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Abstract

A decentralised partially observable Markov de-
cision problem (DecPOMDP) formalises collab-
orative multi-agent decision making. A solution
to a DecPOMDP is a joint policy for the agents,
fulfilling an optimality criterion such as maximum
expected utility. A crux is that the problem is in-
tractable regarding the number of agents. Inspired
by lifted inference, this paper examines symmet-
ries within the agent set for a potential tractability.
Specifically, this paper contributes (i) specifica-
tions of counting and isomorphic symmetries, (ii) a
compact encoding of symmetric DecPOMDPs as
partitioned DecPOMDPs, and (iii) a formal ana-
lysis of complexity and tractability. This works
allows tractability in terms of agent numbers and a
new query type for isomorphic DecPOMDPs.

1 INTRODUCTION

Decentralised partially observable Markov decision prob-
lems (DecPOMDPs) allow for formalising an offline de-
cision making problem for multiple agents collaborating
for a joint reward in a stochastic environment. However,
in the worst case, computation time in DecPOMDPs de-
pends exponentially on the number of agents, which means
that scalability is limited and crude approximations might
be necessary to solve problem instances at the expense of
accuracy. There are applications, though, that require accur-
acy. One such application lies in nanoscale medical systems
in which a swarm of indistinguishable nanodevices with
limited online computation power collaborate on, e.g., a
treatment or diagnosis [Lau et al., 2019]. The number of
agents goes into the hundreds of thousands, making the ex-
ponential dependency punishing. The question is what to do
when faced with large agent sets and whether we are able to
do something about the exponential dependency.

In probabilistic inference, the notion of lifting refers to ef-
ficiently handling sets of indistinguishable objects using
representatives [Poole, 2003]. Lifting enables reducing the
theoretical dependency from exponential to polynomial,
making the problem of probabilistic inference tractable,
w.r.t. these set sizes [Niepert and Van den Broeck, 2014].
Therefore, this paper examines indistinguishability within
the agent set and its potential for making DecPOMDPs
tractable regarding agent numbers, i.e., solving them no
longer depends on agent numbers exponentially. The paper
analyses two types of symmetries for indistinguishability
inspired by the main lifting tools of counting and isomorph-
ism in lifted variable elimination (LVE) [Taghipour, 2013].
The results rely on partitioning the set of N agents into K
partitions with K � N , K typically being in the order of
magnitude 1. In nanoscale systems, e.g., the standard setting
comprises a small number of agent types (e.g., K = 4) of
which large numbers of indistinguishable agents are built.

Specifically, this paper contributes (i) an analysis of count-
ing and isomorphic symmetries and their connection, (ii) an
encoding of those symmetries as partitioned DecPOMDPs,
and (iii) a formal analysis and discussion. The last part cov-
ers representation size, policy space, evaluation cost, and
expressiveness. The results show that counting requires no
further assumption but indistinguishability and leads to a
polynomial dependence on the agent numbers except for
the policy space. The isomorphic case involves a stricter
symmetry, which allows for tractability in agent numbers.
In addition, it enables using existing solution methods and
defining new query types. Specifically, the isomorphic case
allows for formalising a new optimisation problem, asking
for the number of agents needed to satisfy a particular goal.

Lifting has been successfully used for query answering [Ker-
sting et al., 2009, Van den Broeck et al., 2011, Braun and
Möller, 2018, Holtzen et al., 2019] and online decision
making [Nath and Domingos, 2009, Apsel and Brafman,
2011, Gehrke et al., 2019a,b], which uses decision and util-
ity nodes in a relational or first-order probabilistic graph-
ical model (PGM). In offline decision making, lifting has
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been used in calculations for relational descriptions of the
state space in (PO)MDPs: First-order MDPs (FOMPDs)
[Boutilier et al., 2001] have a representation based on the
situation calculus [McCarthy, 1963]. Factorised FOMDPs
additionally assume a factorised representation of the state
space [Sanner and Boutilier, 2007]. Sanner and Kersting
[2010] use lifting for pruning indistinguishable policies in
FOPOMDPs. Open-universe FOPOMDPs have an open-
universe assumption about the first-order representation,
using Bayesian logic as a basis [Srivastava et al., 2014]. An-
other first-order representation is independent choice logic
that also allows for a set of agents [Poole, 1997]. To the best
of our knowledge, we are the first to consider lifting for the
agent set. We leave the state space in this paper as is and
look at its structuring as an exciting avenue for future work.
As this paper covers an analysis of the theoretical problem,
we do not cover DecPOMDP solution methods as related
work. Please refer to Oliehoek and Amato [2016].

This paper is structured as follows: Section 2 recaps Dec-
POMDPs and their complexity results. Section 3 covers
the symmetries, the compact encodings in partitioned Dec-
POMDPs, and the formal analysis, followed by a discussion.
Section 4 concludes the paper.

2 BACKGROUND AND NOTATION

This section recaps DecPOMDPs. It is set to be self-
contained, but familiarity with POMDPs helps.

2.1 DECENTRALISED POMDPS

A DecPOMDP refers to a set of agents working jointly to-
wards a common goal. The underlying principle is that of
maximum expected utility (MEU) in which a utility func-
tion represents preferences over states. We look through a
PGM lens for definitions, which are based on the work by
Oliehoek and Amato [2016] and Russell and Norvig [2020],
using random variables, V , which can take discrete values,
referred to as range, ran(V ) = {v1, . . . , vm}. So-called de-
cision random variables have actions as ranges. Setting V
to a value v ∈ ran(V ) (an event) is denoted as V = v or v
for short if V is clear from its context. We denote sequences
over a discrete time interval [ts, te] with subscript ts:te, e.g.,
(Vts , . . . , Vte) = Vts:te . We use ◦ to denote concatenation.

