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ABSTRACT
In data-communication networks, network reliability is of great
concern to both network operators and customers. Therefore, net-
work operators want to determine what services could be affected
by software vulnerabilities being exploited that are present within
their data-communication network. To determine what services
could be affected by a software vulnerability being exploited, it is
fundamentally important to know the ongoing tasks in a network.
A particular task may depend on multiple network services, span-
ning many network devices. Unfortunately, dependency details are
often not documented and are difficult to discover by relying on
human expert knowledge. In monitored networks huge amounts of
data are available and by applying data mining techniques, we are
able to extract information of ongoing network activities. From a
data mining perspective, we are interested to test the potential of
applying data mining techniques to real-life applications.

CCS Concepts
•Security and privacy→ Information flow control; Vulnerabil-
ity management; •Networks→ Network reliability;

Keywords
Network Dependency Analysis, Network Vulnerability Assessment,
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1. INTRODUCTION
Over the last few years, approximately 2500 software vulnera-

bilities were discovered every year [25]. The United States intel-
ligence community has identified malicious actors exploiting cy-
berspace as a top national security threat [6]. Furthermore, IBM’s
2015 cyber security intelligence index reveals that approximately
half of all cyber attacks originate from within a company’s own
network [7]. Hence, network devices that are not connected to the
internet also have to be considered as potential entry points for cy-
ber attacks. Due to the large number of software vulnerabilities
and the security threat they impose, understanding their impact on
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a monitored network has become an important objective. So net-
work administrators are faced with the challenge of assessing the
security impact of vulnerabilities on the network in order to choose
appropriate mitigation actions.

For deriving how susceptible a network is to attackers exploit-
ing software vulnerabilities, it is essential to understand what on-
going network activities could potentially be affected by a cyber
attack. A network is built with a higher purpose or mission in mind
and this mission leads to interactions of network devices and ap-
plications causing network dependencies. A monitored infrastruc-
ture’s mission can be derived through human labor, however mis-
sions are subject to frequent change and often knowledge of how an
activity links to network devices and applications is not available.
This is why an automatic network service dependency methodol-
ogy called Mission Oriented Network Analysis (MONA) [18] was
introduced to derive these missions as network activity patterns.
MONA was compared to three state of the art network service de-
pendency discovery methodologies: NSDMiner [21], Sherlock [4]
and Orion [5]. NSDMiner addresses the same problem of net-
work service dependency for network stability and automatic man-
ageability. Sherlock is another approach, which learns an infer-
ence graph of network service dependency based on co-occurrence
within network traffic. A well-known approach is called Orion,
which was developed to use spike detection analysis in the delay
distribution of flow pairs to infer dependencies. MONA was com-
pared via F-measures to all these state of the art methodologies
and was shown to have a better performance. Current network vul-
nerability approaches [19] focus on identifying critical nodes in a
network without focusing on the impact of software vulnerabilities.
Even though, software vulnerabilities can be remotely exploitable
and sometimes even exploits are readily available online, network
vulnerability assessment currently does not take currently present
known vulnerabilities into account.

Developing a deeper understanding of network activities allows
network vulnerability assessment to analyze what network services
would be potentially be affected by a software vulnerability that
was detected in a monitored network. Knowing what network ac-
tivities would be affected by a software vulnerability being ex-
ploited, supports network operators in developing a deeper under-
standing on how their network is affected by software vulnerabili-
ties.

Example for a network activity.
An example for a network activity pattern in an IT network is

given in Figure 1. Every node in Figure 1 represents a network
device. Client network devices are represented in blue and server
network devices are represented as rose nodes. A majority of com-
munication protocols consist of request and response pairs. Let us
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Figure 1: Example for network activities.

assume that a client wants to access a specific web server. Achiev-
ing this might require a DNS lookup. Assuming that IP-addresses
are returned, a load balancing server receives a HTTP request. The
load balancing server passes on the HTTP request a web server.
The requested information is not available locally, but it is stored
in an external Database. So the web server sends an SQL request
to the database. The database sends the information back to the
web server. The web server in its turn sends an HTTP response
to the load balancing server, which forwards the HTTP response
to the client that initiated the sequence of tasks. Per network in-
terface available on a network device, the network device can be
connected to another subnetwork. Hence, such a sequence of tasks
can require multiple network device and subnetworks to be oper-
ational. The purpose of network service dependency discovery is
to capture these interactions and how they link to network devices
and applications.

