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Abstract. Predictive planning of maintenance windows reduces the risk
of unwanted production or operational downtimes and helps to keep ma-
chines, vessels, or any system in optimal condition. The quality of such a
data-driven model for the prediction of remaining useful lifetime is largely
determined by the data used to train it. Training data with qualitative
information, such as labeled data, is extremely rare, so classical similar-
ity models cannot be applied. Instead, degradation models extrapolate
future conditions from historical behaviour by regression. Research offers
numerous methods for predicting the remaining useful lifetime by degra-
dation regression. However, the implementation of existing approaches
poses significant challenges to users due to a lack of comparability and
best practices. This paper provides a general approach for composing ex-
isting process steps such as health stage classification, frequency analysis,
feature extraction, or regression models for the estimation of degradation.
To challenge effectiveness and relations between the steps, we run several
experiments in two comprehensive case studies, one from manufacturing
and one from dry-bulk shipping. We conclude with recommendations for
composing a data-driven degradation estimation process.
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1 Introduction

Data-driven products and machine learning methods offer large benefits for pro-
duction engineering companies. Predictive maintenance can reduce the risk of
unwanted production and operational downtime and help keep machines, vessels,
and systems in optimal condition. A key challenge of this is the estimation of
remaining useful lifetime (RUL), that is, predicting the time to failure. However,
the development of such products requires a large initial investment in the model
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definition and training data acquisition. The latter is especially important, as
the prediction quality of a machine learning model is largely determined by the
data used for training. Labeled data or large amounts of observed run-to-failure
data are extremely rare. Of course, one could deliberately degrade machines to
capture more failure patterns, but that is at least financially irresponsible.

One way to model RUL without having labeled or entire failure data from
similar machines is to use degradation models. Degradation models estimate the
RUL only indirectly by relating the degradation of parts of the product itself to
the failure mechanisms. Degradation analysis allows the analyst to extrapolate
to an assumed failure time based on measurement of time series performance
or sensor data directly related to the suspected failure of the machine under
consideration. An initial evaluation of appropriate data that give an indicator of
degradation presents an initial challenge. However, after initial investment, one
also benefits from a prediction of intermediate states up to the failure itself.

Research provides numerous methods for modelling degradation and RUL.
To decide on an appropriate approach, there are few or insufficient comparisons
of existing methods. To help deciding on a solution for real-world challenges, one
needs a mechanism to compare existing methods. To demonstrate feasibility, one
is interested to setup a basic solution before improving the overall approach.

In this paper, we present a general data-driven approach for predicting RUL
that considers comparability of existing approaches in the best possible sense.
This approach includes four steps: health stage (HS) classification, frequency
analysis, feature extraction, and the prediction itself performed by regression.
By means of the approach, we focus on four general research questions that arise
in the search for an appropriate modelling method:

1. Can HS classification improve the accuracy of prediction?
2. Does the frequency spectrum of a time series provide more useful information

than the raw data, i.e., time spectrum, itself?
3. Which feature sets are appropriate for the estimation of degradation?
4. Which data-driven regression method yields the highest accuracy?

For general validity and comparability, we present two comprehensive case
studies in different industries, namely manufacturing and dry-bulk shipping. The
aim of this work is not to achieve the best possible predictive accuracy. Instead,
we investigate the interaction of the steps and conclude with recommendations
for the composition of a data-driven degradation estimation process.

2 Remaining Useful Lifetime Prediction

In this section we place our work in the context of RUL prediction, and present
related work.

2.1 Modelling the Remaining Useful Lifetime

Depending on the type of measurement data, three different model families are
applied. The different families of data-driven models for predicting RUL are
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Fig. 1. Three families of models for the prediction of RUL.

visualised in Figure 1, with arrows indicating the types of training data available.
Similarity models use run-to-failure data from similar machines, starting during
healthy operation and ending close to failure or maintenance. RUL is directly
estimated from historical labeled training data by applying a pattern matching
of trends or conditional indicator values. Survival models are used when the
user does not have a complete history of run-to-failure data but instead has
data about the life span of related components. Probability distributions are
determined based on the behaviour of related components and used to estimate
RUL. Degradation models estimate the degradation process without requiring
faulty data. Historical behaviour of a machine condition indicator is used to
extrapolate the damage progression to indirectly determine RUL.

