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Abstract. Knowledge graph embeddings offer prospects to integrate machine
learning and symbolic reasoning. Learning algorithms are designed that map con-
stants, concepts, and relations to geometric entities in a real-valued domain Rn.
By identifying logics that feature these geometric entities as their model, one is
able to achieve a tight integration of logic reasoning with machine learning. How-
ever, interesting description logics are more expressive than current knowledge
graph embeddings, as description logics allow concept definitions using arbitrary
relations, such as non-functional relationships and partial ones. By contrast, ge-
ometric models of relations used so far in knowledge graph embeddings such as
translations, rotations, or linear functions can only represent total functional re-
lationships. In this paper we describe a new geometric model of the description
logic ALC based on cones that exploits reification combined with linear func-
tions to represent arbitrary relations. While this paper primarily describes reifica-
tion in context of a particular model for ALC, the proposed reification technique
is general and applicable with other ontology languages and knowledge graph
embeddings.

Keywords: Knowledge-Graph Embedding· Ontologies · Explainable AI.

1 Introduction

Knowledge graph embeddings (KGEs) offer prospects of a true integration of machine
learning and symbolic reasoning, given that models acquired by means of machine
learning can also serve as models in a logic sense. Until now, several properties of
prominent ontology languages for representing non-trivial concepts are beyond what
can be grounded in machine learning models. In this paper we develop an approach us-
ing reification to advance the expressiveness of relations in KGEs. In knowledge graph
embeddings, concepts are commonly represented as geometric entities (e.g., balls [9],
boxes [14], or cones [13,18,2]), constants as points, and relations as geometric oper-
ations. TransE [3] continues to be the classical reference for a knowledge graph em-
bedding of relations, drawing its charm from a simple geometrical representation of
relations that can be learned efficiently. Indeed, TransE represents relations as vector
translations, and hence embedding a triple (s R o) (stating that a subject s stands in re-
lation R to an object o, also written R(s, o)) into a continuous space is easily integrated
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with a loss function used for learning the embedding. The downside of this simple
representation is TransE’s limited expressivity [11]: only binary relations that are func-
tional in their first argument can be modeled. Such considerations on expressivity have
lead to many other embedding approaches that rely on more complex representations of
relations. Most of them are in the tradition of TransE—some more such as TransH [17],
TransR [10] that rely on representing relations as translation, and some less, relying on
other, more involved geometrical operations such as SimplE [11] or Rescal [12].

Still, all these approaches share the limitation of being restricted to relations that are
total and functional. Important features like partiality or non-functionality of relations
cannot be modeled correctly. What we mean by correct modeling is not going beyond
acceptable performance in some combinations of datasets and tasks, but to give a proper
logic-like Tarskian semantics to relations. By doing so, one does not only pave a more
solid theoretical foundation but also establishes the basis for KGEs associated with a
background ontology which states axiomatically constraints on the entities, concepts,
and relations to be embedded. For example, a background theory may state that certain
concepts are mutually exclusive (e.g., familyMovie and horrorMovie are disjoint) or
that some elements of a concept are related (e.g., hasChild as a partial, non-functional
relation on the concept class human). In [7] this logic-like representation is expressed as
the suggestion to represent (subjects and objects in triples) as vectors (this is represented
as arbitrary n-ary relations as subsets of the n-cartesian product over the embedding
space). An obvious downside of that approach is the high increase in dimensionality
required with adverse effects on learning. In this paper we take a middle-road: We insist
on representing concepts (unary relations) as sets of vectors but allow representations
of arbirary binary relations in mathematically well-behaved operations.

In this paper we propose the idea of reification to be applied in KGEs to represent
relations. We adopt the idea of relying on matrix multiplication to represent relations
previously used in KGEs, but we rewrite relations into equivalent structures which al-
lows us to model arbitrary relations, including partial and non-functional ones. The idea
of reification is to represent relations as objects in the embedding space. In our case,
e.g., a triple (a R b) would be represented by an object cR(a,b) and functions stating that
its “arguments” are a and b: π1,R(cR(a,b)) = a, π2,R(cR(a,b)) = b. The only relations
πi,R that have to be represented and learnt, then, are functional relations, namely pro-
jections of triples to its subject and its object. In context of an approach to cone-based
embeddings we are able to show that the set of triples cR(a,b) for a particular relation R
forms a well-behaved object too, namely a cone itself. In order to achieve partiality, we
develop a semantics that allows the projections π1, π2 to project pairs (a, b) outside the
domain, thus representing non-existence.

