semantics of arbitrary
concept descriptions for a given interpretation I is given in
Table 1. An ontology O is defined as a pair O = (T ,A) of a
terminological box (tbox) T and an assertional box (abox)A.
A tbox consists of general inclusion axioms (GCIs) C v D
(“C is subsumed by D”) with concept descriptions C,D. An
abox consists of a finite set of assertions, i.e., facts of the
form C(a) or of the form R(a, b) for a, b ∈ Nc. An interpre-
tation I models a GCI C v D, for short I |= C v D, iff
CI ⊆ DI . An interpretation I models an abox axiom C(a),
for short I |= C(a), iff aI ∈ CI and it models an abox axiom
of the form R(a, b) iff (aI , bI) ∈ RI . An interpretation is a
model of an ontology (T ,A) iff it models all axioms appear-
ing in T ∪ A. An ontology O entails a (tbox or abox) axiom
ax, for short O |= ax, iff all models of O are also models of
ax. The quantifier rank for arbitrary concepts C is defined as
the maximal nesting of quantifiers in it. Formally, for anALC
concept define the quantifier rank by recursion as qr(A) = 0,
qr(¬C) = qr(C), qr(C1 ∧ C2) = max{qr(C1), qr(C2)},
and qr(∃R.C) = qr(∀R.C) = qr(C) + 1.

Each tbox T generates a Boolean algebra, the so-called
Lindenbaum-Tarski algebra, as follows: For concepts C,D
let ∼ be the relation defined by C ∼ D iff T |= C v D
and T |= D v C. Relation ∼ is an equivalence relation
inducing for each concept C an equivalence class [C]. Define
operations u, t, ¬ on the equivalence classes by setting [C]u
[D] = [C uD], [C]t [D] = [C tD] and ¬[C] = [¬C] which
can be shown to fulfil the axioms of a Boolean algebra.

4 Al-Cone Models
Our geometric interpretations are based on axis-aligned cones
(al-cones) which form a subclass of the class of convex cones.
A convex cone X is a set that fulfils the following property:
If v, w ∈ X , then also λv + µw ∈ X for all λ, µ ≥ 0. The
polar cone X◦ for X is defined for Euclidean spaces with a
scalar (dot) product 〈·, ·〉 as follows:

X◦ = {v ∈ Rn | ∀w ∈ X : 〈v, w〉 ≤ 0}



In the sequel, we use the term “cone” to refer to convex
cones. Important cones are the so-called n-orthants or n-
hyperoctants. For dimension n = 2 these are the 4 quad-
rants. Using the abbreviations R+ = {x ∈ R | x ≥ 0} and
R− = {x ∈ R | x ≤ 0} we can define the 2n n-dimensional
hyperoctantsH(b1,...,bn) with bi ∈ {+,−} by Rb1×· · ·×Rbn .

Cones can be constructed by unions of neighboring hyper-
octants. Consider next to +, −, also the value u (for union)
and define Ru = R. Then the axis aligned unions of hyperoc-
tants are defined as sets Rb1 ×· · ·×Rbn with bi ∈ {+,−, u}.
By further allowing for projections of all the sets mentioned
above to the axes of the space we get the al-cones.

X is al-cone :⇔ X = X1×· · ·×Xn, Xi ∈ {R,R+,R−, {0}}

So, in n dimensions we have 4n possible al-cones.
Let us now see how Boolean operations can be modeled.

Aside set-based intersection to represent conjunction, special
attention is required. All al-cones are convex cones. Convex
cones are preserved under intersection, polarity, and other op-
erations (such as projection), but not under the set-union op-
erator. This applies to al-cones as well, but by interpreting t
using de Morgan we can circumvent that problem.
Proposition 1. Al-cones X,Y in Rn are closed as follows:

1. The intersection X ∩ Y of X and Y is an al-cone.
2. The polar X◦ is an al-cone.
3. (X◦)◦ = X

4. (X◦ ∩ Y ◦)◦, the convex union of X,Y , is an al-cone.