Definition 1. A model M is a tuple (I, S,A, T,R,O,Ω),

• I a set of N agents,

• S a random variable with a set of states as range,

• A = {Ai}i∈I a set of decision random variables
Ai, each with a set of local actions as range, with
ran(A) = ×i∈Iran(Ai) the set of joint actions,

• T (S′, S,A) = P (S′ | S,A) a transition function,
with T (S0, ., .) = P (S0) referring to a state prior,

• R(S,A) a reward function,

• O = {Oi}i∈I a set of random variables Oi, each with
a set of local observations as range, with ran(O) =
×i∈Iran(Oi) the set of joint observations, and

• Ω(O, S) = P (O | S) a sensor function.

Optional are a finite horizon τ , a discount factor γ ∈ [0, 1]
(default 1), and an error margin ε > 0. Each agent i ∈ I
has a local policy πi : ran((Oi,0:t)) 7→ ran(Ai) map-
ping observation histories oi,0:t, t ≤ τ − 1, to actions a,
with π = (πi)i∈I a joint policy. The semantics of M is
given by all possible joint policies, referred to as ΠM . The
DecPOMDP asks for the joint policy π∗ that yields the
maximum expected utility UM (π∗) in M (with horizon τ ):

MEU(M) = (π∗, UM (π∗))

π∗ = arg max
π∈ΠM

UM (π) (1)

where UM (π) is calculated recursively over τ steps and
weighted according to the prior T (S0, ., .):

UM (π) =
∑

s0∈ran(S)

T (s0, ., .)U
π
M (s0, ∅0:0) (2)

UπM (st,o0:t) = R(st,π(o0:t)︸ ︷︷ ︸
=at

)+γt
∑

st+1∈ran(S)

T (st+1,st,π(o0:t))

·
∑

ot+1∈ran(O)

Ω(ot+1, st+1)UπM (st+1,o0:t+1) (3)

withUπM (sτ−1,o0:τ−1) = γτ−1R(sτ−1,π(o0:τ−1)) as the
stopping point and o0:t+1 = o0:t ◦ ot+1.

Each agent has its own set of actions and observations1

whereas state and reward are joint. The joint state is usually
assumed to not be fully observable, even if combining all
local observations. If the joint state were observable, the
DecPOMDP would simplify to a DecMDP. The joint re-
ward function encodes that the agents receive a reward as
a team. If the joint state and reward function can be split
up into independent subspaces per agent, the DecPOMDP
decomposes into a set of POMDPs that can be solved indi-
vidually. In this paper, we do not let the problem dissolve
into subproblems that can be solved independently. Rather,
we keep a joint state and reward function, while the agent set
shows certain degrees of independence. The generalisation
of a DecPOMDP is a partially observable stochastic game
(POSG) in which each agent has its own reward functionRi,
which may conflict with other agents’ rewards. The sensor
function may also depend on the joint action, which does
not change the problem in a major way [Russell and Norvig,
2020]. A naive solution approach is to solve Eq. (1) directly,
i.e., to generate all possible joint policies, evaluate them
according to Eq. (2), and pick the policy with highest value.

1Ai = Aj or Oi = Oj , i, j ∈ I , is possible but not mandat-
ory.



2.2 COMPLEXITY RESULTS

DecPOMDPs depend exponentially on N , the number of
agents, in the worst case, which manifests itself in the space
requirements of a model M of Def. 1, the size of the policy
space spanned by M , i.e., |ΠM |, and the cost of evaluating
a joint policy π, given a horizon τ . The size of the policy
space together with the cost of evaluating a policy in the
space provides an upper bound on any runtime as it bounds
the effort of the naive solution approach to the DecPOMDP.

Formally, the sizes T, R, and O of the functions T (S′, S,A),
R(S,A), and Ω(O, S), respectively, lie in

T ∈ O
(
s2aN

)
R ∈ O

(
saN

)
O ∈ O

(
soN

)
(4)

with s = |ran(S)|, a = maxi∈{1,...,N} |ran(Ai)|, and o =
maxi∈{1,...,N} |ran(Oi)|, which are all exponential in N .
They follow directly from the range sizes of the inputs. The
cost C of evaluating a joint policy and the size P of the
policy space lie in [Oliehoek and Amato, 2016]:

C ∈ O
(
soNτ

)
P ∈ O

(
a
N(oτ−1)
o−1

)
. (5)

Both depend on N exponentially. The complexity of C
comes from evaluating in each of the s states a joint policy
of size oNτ where oτ bounds the size of an agent’s observa-
tion history. The complexity of P comes from each possible
action at the end of each possible observation history, of
which there are (oτ − 1)/(o− 1) (histories form trees: geo-
metric series).

3 SYMMETRIC DECPOMDPS

The idea of partitioning the agent set follows the insight
that in systems with regularities in their agent set I , e.g.,
through types, partitions emerge, in which agents have the
same available actions, observations, and behaviour, i.e.,
they are indistinguishable. Borrowing from the field of lif-
ted inference, we refer to these DecPOMDPs as symmetric
since the indistinguishable behaviour materialises itself by
symmetries in the transition, sensor, and reward functions.
This section formalises indistinguishability through symmet-
ries and analyses their relationship and effect on complexity.
We introduce partitioned DecPOMDPs as a framework.