While reification is a well-known approach in logic modeling, the technical chal-
lenge tackled in this paper is to develop a geometric model that can link machine learn-
ing (by using feasible ingredients such as convex sets and simple geometric operations)
and ontologies (by defining a model for a logic). While we believe the idea of reifica-
tion to be compatible with a range of approaches in KGEs, we have opted in this paper
to extend an approach using linear functions as projections similar to TransR [10] as
building blocks for relations and convex cones [13] which have already been shown to
support full concept negation in background knowledge. Taken together, we can give
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a feasible geometric model for the well-known description logic ALC and thereby ad-
vance expressivity of KGEs.

In summary, the key contribution of this paper is to give an embedding of ALC-
ontologies based on generalized cones with a novel interpretation of relations based on
reification having the ability of representing partial and non-functional relations.

The remainder of this paper is structured as follows. In Section 2 we introduce no-
tation and summarize relevant properties of ontologies. Section 3 presents the proposed
reification approach for cones. In Section 4 we show how a geometric model for the
description logic ALC can be constructed and discuss its properties. Section 5 presents
related works. The paper concludes with a brief résumé and outlook.

2 Preliminaries

In order to define embeddings of knowledge graph triples with respect to background
knowledge, we first introduce a suitable language to model such background knowl-
edge, usually referred to as ontology. Description logics (DLs) [1] are formal languages
tailored towards representing ontologies and they thus present themselves as a basis.
DLs provide a clear distinction between factual knowledge (expressed in the so-called
abox) and terminological knowledge (expressed in the so-called tbox). In context of
KGEs, the abox provides specific data instances and the tbox provides background
knowledge. We note that one may be interested in semantics beyond classical DLs and
as we will discuss later this is indeed possible. For example, one may be interested in
some settings to account for partial information, say there may be elements that are
neither known to be members of a concept C nor of its negation C⊥. This may be ac-
complished by choosing the appropriate semantics. To keep our approach general, we
first describe semantics for a very general orthologic and then refine it to the classic
semantics of the well-known and widely used DL ALC.

2.1 Ortholattice and Orthologic

In short, ortholattices are structures similar to Boolean algebras but with fewer proper-
ties, e.g., no distributivity.

An (algebraic) ortholattice is a partially ordered set L with functions defined on it,
namely a structure (L,∧,∨, ·⊥, 0, 1) fulfilling the following properties:

– a ∨ a = a, a ∧ a = a. (idempotence)
– a ∨ b = b ∨ a, a ∧ b = b ∧ a. (commutativity)
– (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c) (associativity)
– a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a (absorption)
– a ∧ 0 = 0, a ∨ 0 = a, a ∨ 1 = 1, a ∧ 1 = a
– a⊥⊥ = a (double negation elimination)
– 0 = a ∧ a⊥ (intuitionistic absurdity)
– (a ∨ b)⊥ = a⊥ ∧ b⊥, (a ∧ b)⊥ = a⊥ ∨ b⊥ (De Morgan)

Intuitively, ·⊥ represents negation, more precisely called orthocomplement in or-
thologics, and partial order ≤ on L corresponds to concept inclusion v in the ontology
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language. Logics defined on ortholattices (as opposed to Boolean algebras) are called
orthologics. Classical logics like propositional logics are also orthologics, albeit ones
that satisfy additional, stronger properties.

2.2 Background Logic

As the basic logical syntax we consider that of ALC [1]. The syntax of ALC promises
to provide operators to express non-trivial background knowledge. This language is
neither trivial nor too complex to distract from developing the main points in this paper.
TheALC syntax rests on a DL vocabulary V given by a set of constantsNc, a set of role
names (binary relation symbols) NR, and a set of concept names NC . The set conc(V)
of ALC concepts (concept descriptions) over NC ∪NR is described by the grammar