Proof sketch. (1) holds as Xi in the al-cone definition is
closed under intersection, (2) can be shown by contradic-
tion: Consider one component Xi, suppose it is R+ (other
cases follow similarly). Let v ∈ X be of the form
(0, 0, . . . , xi, 0, . . . ). Since X◦ should contain exactly those
vectors u s.t. 〈u, v〉 ≤ 0 for any v ∈ X , clearly (X◦)i the i-th
component of the polar of X , for short (X◦)i, cannot con-
tain R+, which disqualifies it from being either R or R+. On
the other hand, (X◦)i must contain the entire R− because for
any non-positive ui the defining condition holds. (3) is known
to hold for arbitrary closed convex cones [Rockafellar, 1997,
pp. 121–122], (4) immediately follows from (1), (2).

Before we further embark on technicalities let us motivate
the specifics of our approach by discussing two questions:
First, why should one use the polarity operator as the interpre-
tation of concept negation? Second, why should we restrict
ourselves to axis-aligned cones?

4.1 Motivation of Polarity-Based Negation
The use of the polarity operation for concept negation is moti-
vated by the idea of providing an operator that always maps a
concept to a disjoint concept such that the disjoint concept is
maximally so w.r.t. the underlying similarity structure. Here,
the similarity structure is given by the usual scalar product in
the Euclidean space. Two reasons substantiate our choice.

As for the first reason, one can observe that the idea of
considering polarity as a form of negation, is related to a
general approach of defining negation on the basis of some
binary complementary-relation com, as explained, e.g., in

v1
v2

w
z

(a)

A

B

C (C u (A t B))I =CI

6=
((C u A) t (C u B))I=⊥I

(b)

Figure 1: Illustration of Farkas’ Lemma (a) and counterexample dis-
tributivity for arbitrary cones (b)

Dunn [1996] for propositional logics: relation com holds
between two propositions iff they are complementary in the
sense that there is no situation where both propositions are
true (but still both may be false). Then, negation of a propo-
sition p can be defined as the disjunction of all those propo-
sitions q that are complementary to p. Of course we are in-
terested here in reading subsets C of the embedding space
Rn as concepts and points in Rn as objects falling into the
extension of C. But, drawing a closer connection to the ap-
proach in Dunn [1996], one could equally think of the points
of Rn as possible worlds (or states). Then set C becomes a
proposition which is exactly true for points contained in it.

As for the second reason, one can consider the following
fact, known as Farkas’ Lemma (see Figure 1a).

Lemma 1 (Farkas’ Lemma). Let C be the convex cone gen-
erated by vectors v1, . . . , vn ∈ Rn (i.e., C = smallest convex
cone containing all vi) and letw ∈ Rn. Then eitherw ∈ C or
there is z ∈ Rn such that 〈z, vi〉 ≤ 0 for all i, and 〈z, w〉 > 0.

The lemma says that if one considers a vector w that is not
in the convex cone, i.e., it is in the complement Rn \ C (the
“usual” negation of C), then there is at least a verifier z that is
similar tow (namely 〈z, w〉 > 0) and is contained in the polar
cone of C. Note that from 〈z, vi〉 ≤ 0 for all i it follows that
〈z, v〉 ≤ 0 for all v ∈ C. In the other direction, if one can find
a z of the polar cone being similar to w, then w is in the com-
plement of C. In conclusion, polarity can be considered to
provide a more intuitive model of negation for scalar-product
based similarity structures than set complement.

4.2 Motivation for Considering Al-Cones
Firstly, the usefulness of al-cone models hinges on whether
they are able to represent an interesting class of ontologies.
In the remainder of this paper we show that al-cone models
are indeed complete in the sense that an ontology is satisfi-
able classically iff it can be embedded into a geometric model
based on al-cones.

Secondly, al-cones are motivated by their ability to link to
ML. So far we have motivated the use of convex cones as
proper structures to handle negation, yet we emphasize that
convex cones also are used as computationally feasible data
structures in the area of conic optimization (see, e.g., Boyd
and Vandenberghe [2004], Section 4.3 on linear optimiza-
tion problems and Section 4.4.2 on second-order cone pro-
gramming) and therefore attractive for ML application. Here
we only regard the case where one aims to learn a statistical
model for data that can be characterized by some ontology



that has been specified in a logic beforehand, not the case of
investigating logics induced by the intersection and polarity
operators for arbitrary cones. In fact, the resulting logic can-
not be guaranteed to lead to Boolean (and so not to full)ALC
as it would not fulfil the distribution property for u and t. A
simple example is given in Figure 1b.