3.1 PARTITIONING OF THE AGENT SET

For lifting to apply, a DecPOMDP has to fulfil a basic re-
quirement: The set of agents I partitions into K sets Ik,
i.e., I =

⋃K
k=1 Ik, Ik 6= ∅, and ∀k, l ∈ {1, . . . ,K}, k 6= l :

Ik ∩ Il = ∅, and for each Ik, it holds for all pairs i, j ∈ Ik:

ran(Ai) = ran(Aj) ∧ ran(Oi) = ran(Oj) (6)

Given Eq. (6), it is sufficient to keep K decision and ob-
servation random variables instead of N variables Ai and

Oi. To still represent the agents, one may add a logical
variable Xk that represents all agents in Ik to Ak and Ok,
forming parameterised random variables (PRVs) Ak(Xk)
and Ok(Xk), where the individual agents no longer appear
explicitly but hidden behind the logical variable. See, e.g.,
the work by Taghipour [2013] for details on PRVs.

Equation (6) is a necessary and sufficient condition for us-
ing PRVs to list observations and actions available for a
partition but it is only a necessary condition for lifting: Fur-
ther symmetries have to hold in the transition, reward, and
sensor functions for lifting to apply, of which we investigate
two types inspired by the lifting tools of counting and iso-
morphism. Before we turn to lifting, we set up partitioned
DecPOMDPs as the general framework for DecPOMDPs
with partitioned agent sets fulfilling Eq. (6).

Definition 2. A partitioned model M̄ is a tuple (Ī, S̄, Ā, T̄ ,
R̄, Ō, Ω̄), with

• Ī a partitioning {Ik}Kk=1 of agents, nk = |Ik| and
|Ī| =

∑
k nk = N ,

• S̄ a random variable with a set of states as range,

• Ā = {Āk}Kk=1 a set of decision random variables
Āk, each with possible partition actions as range, with
ran(Ā) = ×Kk=1ran(Āk) the set of joint actions,

• T̄ (S̄′, S̄, Ā) = P (S̄′ | S̄, Ā) a transition function,

• R̄(S̄, Ā) a reward function,

• Ō = {Ōk}Kk=1 a set of random variables Ōk, each
with a set of partition observations as range, with
ran(Ō) = ×Kk=1ran(Ōk) the set of joint observations,
and

• Ω̄(Ō, S̄) = P (Ō | S̄) a sensor function.

Optional are a finite horizon τ , a discount factor γ ∈ [0, 1]
(default 1), and an error margin ε > 0. Each partition Ik
has a partition policy π̄k : ran(Ōk) 7→ ran(Āk) mapping
observation histories ōk,0:t, t ≤ τ − 1 to a partition action
āk, with π̄ = (π̄k)Kk=1 a joint policy. The semantics of M̄
is given by all possible joint policies ΠM̄ . The partition
DecPOMDP asks for a joint policy π̄∗ that maximises the
expected utility as defined in Eq. (1) with ΠM̄ , π̄, ā, ō as
ΠM ,π,a,o.

This formalism already bears benefits since it enables
domain-specific compound actions or observations for par-
titions. It also allows for the same action and observa-
tion set to be available to each partition agent (Eq. (6)),
i.e., Āk = Ak(Xk) = {Ak(xk,1), . . . , Ak(xk,nk)} with
Ak(xk,i) the decision random variable for agent i in parti-
tion Ik (analogously for Ōk). If ∀k : nk = 1, i.e., N = K,
M̄ is ground, i.e., M̄ = M .

The complexity results as given in Eqs. (4) and (5) for Dec-
POMDPs of Def. 1 translate directly to partitioned Dec-
POMDPs of Def. 2, referring to the range sizes of partition



actions and observations instead. Specifically, the respective
function sizes T̄, R̄, and Ō as well as the cost C̄ and policy
space size P̄ in a partitioned DecPOMDP lie in

T̄ ∈ O
(
s̄2āK

)
R̄ ∈ O

(
s̄āK

)
Ō ∈ O

(
s̄ōK

)
(7)

C̄ ∈ O
(
s̄ōKτ

)
P̄ ∈ O

(
ā
K(ōτ−1)
ō−1

)
(8)

with s̄ = |ran(S̄)|, ā = maxk∈{1,...,K} |ran(Āk)|, and
ō = maxk∈{1,...,K} |ran(Ōk)|. Assuming that M and M̄
model the same state space, then s = s̄. With N = K,
Eqs. (4) and (5) and Eqs. (7) and (8) coincide. With nonexist-
ent or unused symmetries, the same holds even with Eq. (6).

Next, we specify two types of symmetries for T , R, and Ω
to fulfil, specialise the partitioned DecPOMDP accordingly
for a compact representation, and discuss their effect on the
complexity results, starting with the more general symmetry.

3.2 COUNTING SYMMETRY

The basic assumption of lifting is indistinguishability
between certain objects or individuals, or as in this paper,
agents in DecPOMDPs. Next to the partitioning with Eq. (6),
another consequence of the assumption is that it does not
matter which agent performs a particular action within a
partition, only how many (analogously for observations).
E.g., if there are 10 agents in a partition of which five agents
do one action and the rest do another action, then there exist(

10!
5!5!

)
= 252 ways to have the 10 agents perform the 5 and

5 actions with the same outcome (multinomial coefficient,
refer to Taghipour [2013] for details). The effect is that the
transition, reward, and sensor functions map to identical
values for these permutations of inputs within partitions. In
the example, all of those 252 inputs map to some number p.
We refer to this symmetry as counting symmetry.

Given counting symmetry, the question becomes how one
can use it for a compact encoding in partitioned Dec-
POMDPs. In the example, it would be enough to store the
number for each action, e.g., in a histogram of absolute num-
bers like [5, 5], and map it to p. This type of intra-function
symmetry has also been spotted in probabilistic inference
and compactly encoded using histograms as range values of
a so-called counting random variable (CRV, refer to Milch
et al. [2008] for details). Formally, there are rk = |ran(Ak)|
different possible actions per partition Ik, meaning, a parti-
tion action can be encoded using a histogram:

{(al, nl)}rkl=1, al ∈ ran(Ak), nl ∈ N0, nk =
∑
l nl, (9)

or [n1, . . . , nrk ] for short. CRVs bring us back to encoding
identical action and observation sets with logical variables.
Given a PRV such as Ak(Xk), we count how often a partic-
ular range value is assigned to any grounding of Ak(Xk),
leading to a CRV #Xk [Ak(Xk)], with histograms of Eq. (9)
as a range (analogously for Ok(Xk)).