C −→ A | ⊥ | > | ¬C | C u C | C t C | ∃R.C | ∀R.C

where A ∈ NC is an atomic concept, R ∈ NR is a role symbol, and C stands for
arbitrary concepts. An ontology O is defined as a pair O = (T ,A) of a terminological
box (tbox) T and an assertional box (abox) A. A tbox consists of general inclusion
axioms C v D (“C is subsumed by D”) with concept descriptions C,D. For ease of
notation, we write C = D instead of C v D and D v C. An abox consists of a finite
set of assertions, i.e., facts of the form C(a) or of the form R(a, b) for a, b ∈ Nc. We
define the notion of an interpretation as usual:

Definition 1. A structure (∆, ·I) is called an interpretation I for a givenALC vocabu-
lary of constants, concept and role symbols V = Nc∪NC ∪NR iff ∆, the so-called do-
main, is a set and ·I is the denotation function defined for all b ∈ Nc, A ∈ NC , R ∈ NR

and concepts C,D over V such that the following conditions are fulfilled:
bI ∈ ∆, (C uD)I = CI ∩DI ,
AI ⊆ ∆, (C tD)I = CI ∪DI ,
RI ⊆ ∆×∆, (¬C)I = ∆ \ CI ,
>I = ∆, (∃R.C)I = {x ∈ ∆I | There is y ∈ ∆I s.t.
⊥I = ∅, (x, y) ∈ RI and y ∈ CI},

(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I:
If (x, y) ∈ RI , y ∈ CI}

An interpretation I models a GCI C v D, for short I |= C v D, iff CI ⊆ DI . An
interpretation I models an ABox axiom C(a), for short I |= C(a), iff aI ∈ CI and
it models an ABox axiom of the form R(a, b) iff (aI , bI) ∈ RI . An interpretation is a
model of an ontology (T ,A) iff it models all axioms appearing in T ∪ A.

We now discuss embeddings of cones in Rn before turning our attention to ALC.

3 Cone Embedding

Our approach is based on a geometric interpretation function I that represents concepts
and relations as convex cones in Rn. Cones satisfy the property that if x, y are inside a
cone, then λx+ µx, λ, µ ≥ 0 is also inside that cone. We make use out of this property
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to construct the reification. We adopt the approach of [13] in using polarity (·)◦ derived
from the scalar product in Rn to construct a negation of concepts. The polar of a cone
C, written C◦, is defined as the set {x ∈ Rn|∀y ∈ C.xT · y ≤ 0}, i.e., the set of all
vectors being rotated at least 90 degrees away from any element of C. For all points
neither belonging to a cone C nor to its polar C◦, no statement about membership to
concepts C, ¬C can be made – the model is thus capable of representing uncertainty
and thus is able to cope with the open world assumption.

Definition 2. A convex cone is a set C ⊆ Rn with the property ∀x, y ∈ C.∀λ, µ ∈
R.(λ ≥ 0 ∧ µ ≥ 0)→ λx+ µy ∈ C. For readability, we refer to convex cones simply
as cones. We define Hm as the m-dimensional hyperoctant cone Hm ⊂ Rm generated
by m vectors {(1 0 · · · 0)T , (0 1 0 · · · 0)T , (0 0 1 0 · · · 0)T , . . . , (0 · · · 0 1)T }.

Closed convex cones are closed under set intersection, so ∩ is a meet operator ∧
wrt. ≤ but not closed under set union. Instead they have to be closed up by the conic
hull operator. The conic hull of a set b, for short ch(b), is the smallest convex cone
containing b. So, we can define the join operation ∨ by a ∨ b = ch(a ∪ b). Considering
Rn as the largest lattice element 1 and the empty set as the smallest lattice element 0
makes the resulting structure a bounded lattice.

The polarity operator for closed convex cones fulfills properties of orthocomple-
ment. Hence the set of all closed convex cones (over Rn) forms an ortholattice. As de
Morgan’s laws hold in any ortholattice, one gets in particular the following characteri-
zation of the conic hull: ch(a∪ b) = (a◦ ∩ b◦)◦. We denote the set of all closed convex
cones in Rn by Cn. Then the following fact holds: For any n ≥ 1, Cn is an ortholattice.

Hm

C

D

π2,R

π1,R

C
C◦

Fig. 1: Left: Reification of relation R is based on linear functions π1,R, π2,R that project relation
concept Hm to its arguments. Right: Illustration for reification requiring Hm with m > n.