2. RELATED WORK
To motivate our approach, we provide a background to other net-

work vulnerability assessment methodologies and illustrate their
limitations. Network activities in a data-communication network
follow from a network having a higher task. Others refer to a net-
work having a higher task as a mission. The concept of missions is
sometimes also referred to as mission-centricity in cyber security.

Mission Impact Modeling.
Multiple distinct mission-centric approaches to cyber security

have been proposed [8, 10, 13, 15, 24, 20]. An example for a
mission-centric approach is the framework for cyber attack mod-
eling and impact assessment [15]. They rely on a mission model
for generating attack graphs. We understand a mission as network
activities with a common purpose, as illustrated in Figure 1. So our
understanding of what constitutes a mission corresponds to Bar-
reto’s [8]. To know how software vulnerabilities affect a mission,
we need to understand network services dependencies. We say one
network service depends on the other if the former requires the lat-
ter to operate properly. Automated discovery of network services
dependencies from network traffic is discussed in the next para-
graph.

Network Service Dependency Discovery.
Recent efforts have explored network-based approaches that treat

each host as a black box and passively analyze the network traf-
fic between them. For network administrators that are planning
to upgrade or reorganize existing applications a dependency dis-
covery approach named Leslie Graph [3] was designed. The ap-
proach aims at identifying complex dependencies between network
services and components that may potentially be affected and pre-

vent unexpected consequences. NSDMiner [21] addresses the same
problem of network service dependency for network stability and
automatic manageability. Sherlock [4] is another approach, which
learns an inference graph of network service dependency based on
co-occurrence within network traffic. A well-known approach is
called Orion [5], which was developed to use spike detection anal-
ysis in the delay distribution of flow pairs to infer dependencies.
All previously mentioned approaches are based on analyzing net-
work traffic and do not require additional software to be deployed
on network devices. Orion, NSDMiner, Sherlock are going to be
used later for comparison with MONA.

3. NETWORK VULNERABILITY ASSESS-
MENT

Network vulnerability analysis helps network operators verify,
whether a software vulnerability discovered by vulnerability scan-
ners within a monitored network might endanger ongoing network
activities. Network vulnerability assessment consists of two parts:
detecting present software vulnerabilities in a monitored network
and analyzing a network’s sensitivity to particular software vulner-
abilities. According to the ISO 27005 standard, a vulnerability is
“A weakness of an asset or group of assets that can be exploited by
one or more threats” [12]. Whereas an asset is defined by ISO13355
ISO/IEC TR13355-1 [11] as being “anything that can have value to
the organization, its business operations and their continuity, in-
cluding information resources that support the organization’s mis-
sion”. The corporation MITRE, a non-profit organization, since
1999 defines Common Vulnerabilities and Exposures (CVE) iden-
tifiers for software vulnerabilities.

The non-profit organization MITRE since 1999 defines common
Vulnerabilities and Exposures (CVE) identifiers for software vul-
nerabilities [17]. Vulnerability databases such as the Open Source
Vulnerability Database [16] or the National Vulnerability Database [1]
(NVD) can be used to search for software vulnerabilities.

3.1 Vulnerability Model
Our vulnerability model is inspired by MulVAL’s [23]. Mul-

VAL’s vulnerability model relies on the ICAT data model, which
was a database describing vulnerability effects. The National In-
stitute of Standards and Technology has integrated ICAT into the
NVD and relaunched ICAT vulnerability Web site and relaunched
it as the NVD.

Common Vulnerability Scoring System (CVSS) values are con-
tained in NVD are used to rank a software vulnerabilities effect on a
monitored data-communication network. Let us assume a set of all
known vulnerabilitiesN . Then, based on the NVD, which contains
a CVSS base score vector in the format “(AV/AC/Au/C/I/A)”, we
are able to model a vulnerability νid ∈ N as νid = (AV,AC,Au,C, I, A)



for

• AV: Access Vector (Local, Adjacent Network or Network),

• AC: Access Complexity (Low, Medium or High),

• Au: Authentication Required (Multiple, Single or None),

• C: Confidentiality (None, Partial, or Complete),

• I: Integrity (None, Partial, or Complete), and

• A: Availability (None, Partial, or Complete).