Hence, in the partitioned model M̄ of Def. 2, Āk =
#Xk [Ak(Xk)] and Ōk = #Xk [Ok(Xk)] with the domain
of Xk being dom(Xk) = Ik. A joint action then turns into

a = {h1, . . . , hK}, hk ∈ ran(#Xk [Ak(Xk)]).

The same holds for joint observations. The transition, re-
ward, and sensor function, T , R, and Ω respectively, receive
CRVs as inputs:

T̄ (S̄′, S̄, ◦Kk=1#Xk [Ak(Xk)]) (10)

R̄(S̄, ◦Kk=1#Xk [Ak(Xk)]) (11)

Ω̄(◦Kk=1#Xk [Ok(Xk)], S̄) (12)

which allows for using a single mapping of a histogram
to a number, e.g., [5, 5] 7→ p, for permutations of inputs.
We refer to this instantiation of a partitioned DecPOMDP
(model M̄ ) as a counting DecPOMDP (model M̄c).

The following results show that each counting model M̄c

has an equivalent ground modelM exhibiting counting sym-
metry, in which the same solutions are optimal. This leads
us to the first result on agent tractability: A counting Dec-
POMDP depends on agent numbers exponentially in terms
of the policy space but we achieve polynomial dependence
in terms of representation size and cost.

Lemma 1. A counting model M̄c has an equivalent groun-
ded model M with counting symmetries, i.e., gr(M̄c) = M .

Proof. Lifting is based on the grounding semantics [Sato,
1995], meaning an equivalence between lifted and ground
operations. Thus, it also applies to CRVs. Grounding M̄c

means replacing each CRV #Xk [Ak(Xk)] with decision
random variables {Ak(xk,i)}, i ∈ Ik, analogously for ob-
servations, grounding the CRVs in the transition, reward,
and sensor functions using so-called expansion [Taghipour,
2013], and setting S to S̄, yielding a grounded model. Be-
cause of expansion inverting the encoding of a counting sym-
metry in CRVs, gr(M̄c) exhibits counting symmetries.

Theorem 1. The optimal solution π̄∗ of a counting Dec-
POMDP in model M̄c is also optimal in model gr(M̄c).

Proof. By Lemma 1, M̄c is equivalent to gr(M̄c). The dif-
ference when solving the problems on M̄c and gr(M̄c)
with counting symmetry, respectively, lies in the policies
searched. Namely, a search for π̄∗ in M̄c skips those policies
that have permutations of agents perform the same actions
and perceive the same observations, which does not have
an effect in the transition, reward, and sensor functions, and
therefore have the same expected utility. Thus, the search
for π̄∗ leads to a policy that is also optimal in gr(M̄c).

Theorem 2. A counting model allows for representation
and cost to depend polynomially on N (number of agents).



Proof. The worst case complexities in terms of function
sizes, evaluation cost, and policy space size of a counting
DecPOMDP of model M̄c with an equivalent ground Dec-
POMDP of model M = gr(M̄c) lie in

T̄c ∈ O
(
s2nKa

)
R̄c ∈ O

(
snKa

)
Ōc ∈ O

(
snKo

)
(13)

C̄c ∈ O
(
snKτo

)
P̄c ∈ O

(
na

K(nτo−1)
no−1

)
(14)

with s = |ran(S)|, n = maxk nk, a = maxk |ran(Ak)|,
and ō = maxk |ran(Ok)|, k ∈ {1, . . . ,K}. Because of the
equivalence, s̄ = s. For ā (and ō analogously), it holds that
ā = maxk∈{1,...,K} |ran(#Xk [Ak(Xk)])|. The range size
of a CRV #X [R(X)] with |ran(R)| = r and |dom(X)| =
d is given by

(
d+r−1
r−1

)
≤ dr [Milch et al., 2008]. Therefore,

ā is replaced by na and ō by no in Eqs. (7) and (8). As we
assumeK � N , n is not much smaller thanN . As such, the
policy space still depends exponentially but representation
size and cost only polynomially on n < N .

The n represents the largest partition size, which is still
large given K is assumed to be small. An effect is that the
naive solution of a brute-force search through the policies
for an exact solution still depends exponentially on n and
therefore, the problem remains intractable even with count-
ing symmetry. Solution techniques will have to do some
further tricks, use heuristics, or stochastic methods to not
depend on n exponentially. Although the search space re-
mains large here, it is not surprising that we cannot solve
the combinatorial problem at once and it opens the door for
interesting future work for a stochastic search in histogram
spaces. However, there is also a positive side to this result
as we do achieve a polynomial representation size even in
the worst case.

Next, we consider isomorphic symmetry, which is actually
able to render the problem tractable in agent numbers.

3.3 ISOMORPHIC SYMMETRY

This part starts with the model specification to see the origin
of this symmetry and then infers the symmetry from it.

A natural next step in lifting is to consider PRVs as inputs in-
stead of CRVs in the transition, reward, and sensor functions
shown in Eqs. (10) to (12). The partitioned DecPOMDP and
model is specialised with the PRV versions for actions and
observations, i.e., Āk = Ak(Xk) and Ōk = Ok(Xk) with
dom(Xk) = Ik, yielding the following transition, reward,
and sensor functions:

T̄ (S̄′, S̄, ◦Kk=1Ak(Xk))

R̄(S̄, ◦Kk=1Ak(Xk))

Ω̄(◦Kk=1Ok(Xk), S̄)

We call this form of partitioned DecPOMDP (model M̄ ) an
isomorphic DecPOMDP (model M̄i).