Let us sketch a specific incremental learning scenario. We
are given an ALC tbox. The training data are points from
Rn with a concept label or pairs of points with a role label.
The dimension n is fixed in advance and represents features.
For ease of exposition we assume that the number n equals
the number of atoms in the Boolean algebra over the tbox. In
this scenario the hypothesis set is chosen as al-cones in Rn

and all other set systems of cones that result from rotating the
al-cones w.r.t. the same (arbitrarily chosen) angle.

On receiving some training datum, the algorithm is re-
quired to choose some skeleton of al-cones and possibly ro-
tate it with some angle α in order to fit the datum. We do
not specify here how to choose the α, as there may be vari-
ous possible rotations that can be chosen following an opti-
mization principle, say. In the training phase, the algorithm
may not be able to embed the data to any rotated skeleton.
In this case, the algorithm would stop due to non-resolvable
inconsistencies. These can be inconsistencies due to a too
small feature dimension n chosen in the beginning or w.r.t.
to our assumption to consider only rotations of al-cones and
not other al-cone preserving transformations such as warping
or due to inconsistencies w.r.t. the ontology. As the following
propositions show, the inconsistency cannot be due to the fact
that concepts are represented as al-cones.

5 Embedding for Propositional ALC
Let us start by considering ALC ontologies where the tbox
language amounts to propositional logic. That is, we first re-
strict definitions from Section 3 to the concept constructors
u, t, ¬ corresponding to the Boolean operations ∧,∨,¬. A
Boolean ALC tbox (abox) consists of GCIs (abox axioms)
using Boolean concepts only.

Let (T ,A) be a Boolean ALC ontology. We are going to
define a geometric interpretation of a special kind that can
be a model or an anti-model of a Boolean ontology. It is an
ordinary model in the sense that it is a classical predicate logi-
cal structure with a domain and interpretations for the atomic
concept symbols. It is special in the sense that the domain
is of a specific structure, namely a Euclidean space and con-
cept names are interpreted by al-cones and their projections
to subspaces. It is non-classical in the sense that some logi-
cal constructors are not interpreted by the corresponding set
operations, but by operations on al-cones. The interesting
aspect is now that logical aspects of the Boolean algebra pro-
vide global constraints on the model. These can be satisfied
by choosing appropriate positions of the interpretations for all
atomic concepts. As a consequence, an ontology is satisfiable
classically iff it is satisfied by the geometric interpretation.

Definition 1. A Boolean al-cone interpretation I is a struc-
ture (∆, (·)I) where ∆ is Rn for some n ∈ N, and where
(·)I maps each concept symbol A to some al-cone and each
constant a to some element in ∆ \ {~0}. An al-cone interpre-
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Figure 2: Al-cone model for a simple abox with empty tbox

tation for arbitrary Boolean ALC concepts is defined recur-
sively as (>)I = ∆, (⊥)I = {~0}, (C u D)I = CI ∩ DI ,
(¬C)I = C◦, and (CtD)I = (¬(¬Cu¬D))I . The notions
of an al-cone being a model and that of entailment are defined
as in the classical case (but using al-cone interpretations).

Let us consider a simple example of a Boolean ontology,
consisting of an empty tbox and an abox constructed as fol-
lows: Consider the Lindenbaum-Tarski algebra of all Boolean
concepts defined on two Boolean names, say A,B. Then the
generated Boolean algebra of classes of equivalent concepts
has 222

= 16 elements. Choose for each a “smallest” repre-
sentative Ci, i ∈ {1, . . . , 16} w.r.t. some ordering. C1 is the
bottom concept and let us assume that C2 is the concept B
andC3 is the conceptBu¬A. Now, for each iwith n ≥ i ≥ 2
take a constant ai and add abox axioms Ci(ai).

Thus we represent each of the 15 non-bottom concepts
uniquely by some constant. For example, in Figure 2 the
constant a2 represents the concept C2 = B. This ontology
is satisfiable classically. There is an al-cone interpretation
that fulfills the ontology in R2 that is constructed as follows:
interpret A by the left upper quadrant and B by the right up-
per quadrant. This induces uniquely the positions of all other
hyperoctants corresponding to the other concepts Ci. The in-
teresting point is the localization of constants ai. For each
constant ai one localizes the hyperoctant corresponding to Ci

in the area and positions on it such that it does not coincide
with one of the points already associated with a constant.