We now define reification as illustrated in Figure 1 left to relate two concepts C,
D. Relations are represented like concepts, i.e., by convex sets of specific geometric
shape, and projections π1, π2 are introduced that link the embedded relations with the
corresponding concepts. The main advantage of this over previous attempts is that the
use of projections allows non-functional and partial relations to be represented. Ap-
proaches representing relations by geometric transformations in the embedding space
such as TransE [3] are attractive as they also do not require further dimensions to be
introduced, yet at the severe cost of being only able to represent functional relations,
i.e., any x is always related to exactly one y. Several work aimed to remedy this severe
limitation, but no general cure is possible when relying on a single geometric transfor-
mation function.
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Definition 3. We say a reification of a binary relation R between two cones C, D is
given by a hyperoctant Hm and two linear functions π1,R and π2,R given as matrices
M ∈ Rn×m.

Let us now complement the geometric model. A cone interpretation for ALC maps
symbols and formulae to cones in Rn. The definition is as usual for interpretations,
except that we exclude the origin ~0 from the domain. This creates a convenient way for
projections in the reification of relations to map subspaces to a well-defined ‘nirvana’ ~0
whenever a mapping to the empty set is required. For example, the formula ∀R.> v ⊥
saying that nothing is reachable by role R can elegantly be represented by setting π2,R
to 0 ∈ Rn×n, the projection to ~0.

Definition 4. A cone interpretation for a given ALC vocabulary V = Nc ∪NC ∪NR

of constants, concept and role symbols is a structure (∆, ·I) where ∆ = Rn \ {~0} for
some n ∈ N and ·I is the denotation function defined for all b ∈ Nc, A ∈ NC , R ∈ NR

and concepts C,D over V such that the following conditions are fulfilled:
bI ∈ ∆, (C uD)I = CI ∩DI ,
AI ∈ Cn, (¬C)I = C◦,
RI ⊆ ∆×∆, (C tD)I = (¬(¬C uD))I ,

>I = ∆, (∃R.C)I = π1,R

(
π−12,R(C

I) ∩Hm

)
⊥I = ∅, where Hm, π1,R, π2,R are a reification of relation R

and π1,R
(
π−12,R(C

I) ∩Hm

)
is a convex cone.

(∀R.C)I = (¬∃R.¬C)I
The notion of a cone interpretation being a model (of an abox, tbox, ontology) is

defined in the same way as for classical interpretations according to Def. 1.

We now show that arbitrary ALC knowledge bases KB = (A, T ) consisting out
of abox A and tbox T are representable by a cone interpretation. First, we define how
relations on the abox level are modeled.

Definition 5. Given an ALC vocabulary with concept symbols C, constant symbols A,
and role symbols R, and ALC knowledge base KB, we say that the roles in KB are
representable if there is a geometric interpretation (∆, I) that is a model of KB and
KB |= R(a, b) if and only if b ∈ π1,R(π−12,R(a) ∩Hm) for some hyperoctant Hm.

Proposition 1. A cone interpretation of concepts maps all concept descriptions to closed
convex cones.

Proof. This is clear for atomic concepts, intersection, and for the polar operator. Dis-
junction is defined by de Morgan via intersection and polarity. But this is the conic hull,
hence a mapping to a closed convex cone. Linear mappings also preserve cones, as they
distribute over arbitrary linear combinations (not only those with positive scalars). For
the existential, being a convex cone is enforced directly by the definition.

Note that enforcing closed convex cones for the embedding of existentials is not a strong
constraint. Taking the null vector into account one can show that the inverse preserves
cones: Let X be a cone and M be a linear mapping as used in reification. Let v ∈
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M−1[X], then M(v) = w ∈ X . Then for λ > 0 due to linearity M(λv) = λM(v) =
λw and λw ∈ X due to the fact that X is a cone. Let v, v′ ∈ M−1[X], then M(v) =
w ∈ X,M(v′) = w′ ∈ X (for some w,w′). Now M(v + v′) = M(v) +M(v′) =
w + w′ ∈ X , so v + v′ ∈M−1[X].

Reification employs matrix multiplications like several previous approaches, but
it employs an ‘in-between stop’ at Hm which is the central trick to represent 1-to-k
relations by making π1 a k-to-1 mapping. Let us consider a simple example shown in
Figure 1 to see that a stop Hm is necessary and that even m > n may be necessary.