The grounding semantics also applies: T̄ , R̄, and Ω̄ turn into
combinations over all groundings D = ×Kk=1dom(Xk),
each grounding with identical mappings as of T̄ , R̄, and
Ω̄. E.g., the result for T̄ is T̄ (S̄′, S̄, ◦Kk=1Ak(xk,ik)) for all
groundings (x1,i1 , . . . , xK,iK ) ∈ D, which are combined
using multiplication. Rewards are additive, i.e., combined
using summation, which implies a preferential independ-
ence [Russell and Norvig, 2020] over which agent incurs a
reward, which is reasonable under indistinguishability.

A joint distribution factorising into such identical functions
is the main symmetry used in LVE, encoded using logical
variables in PRVs. Grounded out, subgraphs coming from
the same parameterised function are isomorphic. Therefore,
we refer to this symmetry as isomorphic symmetry. Iso-
morphic models translate into counting models, which we
show next, meaning Theorem 1 also holds in this case.

Lemma 2. An isomorphic model M̄i has an equivalent
counting model M̄c.

Proof. A model with isomorphic symmetry has a corres-
ponding isomorphic DecPOMDP based on the grounding
semantics with PRVs as inputs in the functions T̄ , R̄, and
Ω̄. All PRVs are count-convertible as each contains only
one logvar that does not occur in any other PRV and the
domains are mutually exclusive, automatically fulfilling the
preconditions of count-conversion.2 For T̄ and Ω̄, stand-
ard count-conversion can be used [Taghipour, 2013]. Be-
cause of R̄ having additive semantics, an additive but oth-
erwise unchanged count-conversion is necessary; see the
supplementary material for a formal definition. The count-
conversions result in functions of Eqs. (10) to (12), i.e., a
counting model.

Corollary 2.1. If a model M exhibits isomorphic symmetry,
it also exhibits counting symmetry.

Proof. By the grounding semantics, such a model M can
be encoded in an isomorphic model M̄i, which has an equi-
valent counting model by Lemma 2, which has a ground
model with counting symmetry by Lemma 1.

The reverse is not necessarily true: One can build a counter
example by turning an isomorphic model into a counting one
and then changing the mapped value of one input sequence,
destroying the factorisation. Thus, isomorphic symmetry is
a stricter symmetry but it allows for cutting down the policy
space. The reason lies in the PRV version implying a form of
independence on the agent level. Each agent within a parti-
tion operates independent of other agents in the partition. As
the agents of a partition are indistinguishable, each agent has
the same optimal local policy in this setting. Thus, one only
needs to consider a representative agent and search through

2Isomorphic models fall into a specific class of liftable models
with PRVs with at most one logical variable [Taghipour, 2013]



its possible actions and observations of Ak and Ok to find
its optimal policy, which also applies to all other agents
of the partition. Therefore, we can trim the search space to
cover only ran(Ak) for isomorphic DecPOMDPs instead of
ran(#Xk [Ak(Xk)]) for equivalent counting DecPOMDPs.
Formally, we have the following lemma.

Lemma 3. In an isomorphic DecPOMDP with model M̄i,
partition policies are defined over ran(Ak) and ran(Ok).

Proof sketch. The model M̄i is basically a parameterised
probabilistic sequential model with three parametric factors,
i.e., factors with PRVs as inputs, namely, T̄i, R̄i, and Ω̄i. The
inputs are time-stamped by t, i.e., St, Āt, and Ōt. A policy
prescribes an action a to perform for each possible observa-
tion history o0:τ of length τ for each agent. To determine
a joint action a for a joint observation history o0:τ , o0:τ

becomes evidence in M̄i. Since there are only a bounded
number of histories possible in a partition, the agents in
a partition can be partitioned again based on the histories.
That is o0:τ is turned into lifted evidence and the partitions
are split on the evidence using the split operator [Taghi-
pour, 2013]. So, each of the K partitions has its own logical
variable Xk,j with a domain that is disjoint from all other
domains and the same evidence for the agents of Xk,j .

Next, we unroll the model for τ time steps, i.e., instanti-
ate the split functions by replacing t with each value in
{0, . . . , τ}, to handle the evidence over τ time steps. Then,
the model absorbs the evidence in each sub-partition, elim-
inating Ok(X) from each sub-partition and each time step,
using the lifted absorption operator [Taghipour, 2013]. For
the different time steps, we now have T̄i(S̄′, S̄, ◦Kk=1 ◦j
Ak(Xj)), R̄i(S̄, ◦Kk=1 ◦j Ak(Xj)), and Ω̄i(S) where j iter-
ates over all existing sub-partitions of a partition.

Next, we follow the semantics of parameterised models
to show that considering only ran(Ak) is correct. The se-
mantics prescribe the following: (i) Ground the model. (ii)
Join all instantiated factors into one large factor. (iii) Sum
out the state variables St, S′t for all instantiated t. (iv) Pick
the MEU actions for the different observation histories. The
task in terms of the proof is to show that the same arg max
actions are chosen for agents from the same sub-partition.

Step (i) makes every constant covered by a PRV explicit by
having each constant appear explicitly in a grounding (in
contrast to the X , which hides the constants). Making the
constants explicit, i.e., no longer hiding them behind an X ,
can also be achieved by turning each PRV into a CRV, where
each constant appears in the counts of the histograms, after
which no constants are hidden anymore. So, we use count-
converting instead of grounding in (i) for the purpose of this
proof. (Count-conversions are applicable as the domains are
disjoint with no inequalities between logical variables and
no PRVs or logical variables recurring in the same function.)
Then, we need to show that peak-shaped histograms (in

Eq. (9), nl = nk, for l′ 6= l : nl′ = 0) are chosen as
arg max actions, which means that agents of the same sub-
partition perform the same action.