The Access Vector AV , Access Complexity AC, and Authenti-
cation metrics Au capture how the vulnerability is accessed and
whether or not extra conditions are required to exploit it. The more
remote to the intended target an attacker can launch an exploit, the
higher the AV score. Often an AV score of “Network” is referred
to as remotely exploitable. Access Complexity AC captures how
easy it is to launch an exploit of the described vulnerability. How
often an attacker has to authenticate to a targeted network device
is captured by the Authentication score Au. Aside from descrip-
tive values, base scores are also associated with numerical values.
These three base scores AV , AC and Au can be combined into
an common exportability score ξaccess(νid) capturing the ease of
exploiting a vulnerability

ξaccess : νid → 20×AC ×AV ×Au. (1)

A high exportability score ξ(νid) implies a vulnerability is highly
exploitable for a remote attacker. For a network operator, this in-
formation combined with the impact a vulnerability has on ongo-
ing network activities, describes how sever a vulnerability is to the
safety of a monitored network.

Our vulnerability model also encompasses CVSS base scores,
which model the impact of a vulnerability. Confidentiality C, In-
tegrity I and Availability A are referred to as Impact scores. Loss
of Confidentiality implies that informational disclosure, loss of in-
tegrity implies modification of information and loss of availabil-
ity implies reduced performance up to a total shut down of an af-
fected network device. The CVSS score describing the impact of a
vulnerability results in three functions ξConfidentiality , ξIntegrity and
ξAvailability :

ξConfidentiality : νid → {None,Partial ,Complete},
ξIntegrity : νid → {None,Partial ,Complete}, and

ξAvailability : νid → {None,Partial ,Complete}.
(2)

Equation 2 describes the local effect of a vulnerability on confiden-
tiality, integrity or availability by linking the vulnerability to a cor-
responding impact score value {None,Partial ,Complete}. Im-
pact score values “None” implies that no confidentiality, integrity
and availability compromise is possible. “Partial” implies that the
system’s compromise is limited to the software layer and the im-
pact score ‘Complete” is chosen, when an exploited vulnerability
results in a full compromise down to operation system level.

3.2 Network Model
We rely on the network model introduced in [18].

Network Device.
Let MAC and IP be non empty sets of MAC and IP addresses,

respectively (MAC ∩ IP = ∅), then

DCY ⊆ P(MAC) \ {∅} × P(IP ) (3)

is the set of network devices.

This allows a device to be assigned multiple MAC addresses and
IP addresses. Being able to assign multiple MAC addresses to a
network device is needed as routers and switches supply multi-
ple point-to-point endpoints. However, switches do not necessarily
need to have IP addresses as they work on the data link layer. From
this it follows that they are not visible on the network layer.

A network captures devices that are communication endpoints
and additional intermediate devices, over which endpoints commu-
nicate. Network devices that are endpoints can host network ser-
vices.

Network service.
Let S be a set of network services such that a network service

sji ∈ S is hosted by a network device dj ∈ DCY . Addition-
ally, the network service is associated by a transport protocol Ψ =
{TCP,UDP} and a port. This allows us to define a relation
SERV , which links a network device, a transport protocol and
a port number to a network service by the follow equation

SERV : DCY ×Ψ× N→ S. (4)

To derive all network services hosted by a device dj , we define
the relationship HOSTS(dj), which returns all network services
hosted by dj . In order to derive the device a service s is hosted by,
we write HOSTS−1(s), and associate service si with device dj
by writing sji . Given a service sji ∈ S, the corresponding device dj
can be derived by

dj = HOSTS−1(sji ). (5)

Additionally, for a given IP-address and port, we are able to de-
rive the corresponding network device by

DEV : P(IP )× N. (6)

This allows us to derive all involved network services for a given
IP-address and port pair byHOSTS(DEV (sIP, sPort))→ P(S).
Based on network traffic analysis we will detect network services
and determine how they communicate in an end-to-end manner
with each other. Aside from intermediate devices (e.g. routers and
switches), network devices can be categorized into client and server
network devices. In the following we will refer to client network
devices as clients and server network devices as servers. Clients
and servers are able to send requests. Servers additionally provide
network services that answer these requests. Generally, the number
of clients by far surpasses the number of servers.