Example 1. We consider the cone C generated by vectors {(0 1)T , (0 − 1)T , (1 0)T }
in R2 shown in Figure 1 right. Its negation given by the polarity operator C◦ is the cone
generated by {(−1 0)T }. Now consider background knowledge ∃R.C = > saying that
any entity is reachable from C by means of relation R. > is interpreted as R2 \ {~0} and
it requires four independent rays λici, λi > 0, ci ∈ C to span R2, more than offered by
C. It requires at least H4 to achieve the desired mapping:

π1,R :=

(
0 0 1 −1
1 −1 0 0

)
, π2,R :=

(
0 0 1 0
1 −1 0 0

)

For any point ~x = (x1 · · ·x4)T in H4 we have π2(~x) = x1

(
0
1

)
+x2

(
0
−1

)
+x3

(
1
0

)
and since x1, . . . , x4 ≥ 0 we have π2(~x) ∈ C and π1(~x) covers R2 for ~x ∈ H4. In
general, Hm with m > n is required when concept C is a sub-space of lower dimen-
sionality than the concept it is related to.

Let us discuss a more involved example showcasing the ability to model complex
relationships.

H2

• CI
π1,R =

(
1 0
0 0

)
π2,R =

(
1 1
0 0

)
π−1
2,R(C

I)

π−1
2,R((¬C)I)

(¬C)I

Fig. 2: Example for the construction of a geometric model of a tbox consisting of ∃R.C = C
and ∃R.¬C = ⊥

Example 2. Consider concept CI represented as the positive x-axis, the complement
(¬C)I is the negative halfspace in R2 shown in Fig 2. This model fulfills the two tbox
axioms ∃R.C = C and ∃R.¬C = ⊥. The first axiom is fulfilled, as π−12,R(C

I) is the
region marked with arrows in the figure. The intersection with the region of possible
relational facts H2 results in H2, the upper right quadrant. This is mapped to CI by
π1,R. As π−12,R(¬C)I does not intersect with H2, ∃R.¬C = ⊥ is valid.
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Therefore, partiality is obviously given. To show non-functionality, the instances
need to be considered. Assume cI = (λ 0)T for an arbitrary λ > 0. π−11,R(c

I) =

{(λµ)T | µ ≥ 0} and π2,Rπ−11,R(c
I) = {(λ+ µ 0)T | µ ≥ 0}. Thus, a cI = (1 0)T has

a relation to all bI = (γ 0)T for γ ≥ 1.

A property of our approach, besides its non-distributivity of ∩ over ∪, is its non-
distributivity of ∃ over ∨, meaning (∃R.(C tD))I 6= (∃R.CI t∃R.D)I . Despite this
is not classical, e.g. different from ALC-semantics, it may be quite useful in model-
ing: Assume a binary relation E is introduced to model whether a person is examined
to have a specific disease. Thus, by asserting E(person, disease) medical knowledge
about a person at a specific point in time is reported. Now, it might be the case that an
examination is not exact and thus results in the knowledge that the person could have
disease A or diseaseB. However, assuming ∃E.(AtB) = ∃E.At∃E.B would result
in the conclusion that at this stage of examination it is already known which exact dis-
ease the person has. However, this exact specification was presumed not to be possible,
and therefore, the instance representing the person should be placed in the embedding
of ∃E.(A t B) but neither in the embedding of ∃E.A nor in the embedding of ∃E.B
because for both of them there is no justification in the examination. Thus, a lack of
distributivity can be helpful to bridge gaps in semantics.

4 Distributive Embedding

The approach described so far leads to a possibility of expressing relational knowledge
in general orthologics, which may be relevant for some applications as we have argued
above. However, many knowledge bases consider stronger orthologics, i.e., expect dis-
tributivity to hold, which include all classical logics.

One prominent example is ALC with classical semantics. Here one requires the
ortholattice also to be a Boolean algebra. In fact, classical ALC-tboxes are character-
ized according to [15] by the fact that the existential is a strong operator, i.e., the ex-
istential quantifier with classical ALC semantics satisfies the following two properties:
(∃R.⊥)I = (⊥)I and (∃R.(C tD))I = (∃R.C t ∃R.D)I .