To show that only peak-shaped histograms are relevant, we
look at the count-conversions of the first step. Consider a
minimum example of a function φi(S,A(X)) and its ground
and count-converted versions φ and φc with |dom(X)| = 2:

S A(X) φi

s0 a0 p1

s0 a1 p2

s1 a0 p3

s1 a1 p4

S A(x1) A(x2) φ

s0 a0 a0 p2
1

s0 a0 a1 p1 · p2

s0 a1 a0 p2 · p1

s0 a1 a1 p2
2

s1 a0 a0 p2
3

s1 a0 a1 p3 · p4

s1 a1 a0 p4 · p3

s1 a1 a1 p2
4

S #X [A(X)] φc

s0 [0, 2] p0
2 · p2

1

s0 [1, 1] p1
2 · p1

1

s0 [2, 0] p2
2 · p0

1

s1 [0, 2] p0
4 · p2

3

s1 [1, 1] p1
4 · p1

3

s1 [2, 0] p2
4 · p0

3

The versions φ and φc show exactly how a CRV is simply an-
other encoding of the same information stored in a grounded
version. It also highlights that an isomorphic symmetry is
always also a counting symmetry. The important part for the
proof is that whatever the actual values of the different p’s
are, when the PRVs are count-converted (or grounded), the
maximum value for a given state s will always occur where
the exponent e is largest as one of the p’s will be the largest
and it will bring the most to take this p to the power of the
largest number possible. And the largest exponent possible
occurs in a peak-shaped histogram where one position takes
all the available elements. With the additive semantics of
rewards, the rewards are added up (and not multiplied) with
the exponent being a factor but the argument is the same:
the maximum value occurs where the largest p meets the
largest e, which occurs in a peak-shaped histogram.

Non-peak-shaped histograms can only catch up to peak-
shaped histograms, namely, if p’s are equal. Then, the solu-
tion will not be unique. As we are not interested in all solu-
tions, focusing on peak-shaped histograms is still correct.

So, we have that one of the inputs with a peak-shaped his-
togram maps to the largest value, i.e., a peak-shaped histo-
gram is the arg max action at the moment. In the functions
of a DecPOMDP model, we have K PRVs to count-convert.
However, the result still remains the same: For each of the
count-conversions individually, it holds with the arguments
above that the arg max action is one of the peak-shaped his-



tograms. Since the count-conversions are applied iteratively,
each CRV still has the maximum value where a peak-shaped
histogram occurs, and these maximum values occur for
those inputs in which the previous count-conversion had
maximum values, which were also peak-shaped. So, after
count-converting every logical variable in T̄i and R̄i of each
sub-partition (Ω̄i does not contain any logical variable as
we eliminated them using the observation histories as evid-
ence), the lines with the largest values will be those where
peak-shaped histograms occur together.

Step (ii) says to join all functions. The largest values occur
for each possible state where peak-shaped histograms meet
as they bring with them the largest current p.

Step (iii) requires summing out all non-decision CRVs, i.e.,
all state variables over the different time steps. Summing
out adds up values that occur for the different states given
the same input sequence of the CRVs, which again does
not change any arg max actions as non-peak-shaped inputs
cannot catch up with those peak-shaped inputs, where the
largest values reside and are now added up.

Step (iv) is already the decision on the arg max action,
where we pick the input mapping to the largest value, which
has peak-shaped histograms by the arguments above. Peak-
shaped histograms prescribe the same action for all agents
in a sub-partition, meaning it is enough to consider ran(Ak)
in each sub-partition.

The remaining part of the proof has to show that it is also
enough to consider ran(Ok) and to not consider each pos-
sible sub-partition as we have done so far. Each sub-partition
has peak-shaped histograms as arg max actions. An effect
is that the arg max actions do not depend on partition sizes.
Only the size of the peak changes. Therefore, for all the
other possible observation histories o′0:τ , we again get sub-
partitions that have observation histories as evidence like
with o0:τ but with different sub-partition sizes. However,
the result in terms of the arg max actions per sub-partition
will be the same. Therefore, it is enough to consider what
happens for one representative agent for each possible ob-
servation history of that agent as looking at nk,j agents in
a sub-partition does not change the outcome compared to
looking at one agent. That is, considering only ran(Ok)
and the histories possible with ran(Ok) is sufficient. This
concludes our proof.

Corollary 3.1. Partition sizes do not influence a decision,
but only the overall expected utility in isomorphic models.

The proof of Lemma 3 only works because the CRVs come
from PRVs. If one would have a CRV in the original model,
a non-peak-shaped histogram could get such a high reward
that it will outweigh all others and be the arg max action.
Corollary 3.1 follows directly from the proof. Thus, one can
ignore partition sizes during policy evaluation if only inter-
ested in a ranking. Lemma 3 brings us to our second main

result, which is an overwhelmingly positive one: Isomorphic
DecPOMDPs allow for agent tractability and a complete
independence of agent numbers if one ranks policies.

Theorem 3. An isomorphic model leads to tractability re-
garding the number of agents N .