Network Packet.
The basic building block of our approach are network packets ex-

changed between directly dependent network services. A network
packet is exchanged by a source and destination IP address srcIP
and dstIP via source and destination port srcPort and dstPort. In
addition, a network packet relies on a specific transport layer pro-
tocol. In the context of this paper we distinguish the transport layer
protocols TCP and UDP. We define a network packet as a 6-tuple

P = (sIP, sPort, dIP, dPort, ψ, t), (7)

for source IP addresses sIP , a source ports sPort, destination IP
addresses dIP , destination ports dPort, a transport protocol Ψ =
{UDP, TCP} and timestamps t.

Statically and dynamically assigned ports.
Requests are often sent through a dynamically assigned port.

Dynamically assigned ports are chosen from specifically assigned
port ranges [26]. Ephemeral port ranges are available for private,



customized or temporary purposes. Although IANA recommends
ephemeral port ranges to range from 215 + 214 to 216, the range
is highly dependent on the operation system. Microsoft assigns
ephemeral ports starting as low as 1025 for some windows ver-
sions and a lot of Linux kernels have the ephemeral port range start
at 32768. We follow the IANA recommended ephemeral port range
for clustering purposes. Let S be a set of services that are hosted
by device dj . All network services communicating through a dy-
namically assigned port, are grouped by

sj∗ ∈ S, (8)

whereas ∗ represents a dynamically assigned port and j represents
the device a network service is hosted on. Known network services
have to be linked to ports statically, such that other network services
can routinely communicate requests with them. It should also be
noted that multiple statically assigned ports could be assigned to
the same application.

Network Flow.
Based on Equation 7, we conduct a network dependency anal-

ysis based on packet headers (e.g. IP, UDP and TCP) and tim-
ing data in network traffic. Hence, our approach operates on net-
work flows. To identify network flow boundaries, we look into
the definition of TCP and UDP flows. A TCP flow starts with a
3-way handshake (SYN, SYN-ACK, ACK) between a client and
a server and terminates with a 4-way handshake (FIN, ACK, FIN,
ACK) or RST packet exchange. If network services communicate
frequently, they may forgo the cost of repetitive TCP handshakes
by using KEEPALIVE messages to maintain a connection in idle
periods. In comparison the notion of UDP flows is vague, since
UDP is a stateless protocol. This is due to the protocol not having
well-defined boundaries for the start and end of a conversation be-
tween server and client. In the context of this work, we consider
a stream of consecutive UDP packets between server and client as
a UDP flow, if the time difference between to consecutive pack-
ets is below a predefined threshold. In our analysis we exclude
all network packet that are necessary for establishing a commu-
nication between server and client. So given that additional data
is exchanged between network service sji and slk, we term these
end-to-end interactions between network services as direct depen-
dencies. The direct dependency SDEP between network services
sji and slk is denoted as

SDEP = {(sji , s
l
k) | sji sends a packet to slk

in the period under consideration.}
(9)

Additionally, we distinguish requests and responses exchanged be-
tween network services based on Equation 8. If a network services
uses an ephemeral port to send a network packet to a network ser-
vice on a static port range, we assume it is a request. Thus, an
exchanged request SDEP rq is denoted by

SDEP rq = {(sj∗, slk) | sj∗ sends a request to slk
in the period under consideration,}

(10)

where k is in the statically assigned port range. Conversely, this
means that a network service using its static port range to answer a
network service on an ephemeral port is defined as a response. An
exchanged response SDEP rsp is written as

SDEP rsp = {(slk, sj∗) | slk, sends a response to sj∗
in the period under consideration.}

(11)

4. LOCAL VULNERABILITY IMPACT
Vulnerability scanning a data-communication network is the pro-

cess of assessing whether software vulnerabilities can be linked to
monitored network devices. Software vulnerabilities can be linked
to operating systems, software or firmware [9, 22]. Vulnerabil-
ity scanning provides us with a mapping function SV ULN . This
mapping function SVULN allows us to link a vulnerability νid ∈
N to network services si ∈ S in a monitored data-communication
network. Such that we are able to associate a network service
si ∈ S

SVULN : si → νid (12)

with a vulnerability νid.
Let us assume a vulnerability scanner links network service si to

a vulnerability νid ∈ N . Given that vulnerability νid has an confi-
dentiality ξConfidentiality(νid), integrity ξIntegrity(νid) or availabil-
ity ξAvailability(νid) impact score value “Complete”, we assume
that the compromise down to operation system level leads to all
network services being compromise with respect to confidentiality,
integrity or availability. This is computed by the following func-
tion:

DVULN : HOSTS(HOSTS−1(si))→ νid. (13)

Then, all network services hosted on the same network device as si
are also affected with respect to confidentiality, integrity or avail-
ability by vulnerability νid.