Therefore, to adapt our approach to ALC, distributivity of u over t and distribu-
tivity of ∃ over t must be achieved. The first property can be met by restricting cones
to so-called axis-aligned cones (al-cones) as introduced in [13] since geometric models
based on al-cones are distributive. Al-cones have a finite basis and their generating vec-
tors only consists out of components +1, −1, and 0. The second property can be met
by restricting the modeling of relations in form of the role distributivity property.

Definition 6. Role distributivity property RDP: if x ∈ (C tD)I and π−12,R(x)∩Hm 6=
⊥I , then it exists xc ∈ (C)I and xd ∈ (D)I with x = xc + xd and π−12,R(xc) ⊆ Hm

and π−12,R(xd) ⊆ Hm.

Each two concepts C and D must fulfill the RDP to regain distributivity of the
∃-operator.

Proposition 2. ∃R.(C tD) = ∃R.C t ∃R.D is valid if RDP is fulfilled.
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Proof. ∃R.C t ∃R.D v ∃R.(C t D) holds in any case. Therefore, it is sufficient to
show ∃R.(C t D) v ∃R.C t ∃R.D. Therefore, for all y ∈ (∃R.(C t D))I it needs
to follow that y ∈ (∃R.C t ∃R.D)I . Let y 6∈ (∃R.C)I , y 6∈ (∃R.D)I , as trivial in the
other cases. Therefore, y = π1,R(π

−1
2,R(xc + xd) ∩ Hm) for a xc ∈ C and a xd ∈ D.

With linearity of π2,R it follows that y = π1,R((π
−1
2,R(xc) + π−12,R(xd)) ∩ Hm) and

y ∈ ∃R.C t ∃R.D means y = π1,R((π
−1
2,Rxc ∩ Hm) + (π−12,Rxd ∩ Hm)). With RDP

follows equality.

Having this property, it is possible to show that all ALC knowledge bases are rep-
resentable by a geometric interpretation based on al-cones.

Proposition 3. AllALC knowledge bases are representable by a geometric interpreta-
tion.

Proof. We show that an al-cone interpretation of aALC knowledge base without roles,
i.e., only considering the Boolean part, can be extended to a model for roles as well.

Since ALC features the finite model property we may assume that the geometric
model is finite and represents all facts following from a given knowledge base KB.
Hence assume all concepts to be represented by cones and all constants by vectors in
Rn. We write aIB to refer to the vector obtained for constant a in the Boolean embed-
ding and we write aI for its embedding we seek to construct.

We iteratively construct a geometric model from a Boolean geometric model based
on al-cones and a corresponding ALC model by processing role after role in a two-
step process. Initially, we initialize ·I by setting ·I to the Boolean-only model ·IB . In
the first step, we consider a role R with |{(a, b)|KB |= R(a, b)}| = m and assume
R = {(a1, b1), . . . , (am, bm)} in the finite model. We extend the dimensions of our
model from n to n(m + 1) by cloning the components of all vectors ~x that generate
some concept. Let 0k denote k consecutive zero components in a vector, then we can
describe the modification of the embedding cI for any constant c as follows:

φ(c) =
∑

i=1,...,m,c=ai∨c=bi

(0n·i (c
I)T 0m−i)

T (1)

cI ←
{
φ(c) φ(c) 6= 0n(m+1)

((cI)T 0n·m)T otherwise (2)

Note that φ(c) 6= 0n(m+1) occurs exactly if there is at least one ai or bi with c = ai or
c = bi. Doing so, we separate all entities in dom(R)∪ Img(R) that occur in the model.
In particular, we achieve that λaIi ∈ dom(R), λ > 0 if and only if aIi ∈ dom(R) and
likewise for Img(R). We repeat the process for all roles.

In the second step, we need to construct the reification of any role R which can be
done as follows. Assume again R = {(a1, b1), . . . , (ap, bp)} and then define a reifica-
tion based on hyperoctant Hp embedded in the model using projections

π1 =
[
aI1 · · · aIp

]
, π2 =

[
bI1 · · · bIp

]
,

where [· · · ] represents a matrix composed out of column vectors. By construction of
aIi , bIi , we have cR(a,b) = (0i−1 1 0n−1)

T ∈ Hl which corresponds to R(ai, bi) since
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π1(cR(a,b)) = aIi and π2(cR(a,b)) = bIi . It thus follows π1(Hp) ⊇ dom(R) and
π2(Hp) ⊇ Img(R), respectively. Also by construction, for any c 6∈ dom(R) we have
cI 6∈ π1(Hp) since aIi and cI reside in mutually exclusive sub-spaces according to (2).