Figure 2 illustrates the positions of the concepts: ⊥ is by
definition the singleton {~0}, A is the left upper quadrant,> is
the whole area, etc. One can check that the concepts are asso-
ciated with appropriate al-cones. For example, the negation
¬A of A is indeed the polar cone of the quadrant of A. Sim-
ilarly, consider B u ¬A, which is interpreted as the positive
x-axis R+ × {0}. Its polar cone is the whole left area.

As another example consider the Boolean algebra induced
by the atomic concepts A,B under the tbox axiom A v B.
Then, e.g., A u ¬B v ⊥ and so forth. This gives an embed-
ding with axis-aligned cones as illustrated in Figure 3.

Using the construction idea of the examples one can show
that ALC-ontologies are classically satisfiable iff they are by
a geometric model based on al-cones.

Proposition 2. Boolean ALC-ontologies are classically sat-
isfiable iff they are by a geometric model on some finite Rn
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Figure 3: Al-cone model for tbox {A v B}

based on al-cones of the form b1 × · · · × bn with bi ∈
{{0},R+,R−,R} for i ∈ {1, . . . , n}.

Proof sketch. For the general construction we use the encod-
ing from the examples. The set of encodings {u,+,−, 0}
used in the example forms a diamond shaped Boolean alge-
bra B4 with ⊥ ≤ +,− ≤ >. As the ALC-ontology O the
induced Boolean algebra is finite, say 2k, with a finite num-
ber of atoms m. We have to chose a dimension n such that
4n ≥ 2k and n ≥ m/2, the idea being that we have to repre-
sent all of the 2k Boolean concepts by embedding the atoms
of the Boolean algebra directly onto the half-axes of R. Now
one can see that Bn

4 is the n-wise Cartesian product of B4

where u, t, ¬ are defined component-wise based on the u,
t, ¬ defined on B4. But in this way u over B4 is nothing
else than set intersection, ¬ is polarity, and t is defined by de
Morgan. So, if O is satisfiable, then we can find a geometric
model of it.

“←”: Given a geometric model, one can build a classical
model by “forgetting” any named object that is not on an axis
by moving it outside to one of the axes that cover the al-cone.

Geometric models are more specific than classical models
in the sense that they impose an underlying structure on the
domain given by, firstly, the dimensions representing some
latent features that usually are not even mentioned in the on-
tology and, secondly, a scalar product 〈·, ·〉 over the space.
Geometric interpretations are more general than classical in-
terpretations in the sense that they are partial interpretations.
Actually, when embedding an ontology into some space one
expects the embedding to represent not a single, but all in-
terpretations that make the ontology true. And this is (up to
some exceptions, see below) the case in the construction of
Proposition 2. This allows partial information to be encoded.
Consider, e.g., the difference between a2 and a3 in the geo-
metric model of Fig. 2. The individual a3 is completely iden-
tified w.r.t. the given concepts A,B: it lies in the extension of
B and in the extension of ¬A. For a2 we “only” know that
it must be an B, but we do not know whether it is also an
A. Hence this geometric model correctly reflects this specific
knowledge provable in the ontology: one can prove that a2 is
a B but one cannot prove that it is an A nor that it is a ¬A.

The geometric model illustrated in Fig. 2 does not reflect
the whole knowledge (not) contained in an ontology in the
correct way. For example, it is not possible to represent an
object b which is known to be in A t B, but neither known

to be an A nor known to be a B. The reason is that by our
construction no place is left to reflect this partial knowledge.

The discussion above motivates the definition of faithful
geometric models of a given ontology. As within ontologies
one has to deal with many models there are actually two dif-
ferent adaptations, a weak one and a strong one. Orthogonally
to this distinction one may also consider the faithfulness w.r.t.
the abox only (to the data only) or to the tbox. An even finer
distinction can be given by considering special subclasses of
the abox (which we will do here by considering concept asser-
tions vs. role assertions) and the tbox (which we will do here
by considering concepts with a bounded quantifier rank).