4.1 Network Vulnerability Impact
We consider three views of network impact for a software vul-

nerability νid ∈ N : confidentiality, integrity and availability im-
pact on a network. CVSS describes the local effect on confidential-
ity, integrity and availability of vulnerabilities, which we capture
within our vulnerability model. Based on this vulnerability model,
the task of network vulnerability assessment is to analyze the global
effect on the overall network.

4.1.1 Confidentiality Impact
A software vulnerability with a confidentiality impact signifies

the threat of information disclosure. If a network service was able
to request information from other network devices, this information
could be leaked as well. Hence, these network devices are affected
by the threat of information disclosure as well. The set of network
services ASC, based on Equation 10, which are directly affected
by detected software vulnerabilities with a confidentiality impact is
defined as

ASC = CC ((∀si ∈ S : SV ULN(si),map(asSet, SDEP
rq))), (14)

where CC denotes the connected components (CC) of the hyper-
graph given as parameter (asSet maps a tuple into a set of compo-
nents).

4.1.2 Integrity Impact
A software vulnerability with an integrity impact signifies the

threat of data modification. If data on a network device can be
modified, responses from this network device cannot be trusted.
Consequently, these network devices are also affected by the threat
of data modification. Based on Equation 11, the set of network
services ASI affected by software vulnerabilities with an integrity
impact is defined as

ASI = CC ((∀si ∈ S : SV ULN(si),map(asSet, SDEP
rsp))). (15)

4.1.3 Availability Impact



Software vulnerabilities with an availability impact could lead to
performance degradation, therefore all network services relying on
responses from this network device are affected. The set of net-
work services ASA affected by software vulnerabilities with an
availability impact is defined as

ASA = CC ((∀si ∈ S : SV ULN(si),map(asSet, SDEP
rsp))). (16)

5. NETWORK ACTIVITY DISCOVERY
Companies, organizations and enterprises have a workflow, which

translates into network activities within their data communication
network. Workflows often cause reoccuring network activity pat-
terns. We understand these network activity patterns as workflows
and network service dependency analysis has the purpose of detect-
ing network activity events. and we rely on an automatic network
service dependency methodology called Mission Oriented Network
Analysis (MONA) [18]. In the following, we thus rely on the same
network model introduced by MONA.

5.1 Indirect Dependencies
In the context of this work, we introduce network dependency

analysis as a basis for network activity mining. Following MONA [18],
normalized cross correlation provides us with a heuristic for learn-
ing indirect dependencies ISDEP , which captures all LR (local-
remote) and RR (remote-remote) dependencies by the following
equation:

ISDEP = SDEP ./ SDEP. (17)

An indirect dependency event ιi = {δ(sji , s
l
k), δ(sjm, s

n
o )} is

based on direct dependency events δ. The set of all indirect depen-
dencies ISDEP translates into a set of indirect dependency events
Ω = {ι0, . . . , ιn}. MONA creates probabilities %(τdelay) ∈ P%
ranging between %(τdelay) = [0, . . . , 1] and provides a set of ob-
served network activity events F ⊆ Ω.

p(ιhg(δh(sji , s
l
k), δg(s

j
m, s

n
o )) | δh(sji , s

l
k) ∧ δg(sjm, sno ))

= %r,s(τdelay)
(18)

Obviously, there is a level of uncertainty associated with detected
indirect dependencies. By understanding indirect dependencies as
indirect dependency events, we are able model the probability of
uncertain event by relying on Kolmogorov axioms of probability
theory [14].

5.2 Network Activity Mining
Normalized cross correlation provides an heuristic approach for

detecting indirect dependency events and the result is described by
a probability space (Ω, F, P%) described in Section 5. Based on the
probability space, we model network activities as Hidden Markov
Models (HMMs). Using HMMs, it is possible to identify the prob-
ability whether a specific network activity is present or not. An
HMM λ = (aij , eιkl , π) representing a network activity is defined
as follows:

• n states Ω = {ι0, . . . , ιn−1},

• an alphabet ∆ = {δ0, . . . , δm−1} of m symbols,

• a transition probability matrix aij = ιi × ιj ,

• emission probabilities eιkl(δl) representing the probability
of a state ιkl emitting symbol δl and

• initial state distribution vector π = πo.