We note that this proof, albeit constructive, is of theoretical nature since it exploits
a large amount of dimensions for Hp to ease the construction.

It is not only possible to represent eachALC knowledge base with such a geometric
interpretation, it is also possible to interpret each geometric model based on the axis-
aligned cones introduced in the above proposition as an ALC-ontology.

Proposition 4. A geometric interpretation based on al-cones fulfilling RDP, where
π1,R(π2,R(C) ∩ Hm) maps to an al-cone for each half-axis C, represents an ALC
knowledge base.

Proof. A geometric interpretation without considering roles is shown in [13]. There-
fore, it is sufficient to show that the relational part also fulfills the restrictions of ALC.
∃R.⊥ = ⊥ is fulfilled by construction. The distributivity of ∃ over ∨ is ensured by
RDP, as shown in Proposition 2.

As each half-axis is mapped to an al-cone, because of linearity of π, each concept
is mapped to a union of al-cones, which is still an al-cone. Also because of linearity,
it is ensured that the properties needed for roles, e.g. ∃R.C v ∃R.> are fulfilled. The
negation of ∃R.C is given by polarity (as it would not be a geometric model otherwise).
Therefore, the resulting geometric model represents a ALC knowledge base.

5 Related work

The approach presented in this paper is a contribution to recent efforts on combining
knowledge representation (KR) and machine learning (ML). Roughly, those approaches
use ML algorithms to learn an ontology or to exploit the ontologies as constraint speci-
fications in order to get more accurate models or in order to optimize statistical models.
Our work and many of the recent KGE approaches (see below) tackle the problem
of building accurate models in the sense that these are compatible with the background
knowledge expressed in an ontology. But there is also relevant work outside of the KGE
community which incorporates ontologies into standard statistical models. An example
is the approach of Deng and colleagues [5] in which pairwise conditional random fields
are optimized by incorparting knwoledge of the background as additional factors.

Earlier approaches to knowledge graph embedding—including TransE [3]—were
motivated by efficient learning algorithms, hence resolving the expressivity vs. feasi-
bility dilemma strictly in favor of feasibility. For example, consider the notion of “full
expressivity” in [11] which only states that an approach is able to differentiate between
all class members and non-members of a concept. In those approaches—including the
well-known TransE [3]—heads and tails of KGE triples are represented as real-valued
vectors and relations are represented as vectors, matrices or tensors, i.e., simple geo-
metric operations. In many occasions, the geometric operations lead to relations that
are functional, total or are constrained by other means. But the resulting simple mathe-
matical operations (for representing relations) provide not much expressivity from a KR
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Geometrical Structure Logic Concept lattice Negation Approach/
Concepts Relations Reference

Convex sets pairs Quasi-chained distr atomic [7]
Datalog±

Hyperspheres translation EL++ distr atomic [9]
Axis-aligned Cones pairs rank-restricted distr full Boolean [13]

ALC
Axis-aligned Cones cones ALC distr full Boolean this paper
Closed Subspaces pairs Minimal orthomodular orthonegation [6]
in Hilbert Space Quantum Logic
Hyperbolic cones rotation logics distrib atomic (?) [2]

for taxonomies
Cartesian Products rotation + FOL queries (?) distrib negation [18]
of 2D-cones volume change (without ∀) as failure
Table 1: Comparison of approaches for embedding with the approach of this paper in bold font

point of view. Even in later approaches, e.g. [16], functionality is not dealt logically but
rather by relying on thresholds. In order to illustrate our point, consider an object rep-
resented by a vector x. A relation R is represented in [16] by a rotation MR. The vector
y :=MRx gives only some “prototypical” object to which x stands inR-relation. Other
objects y′ to which x might stand in R-relation are given by ‖MRx− y′‖ ≤ λ for some
threshold λ. In particular, this means that all objects to which x is R-related are close
to MRx. In consequence, x can not be related to some objects y′ and y′′ that are quite
different in that they belong to complementary concepts, y′ ∈ CI and a y′′ ∈ (¬C)I .