Definition 2. LetO be a classically consistent (DL) ontology
(or any other representation allowing the distinction between
abox and tbox). For a geometric interpretation I we have
the following notions of being a faithful model for O: I is
a strongly concept-faithful model of O iff for each concept
C and each constant b: if bI ∈ CI , then O |= C(b); I
is a weakly concept-faithful model of O iff for each concept
C and each constant b: if bI ∈ CI , then O ∪ {C(b)} is
satisfiable classically; I is a strongly (weakly) abox-faithful
model of O iff it is strongly (weakly) concept-faithful and for
each role R and constants a, b: if (aI , bI) ∈ RI , then O |=
R(a, b) (resp. O ∪ {R(a, b)} is satisfiable classically); I is a
strongly (weakly) tbox-faithful model iff for all tbox axioms
τ : if I |= τ , then O |= τ (resp. O ∪ {τ}) is satisfiable.

When we consider classical geometric models such as
those defined by Gutiérrez-Basulto and Schockaert [2018],
it will in general not be possible to ensure strong faithful-
ness. So, the notion of strong faithfulness makes sense only
for models which allow for representing partial information.

Now let us come back to our al-cones. We present two
ways to gain faithfulness, the first using al-cones, the second
a subclass of al-cones.

Proposition 3. For classically satisfiable Boolean ALC-
ontologies there is a strongly concept-faithful and tbox-
faithful geometric model on some finite R2n based on al-
cones of the form b1 × · · · × b2n with b2i ∈ {0,+,−, u}
and b2i+1 = b2i. Here n is the number of atomic elements in
the Boolean algebra generated by the tbox of the ontology.

Proof sketch. First a geometric model of the given tbox is
generated in size n (using the method described in Prop.
2). In the resulting model every dimension is doubled,
A t B = R+ × R− × R for instance becomes A t B =
R+ × R+ × R− × R− × R × R. To ensure strong concept-
faithfulness it must not be possible for any object in the abox
to get embedded into a concept properly subsumed by its
most specific concept (msc). In each of the subconcepts of
the object’s msc, one can find an entry R of the msc a R+

or a R−. With doubled dimension there is a R+ × R+ or
R− × R−. Thus if the corresponding R in the concept is re-
placed by, e.g., R+ × R− the object is in the concept, but in
none of its subconcepts.

When disregarding R+, R− in al-cones we are left with
halfspaces, which are sufficient to define faithful models.



Proposition 4. For classically satisfiable Boolean ALC-
ontologies there is a strongly concept-faithful and tbox-
faithful geometric model on some finite Rn using sets of the
form b1 × · · · × bn with bi = {0} or bi = R.

Proof sketch. Assume that an ALC tbox with n atomic ele-
ments is given. Arbitrarily assign them to one of the follow-
ing n spaces {0}×{0}×· · ·×R×· · ·×{0}×{0}. Then assign
other concepts applying disjunction component-wise.

This result follows also from the well-known fact that or-
thogonal subspaces make up a Boolean algebra.

6 The Non-Boolean Case
Our main task is to define semantics for roles and quantifiers.
We choose to define crisp extensions for roles. As ALC does
not have role negation, we do not get areas of uncertainty for
roles. More importantly, we do not consider special struc-
tures for roles (in particular no cones). Following the charac-
terization of ALC according to Schild [1991] our definition
of the existential quantifier has to satisfy ∃R.⊥ = ⊥ and
∃R.(C tD) = ∃R.C t∃R.D. As we will define the existen-
tial quantifier via the universal quantifier we have to ensure
that ∀R.> = > and ∀R.(C uD) = ∀R.C u ∀R.D.

Definition 3. An al-cone interpretation I is a Boolean al-
cone interpretation (∆, (·)I) mapping additionally roles R
to subsets over ∆×∆ such that ~0 does not appear in the first
or second argument of RI . An al-cone interpretation of ALC
concepts is defined recursively as for Boolean concepts and
defining the concepts of the form ∀R.C as minimal al-cones
containing the set {x ∈ ∆I | For all y ∈ ∆I: if (x, y) ∈ RI
then y ∈ CI}. The interpretation of the existential quantifier
is given by de Morgan, i.e., (∃R.C)I = (¬∀R.¬C)I .