We refer to a sequence of observed symbols as O = δ0, δ1, δ2, . . .
and a sequence of states as Q = ι0, ι1, ι2, . . . . Based on tumbling
windows wti ∈W

W = wt0 , . . . , wti , . . . , wtn−1 (19)

with a shift ∆t, we derive indirect dependency events based on
observed direct dependencies. Direct dependencies imply that net-
work packets are exchanged between two network services. Nor-
malized cross correlation is a heuristic approach, hence observed
network activity events can be untrue and existing indirect depen-
dencies might not be detected. However, repeatedly reoccurring
network activity events are very likely to be actual network activi-
ties events.

The parameters of aij and eιkl(δl) the HMM λ = (aij , eιkl , π)
can be learned over multiple tumbling windows wti ∈W and ti ∈
[t0, . . . , tp] by:

aij =
Aij∑

q={0,...,p}Aiq
, (20)

where Aij is the number of observed state transitions from state
ιi to ιj over p tumbling windows and it is normalized over all of
ιi’s outgoing state transitions. An emission probability eιkl(δl) is
derived as

eιkl(δl) =
Eιkl(δl)∑′

∀ιxl,δl⊂ιxl
Eιxl(δl)

, (21)

where Eιkl(δl) is the number of times that state ιkl is observed,
when symbol δl is emitted. This is normalized over the number of
occurrences of all states ιxl ⊂ δl, ιxl ∈ F , which also emit symbol
δl. By observed network traffic within an monitored network traf-
fic, this HMM allows us to automatically derive network activities
based on network service dependency analysis. This introduced
methodology is applied to a real-life network and the results of this
experimental evaluation are shown in the next section.

5.3 Network Dependency based Vulnerability
Assessment

To identify the set of network activities, which are affected by
a software vulnerability, we link affected network services ASC,
ASI and ASA to indirect dependencies as derived in Equation 17.
Hence, the set of indirect dependencies ISC , ISI and ISA af-
fected a loss of confidentiality, integrity and availability is defined
as

ISC = SCC ((∀si ∈ ASC,map(asSet, ISDEP ))) ,

ISI = SCC ((∀si ∈ ASI,map(asSet, ISDEP ))) , and

ISA = SCC ((∀si ∈ ASA,map(asSet, ISDEP ))) .

(22)

where SCC denotes the strongly connected components (SCC) of
the hypergraph given as parameter (asSet maps a tuple into a set
of components).

Example for a Strongly Connected Component.
Suppose that a network service for the network activities illus-

trated in Figure 1 is linked to a software vulnerability cveIdi by
the mapping function SV ULN . Then set of affected indirect de-
pendencies is described in Figure 2.

6. EVALUATION
Using network activities for evaluating the impact of vulnerabil-

ities results in a strong dependency on accurately mined network
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Figure 2: Example for a network dependencies, which would be
affected by any network service having a software vulnerability.

activities. There are two parts of to our experimental evaluation,
first we show the results of deploying our network based vulner-
ability assessment methodology within the operational network in
Subsection 6.1. To provide a comparison with two state of the art
network dependency discovery methodologies based on a known
ground truth of all existing and non existing indirect dependencies,
experiments based on synthetic networks are presented in Subsec-
tion 6.2. We generate synthetic networks based on response times
observed in the operational, real-life network and conduct a com-
parative evaluation with Orion [5] and Sherlock [4].

6.1 Experimental Evaluation based on an op-
erational Network

The disaster recovery site of an energy distribution network, pro-
vided an Italian water and energy distribution company, was avail-
able for non-invasive experimentation. Based on this network, we
are able to collect and analyze real-life network traffic and also scan
the network for present software vulnerabilities. Figure 3 shows all
network service dependencies detected by MONA. These network
service dependencies were considered complete and correctly iden-
tified by network operators.

Figure 3: Network service dependency analysis in an energy distri-
bution network.

Figure 4: Network dependency based vulnerability assessment for
vulnerabilities CVE-2007-5423 and CVE-2010-2075, who were
detected on mferp2.