Proof. Complexity-wise, Lemma 3 has the effect that
ā = maxk |ran(Ak)| and ō = maxk |ran(Ok)|, k ∈
{1, . . . ,K} in Eqs. (7) and (8), which is equal to the sizes
a and o of Eqs. (4) and (5). Thus, the sizes T̄i, R̄i, and Ōi,
the evaluation cost C̄i, and the policy space size P̄i lie in:

T̄i ∈ O
(
s2aK

)
R̄i ∈ O

(
saK

)
Ōi ∈ O

(
soK

)
(15)

C̄i ∈ O
(
log2(n)soKτ

)
P̄i ∈ O

(
a
K(oτ−1)
o−1

)
(16)

with s = |ran(S)| (= s̄) and n = maxk nk. The log n for
C̄i appears when including partition sizes into the evalu-
ation (they occur as exponents and exponentiation has a
complexity of log2 n). Then, the naive solution of a brute-
force search through the policy space no longer depends on
N exponentially, making the problem tractable for models
with isomorphic symmetries regarding agent numbers.

3.4 DISCUSSION

This part discusses expressiveness, partition-level symmet-
ries and independence, identifying symmetries, and the con-
nection to LVE, with a concluding note on going from joint
policy to agents in symmetric DecPOMDPs.

Expressiveness Models with counting symmetry allow for
encoding outcomes based on proportions of agents acting
or observing. And even though the worst case shows an
exponential dependence on the number of agentsN , domain-
specific knowledge may help to prune the search space as
only certain limits may apply (e.g., at least 30,000 actions
of a certain type) or histograms in increments of 1 are not
sensible (cf. [0, 50.000] and [1, 49.999]).

Isomorphic models cannot express proportions, which are
not always necessary. If each agent’s action only has local
effects (consider navigating on a grid), the model may be
isomorphic. A joint reward may only depend on S, i.e.,
R(S), which is independent of any action and therefore
automatically isomorphic. If one can assume that partition
agents work in close proximity or in a comparable setup,
observations may often be identical, even if noisy, opening
up future work on approximating observations.

Consider the well-known DecTiger benchmark [Nair et al.,
2003] as an example. Please find a full specification and
discussion in the supplementary material. Agents have the
same set of actions and observations available. The functions
T , R, and Ω exhibit a counting symmetry, whereas only Ω
is also isomorphic. T and R do not factorise accordingly. In



case of T , the reason lies in the automatic reset built into
it. For R, one could adjust its mapping of four histograms
to achieve a factorisation. However, the adjusted R would
not be able to capture that both agents agreeing on an action
even though it opens the door to the tiger costs them less
(−50) than opening different doors (−100). Here, one would
need counting. Nonetheless, an isomorphic model would
exclude any policy where one agent opens a door while the
other agent either listens or opens the other door, which are
not optimal (and in a sense stupid) action combinations.

Let us briefly consider the nanoscale medical system for
robust diagnosis with, e.g., four types of agents. Consider
two possible actions, releasing or not releasing a load, and
one possible observations of detecting a virus signature.
In such a setting, we have four partitions, each with the
same actions and observations. Preliminary experiments
have shown that each partition may have around 64,000
agents, making the agent set at least of size 4 ·64,000, which
is not computable on the ground level.

The question then becomes how to model the transition,
reward, and observation functions, i.e., how much does one
approximate. Counting symmetries would be the more ap-
propriate choice if one wants to model that a certain fraction
of agents has to perform an action for a reward. Braun et al.
[2021] provide a more detailed description of a nanoscale
medical system, especially regarding counting symmetries.
In terms of specifying the model, the required memory
would be only polynomial in size. However, solving such
a problem with histograms that represent 4 · 64,000 agents
is also not computable because of the large search space
for policies. With such large agent numbers, we want to
assume isomorphic symmetries, which would involve that
each agent acts independently of the other agents in their en-
vironment. Such an assumption is very approximate at first
glance but since nanoagents have only limited online compu-
tation power and memory available, approximating them as
acting independently of all other agents appears reasonable.
Therefore, the goal would be to set up an isomorphic model.

Identifying Symmetries To use symmetries, one has to
identify them in the problem at hand. In case of the nano-
scale medical system, symmetries lie in the nature of the
problem as there are a handful of types of agents but thou-
sands of agents of each type and they can be directly used
when specifying the problem instance. If one does have a
full propositional model, then one has to check for the sym-
metries in the probabilities, i.e., values reoccurring, of the
functions after one has checked that there are indeed groups
of agents that have the same sets of actions and observations
available. A first way would be to start with checking if
Eq. (6) holds and then looking at the numbers in transition,
reward, and sensor functions for symmetries. The colour
passing algorithm by Ahmadi et al. [2013] is a good starting
point for automating the search for symmetries.

The idea is of course to learn a counting or isomorphic
model directly to capitalise on the fact that these models
are smaller and require fewer parameters to learn. Like in
factored PGMs, one does not want to learn the full joint and
then test for independences to get the factorisation and then
for symmetries to lift the model.

Partition-level Symmetry: Mixed Symmetries The ana-
lysis above focuses on complete models exhibiting one type
of symmetry for ease of exposition. However, models can of
course display a mix of the two symmetries with certain par-
titions exhibiting counting symmetry and others isomorphic
symmetry, which leads to the following definition.

Definition 3. A model M is symmetric if it can be parti-
tioned with Eq. (6) and T , R and Ω show one of the follow-
ing symmetries for each of the resulting partitions:

(1) Counting: T , R and Ω map to the same values for per-
mutations of actions and observations in a partition.

(2) Isomorphic: T ,R and Ω factorise into a set of identical
functions with representative agents.

On the modelling side, a partitioned DecPOMDP would
then consist of PRVs and CRVs for actions and observations
and as inputs to the transition, reward, and sensor functions,
which would compactly encode the corresponding behaviour
depending to the symmetry for each partition. Of course,
the assumptions about independence and symmetry have to
hold between the different partitions for mixed symmetries
to be able to occur, which may not be realistic for real-
world data. Weakening the assumptions or approximating
the symmetries in a bounded way lies ahead in future work.