Constructions of the Boolean case do not work for non-
Boolean ALC ontologies due to the fact that the algebra of
ALC concepts is not atomic anymore. Consider the sim-
ple example On = {loves(narcis, narcis), V ain(narcis)}
from Baader and Küsters [2006]. Then narcis fulfils all
concepts of the form ∃Rn.V ain, which, connected conjunc-
tively, give a chain of concepts Ci that become infinitely
narrower and narrower, defined by C0 := ∃R.V ain and
Ci := Ci−1 u ∃Ri+1.V ain. We take a midway between
the approach of Gutiérrez-Basulto and Schockaert [2018] and
our aim of representing knowledge abox- and tbox-faithfully.
The rationale for this is to support ML applications such as
prediction. Given an ML model, prediction is meant to cat-
egorize (new) objects w.r.t. the concepts represented in the
model. If a geometric model has m dimensions, it can be
asked queries of the form A(a) for concept label A and an
m-vector a. More generally, we consider not only atomic
concepts A but arbitrary concepts in ALC. Of course, in a
classical model the extension of all concepts are determined
by those of the atomic ones. But the point of our approach is
to work with partial models. So let us assume that the queries
are of the form C(a) (assertion check) or of the form C(x)
with variable x (concept retrieval).

Now, the class of queries that are answered in a prediction
scenario are constrained in size, where the size is formally

specified by some parameter. We will assume in the following
that the parameter is the quantifier rank (see Sect. 3). In order
to find all potential inconsistencies in an ontology we have to
incorporate also the length of role paths in the abox. Letm be
the minimum of the length of paths and the expected maximal
quantifier rank of the queries in a prediction scenario. The
set of ALC concepts of maximal quantifier rank m still form
a Boolean algebra and we have still ∀R.> = > as well as
∀R.(C uD) = ∀R.C u ∀R.D. So, within this class we will
have atomic elements, say n, which will be put on the axes of
the finite dimensional space Rn.

Proposition 5. ALC-ontologies are classically satisfiable
iff they are satisfiable by a (strongly abox faithful, m-rank-
concepts faithful) geometric model on some finite Rn using
sets of the form b1 × · · · × bn with bi ∈ {{0},R+,R−,R}.

Proof sketch. “→”: Assume that the ontologyO is satisfiable
classically. Consider the Lindenbaum-Tarski algebra of max-
imal m-rank ALC concepts induced by the given tbox. As-
sume the number of atomic concepts is n. As in the Boolean
case put these concepts onto the axes of a Euclidean space Rn

respecting the Boolean operators. We obtain an al-cone inter-
pretation as follows: Each atomic concept A is interpreted by
the al-cone where it is placed according to the Lindenbaum-
Tarski algebra embedding. We have to specify the interpreta-
tion of the constants and the roles. For a constant a find the
most specific conceptmscRank≤m(a) of rank smaller thanm
provable in the ontology and place a at some area not occu-
pied already by some individual. In particular, if C(a) fol-
lows from the ontology, a is going to be true in the geometric
model. For each role assertion R(a, b) entailed by the ontol-
ogy put (a, b) ∈ RI .

“←”: Assume that O is not satisfiable classically. There is
a complete closed tableau. But this derivation can be mim-
icked in the geometric model as all clashes are on concept
level, i.e., considering only concept assertions of the form
C(a) and ¬C(a) but not role assertions.

7 Conclusion and Outlook
Starting from an interpretation of negation as a polarity op-
erator we presented embeddings of ALC ontologies that in-
terpret all concepts as axis-aligned cones. This result adds an
interesting alternative to embeddings considered so far.

The resulting embeddings can be used in prediction scenar-
ios where one is interested in predicting whether new samples
belong to a concept. An open problem is whether roles can
be interpreted by cones (or other feasible structures).

As a side product of defining negations by polarity we ob-
tain partial models. So there are individuals for which one
does not know whether they belong to a concept or not. This is
different from the approaches considered in classical embed-
ding scenarios. A fine-grained treatment of this uncertainty
could proceed by considering partial models as in Hartonas
[2016] or by providing an epistemic operator � [Donini et
al., 1998, for example]. Such an operator would allow us to
distinguish between instances known to be in a specific con-
cept C, i.e., those in �C and instances which could be in the
concept or its negation.
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