In the following we discuss only those KGE approaches that explicitly mention
the kind of geometries used for embedding and the logic that characterizes them (see
Tab. 1). Table 1 considers in particular the question how concepts and roles are em-
bedded, whether distributivity of u over t is fulfilled, and what kind of negation is
expressed. We note that there are good reasons for considering non-distributive logics
for the investigation of concept hierarchies as discussed in [4]. Non-distributive logics
are investigated thoroughly by Hartonas in [8].

[7] identify a fragment of existential Datalog (fulfilling the quasi-chainedness prop-
erty) as an appropriate logic for arbitrary convex regions in euclidean spaces. [9] finds
a correspondence for hyperspheres and the lightweight description logic EL. [13] iden-
tifies axis-aligned cones as an appropriate geometrical class for embedding concepts of
the semi-descriptive logic ALC. While [7,9] do not allow for full negation of concepts
to be represented, [13] define negation for the model of axis-aligned cones that uses po-
larity, which possibly gives rise to some interesting logic structure. On the other hand,
in [13] binary relations are allowed to be arbitrary pairs of vectors, whereas [7] mod-
els also relations (of any arity) by convex regions. The approach of this paper shares
the property with [13] of providing full (Boolean) negation. But our approach devi-
ates from [13] in the interpretation of roles—with consequences at three columns of
the table: Our approach does not consider arbitrary set of pairs as possible embed-
dings of roles. In [13], this generality is possible by restricting the quantifier rank of
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the concepts in the ontology. In contrast, our approach interprets roles by reifying con-
cepts, that are allowed to be (arbitrary) cones. This also allows handling arbitrary (non
quantifier-restricted) ALC ontologies as background knowledge.

In all three approaches the expressible concept hierarchy fulfills distributivity of
conjunction over disjunction. The approach of [6] considers minimal quantum logic
which does not fulfill distributivity but (only) a weakening: orthomodularity. Relations
are handled in [6] by doubling the dimension of space where the concepts are embedded
and by treating R(a, b) as a vector [a b]T in this higher-dimensional space.

The approach of [2] uses hyperbolic cones for modelling relation hierarchy graphs
and to grasp properties that follow by traversing the edges. The exact logic captured by
this approach is not clear (to us), as the authors allow next to subclass relations also
part-of relations. Quantifiers, negation (and other Boolean operators) are not handled
explicitly in this approach. One can think of antinomies being used in the hierarchy—
but this rather correspond to atomic negation. Hence we describe the logic as taxonomic.

The approach of [18] also uses the idea of [13] to handle negation of concepts by us-
ing cones. But they do not consider negation as polarity, but negation as set-complement
in 2D and cartesian products to embed concepts. Relations in [18] are handled by rotat-
ing the support point and changing the volume of a cone. The authors claim to embed
FOL queries. Interestingly, they exclude the universal quantifier ∀ form their consid-
erations. Given the fact that ∀ is dual to ∃ via negation we consider this as a sign that
negation is not treated in its full expressivity. In particular, they cannot fully account for
de Morgan rules since negation as used there is a form of negation as failure.

6 Conclusions and Outlook

Algorithms involving computations over some declarative specification of the world
have to trade-off between expressivity and feasibility. Feasibility of embeddings has
been traditionally favored over expressivity, because many works are governed by prac-
tical implementations. Current investigations now try to push the expressivity envelope
and to strive for a better alignment between expressivity provided by an embedding and
the expressivity required for sound representation of some domain knowledge. Achiev-
ing a true alignment of the geometric structures determined in learning methods with
logical models is necessary to exploit embeddings in hybrid AI approaches, in particu-
lar with reasoning beyond link prediction. This paper shows how the idea of reification
can be applied to knowledge graph embeddings and presented the first geometric model
of full ALC which is based on feasible structures previously employed in knowledge
graph embedding, namely convex sets (cones) and linear functions (matrix multiplica-
tion). Our approach is not tailored toALC but may be useful to a much larger family of
orthologics. As this paper has been taken the second roadway of pushing forward ex-
pressivity in geometric models, future work will aim to complement these fundamental
findings with a learning method to acquire an embedding with reification of roles.
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