Figure 4 shows the result of network dependency based vulnera-
bility assessment for software vulnerabilities CVE-2007-5423 and
CVE-2010-2075 that were detected via network scanning on net-
work device mferp2. Both software vulnerabilities can be exploited
by automated code and therefore according to Equation 1 are easily
exploitable for remote attackers. CVE-2007-5423 is a vulnerabil-
ity that allows remote attackers to execute arbitrary code in Tiki-
Wiki 1.9.8 and CVE-2010-2075 is an unauthorized-access vulner-
ability due to a backdoor in UnrealIRCd 3.2.8.1. TTY-T[116-163]
are remote terminal units of substations, which are dependent on re-
quests from the front end server mferp2. Hence, network based vul-
nerability assessment concludes that TTY-T[116-163] are affected
by CVE-2007-5423 and CVE-2010-2075, which were detected on
mferp2.

6.2 Experimental Evaluation based on synthetic
Networks

The disaster recovery site of an energy distribution network, pro-
vided by an Italian water and energy distribution company, was
available for network traffic analysis. Based on this network, we
are able to collect and analyze real-life network traffic. Real-life
network traffic consists of network services frequently to rarely
interacting and we are able to determine typical response times.
Some network services have a common purpose and show simi-
lar communication patterns. As this network is a real-life network,
absolute knowledge of all network dependencies is not available.
During first experiments on data sets from the disaster recovery
site, we often found new network dependencies that had been pre-
viously forgotten by the network operators. As every network re-
lies on third party software, which might have their own network
dependencies unknown to network operators, collecting a known
ground truth on this network is not feasible. Hence, we extracted
the communication patterns of known network dependencies and
used this information to develop a random network generator in
ns-3 [2]. This random network generator can create synthetic data
sets with a known ground truth for testing our network dependency



analysis. As we are interested in equally maximizing precision and
recall, we rely on the F-measure in the following as a test methodol-
ogy. Figure 5 shows the F-measures based evaluation for MONA,
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Figure 5: F-measures for MONA, Sherlock and Orion in increas-
ingly large networks with 10 direct dependencies 20 indirect de-
pendencies. The number of flows per communication between in-
directly dependent network services is varied between 5-10, 5-50
and 5-90.

Sherlock and Orion in increasingly large networks with 10 direct
dependencies 20 indirect dependencies. The number of flows per
communication between indirectly dependent network services is
varied between 5-10, 5-50 and 5-90. As all four compared method-
ologies rely on analyzing network traffic patterns, a correlation be-
tween resulting F-measure curves becomes apparent. Generally,
Orion surpasses Sherlock except for smaller networks with less
than 275 network devices and 5-50 flows per communication be-
tween indirectly dependent network services. MONA almost al-
ways surpasses Sherlock and Orion, except for networks with 475
to 500 network devices and 5-10 flows per communication between
indirectly dependent network services. In this case Orion surpasses
MONA with a margin of less than 0.15.

Figure 6 shows the F-measures based evaluation for MONA,
Sherlock and Orion in increasingly large networks with 70 direct
dependencies 70 indirect dependencies. The number of flows per
communication between indirectly dependent network services is
varied between 5-10, 5-50 and 5-90. MONA’s F-measure results
clearly surpass Sherlock’s and Orion’s in this experimental set up
with more direct and indirect dependencies. Generally, Orion sur-
passes Sherlock’s F-measure results except for networks with less
than 275 network devices and 5-90 flows per communication be-
tween indirectly dependent network services. For networks with
200 network devices Sherlock and MONA diverge by less then 0.01
for 5-90 flows per communication between indirectly dependent
network services.

7. CONCLUSION
We have introduced a novel network based vulnerability analysis

approach. Network service dependency analysis allows the auto-
matic detection of ongoing network activities. Based on automat-
ically detected network service dependencies, we are able to link
exploitable software vulnerabilities to ongoing network activities.
The proposed framework is fully automated and is able to integrate
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Figure 6: F-measures for MONA, Sherlock and Orion in increas-
ingly large networks with 70 direct dependencies 70 indirect de-
pendencies. The number of flows per communication between in-
directly dependent network services is varied between 5-10, 5-50
and 5-90.

vulnerability specification from the bug-reporting community and
helps network operators develop a deeper understanding on how
networks are affected by software vulnerabilities.
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