In terms of complexity, we can distinguish between I iso-
morphic and C counting partitions (I + C = K):

T̄ ∈ O
(
s2aInCa

)
R̄ ∈ O

(
saInCa

)
Ō ∈ O

(
soInCo

)
C̄ ∈ O

(
soIτn

Cτo
)

P̄ ∈ O
(
a
I(oτ−1)
o−1 na

C(nτo−1)
no−1

)
with s = |ran(S)|, n = maxk nk, a = maxk |ran(Ak)|,
and ō = maxk |ran(Ok)|, k ∈ {1, . . . ,K}. Partitions of
size 1 belong to isomorphic partitions, i.e., count towards I .

Partition-level Independence It might be reasonable to
assume that partitions are only connected through the joint
state and therefore act and observe independently from each
other. The consequence for the transition, reward, and sensor
function T , R, and Ω of a symmetric model is that they
factorise into sets of K functions Tk, Rk, and Ωk:

T̄k(S̄′, S̄, Āk) R̄k(S, Āk) Ω̄k(Ōk, S)

with Āk = #Xk [Ak(Xk)] and Ōk = #Xk [Ok(Xk)] in the
counting case and Āk = Ak(Xk) and Ōk = Ok(Xk) with
nk as exponent in the isomorphic case. The effect on the



complexities in both settings is that the exponentK becomes
a regular factor. The effect is not that large as K is assumed
to be small. Nonetheless, this setting presents the best case
with the exponent N reduced to a factor K in an isomorphic
DecPOMDP. It also means that we move towards a POSG
as each partition has its own reward function R̄k.

Connection to LVE One can draw parallels between
counting and isomorphic models on the DecPOMDP side
and count-conversion and lifted summing out on the LVE
side, respectively. In terms of complexity, lifted summing
out also has a better bound than that of count-conversion.
The term that characterises the effort is the lifted width,
which basically bounds the largest possible intermediate res-
ult during inference [Taghipour, 2013]. Without any CRVs,
i.e., no CRVs in the model and no count-conversions in infer-
ence, the size in n, the maximum domain size, is bounded
by log2 n, also coming from exponentiation in inference.
With CRVs, it is polynomial in n. Here, the problem in-
deed becomes tractable for both counting and isomorphism
regarding domain sizes in contrast to DecPOMDPs where
the counting case remains intractable because of the policy
space and only the isomorphic case becomes tractable.

Isomorphic Models, DecPOMDP Solvers, & New Query
Types Given an isomorphic model, Lemma 3 allows for
adapting any solution technique for a (ground) DecPOMDP
like the Joint Equilibrium Search for Policies by Nair et al.
[2003] by using it to find an optimal response policy for
a representative and incorporating partition sizes into the
expected utility calculation if necessary, which leads to a
Nash equilibrium policy. Empirical evaluations of ground
techniques usually work with single-digit agent numbers,
which is the assumed order of K. Since we can transfer the
algorithms to the isomorphic setting, the results still hold but
now for number of partitions if one ranks policies. As such,
we can now let the number of agents increase significantly
in isomorphic models.

In addition, this new setting allows for a new query type
apart from a joint policy based on partitions, paraphrased
as: “How many agents do I need to reach a minimum?” In
scenarios, where we are interested in reaching a minimum
expected utility Umin by possibly investing more agents, we
can use any algorithm to solve an isomorphic DecPOMDP
instance in model M̄i as argued above with given partition
sizes, yielding a joint policy π̄∗ with an optimal expected
utility UM̄i

(π̄∗). Then, since the agent numbers are still a
part of the model, one can define an optimisation problem
around this where we are interested in the number of agents
needed per partition to reach Umin > UM̄i

(π̄∗). Since we
have an isomorphic DecPOMDP, having more agents in a
partition does not have any intra-partition effects because of
the quasi-independence between agents and therefore does
not lead to changes in π̄∗. However, having more agents
does influence the U value of the joint policy.

From Policies to Functional Agents When implementing
a multi-agent system, the agents can be set up (or built, in
the nanoscale system setting) according to the joint policies:
In the isomorphic case, all agents in a partition behave ac-
cording to the same policy and can be set up with that policy.
In the counting case, the counting policy can be grounded,
leading to policies for individual agents. Grounding is al-
ways possible with lifted constructs, which would require
the so-called expansion operator by Taghipour [2013] for
grounding CRVs. The agents can then be set up according
to the (grounded) local policies. If combining (counting)
all those local policies, a policy emerges equivalent to the
original counting policy.

In summary, symmetric DecPOMDPs allow for partitions
and a compact representation of actions, observations, and
policy. In addition, the isomorphic variant allows for using
existing algorithms with large agent sets in partitions and
solving new queries for partition sizes.

4 CONCLUSION & FUTURE WORK

Inspired by the symmetries of counting and isomorphism
in lifting, this paper analyses the effect of symmetries on
DecPOMDPs. To this end, it specifies what counting and
isomorphic symmetry look like in ground models, allowing
for a compact encoding using a partitioned DecPOMDP,
which enables an explicit representation of partitions in the
problem specification and the solution. The formal analysis
shows that the symmetries allow for reducing the represent-
ation complexity and the cost of policy evaluation depend-
ency to polynomial. There still is an exponential dependence
on the agent numbers in the policy space for the counting
case, which is unsurprising given the combinatorial explo-
sion and the symmetry used. In the case of isomorphism,
however, the problem becomes tractable regarding agent
numbers and even allows for reusing existing ground solu-
tion methods while also enabling new query types.

Future work focuses on stochastic search for symmetric
DecPOMDPs, especially counting DecPOMDPs. Other in-
teresting avenues include continuous state and observation
considerations, communication as well as combining lifting
for agents with lifting on the state space as in FOMDPs.
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