In real-world challenges complete run-to-failure data are rarely available, we
focus on degradation models. We use data-driven statistical methods being suit-
able when little domain knowledge is available or generalised models are desired.

2.2 Related Work

Research provides many approaches for the estimation of degradation processes.
In regular operation healthy data outweighs degradation data, so data-driven
prediction is often challenged by imbalance. To address imbalance, an additional
preprocessing step, such as HS classification can be used. To distinguish between
healthy and faulty data, different classification indicators from kurtosis to self-
organising maps are applied before model training, e.g., in [8,12,14,15,20,24]. To
gain other information further preprocessing by frequency analysis are performed
before extracting features for degradation regression. Examples range from clas-
sical discrete Fourier transform (DFT), short-time Fourier transform (STFT) to
Hilbert-Huang transform [4,6,9,11,14,21]. Since most classical data-driven mod-
els cannot directly process time series, the extraction of additional scalar-valued
features from time series is necessary before these algorithms can be applied.

Feature extraction performed using feature engineering methods range from
classical statistical measurements such as root mean square and kurtosis [2,6,20]
to information-theoretic entropies [5,25,21,11]. Other authors provide feature
learning methods based on isomap [4], autoencoder [9] or convolutional neu-
ral networks (CNN) [14]. Data-driven models for degradation estimation are
implemented, e.g., by polynomial regression (PR) [13,23], support vector regres-
sion (SVR) [10], or artificial neural networks (ANN) for regression [21].
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Fig. 2. Six technical steps of RUL prediction (2 and 3 are optional).

Besides on preprocessing steps, prediction accuracy depends on the choice
of features and the regression algorithm used. Comparisons are either available
for feature sets based on different selection indicators [25,23] or for data-driven
methods for RUL regression [7,19]. However, none of the comparisons take into
account the interaction of preprocessing steps, feature extraction, and regres-
sion algorithms at once. In two comprehensive case studies, we strengthen the
understanding and effectiveness of the different steps as well as their interactions.

3 A Data-Driven Approach for Degradation Estimation

We present a general approach for comparison of the different steps for the esti-
mation of degradation. In general, the degradation estimation process consists of
six technical steps, i.e., time series data acquisition, HS classification, frequency
analysis, feature or indicator extraction, degradation estimation by regression,
and deployment and integration as presented in Figure 2. We focus on steps 2
to 5, as data acquisition, and appropriate deployment, and integration of the
predictive model depend on both domain and user’s system infrastructure.

Next, we follow Figure 2 by addressing the steps before discussing them as
part of two case studies to answer the introduced research questions.
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3.1 Health Stage Classification

The second step in the overall process visualised in Figure 2 is considered op-
tional. Caused by the fact that healthy data outweighs degradation data in
regular operation, data-driven prediction of the degradation process can be im-
peded or even biased by healthy data. In order to distinguish between healthy
and faulty stages in a time series, the point in time when the degradation starts
has to be identified. The boundary of the two stages is called the first prediction
time (FPT). For simplicity, in this work we include an approach by Li et al. [12],
where kurtosis is used as such a classification indicator. The FPT corresponds to
the time when the kurtosis of a sliding window over the time series exceeds the
interval µ± 2σ for the second time, where µ is the mean and σ is the standard
deviation at the beginning of the time series. After the identification of FPT,
observations in data classified as healthy are omitted from both training and
prediction of degradation. The prediction by the regression model is initiated
when data is classified as unhealthy. To answer our first research question, we
evaluate in Section 4 whether this additional step can improve the accuracy of
the estimation of degradation by adding the HS classifier.

3.2 Frequency Analysis

The third step in the overall process visualised in Figure 2 is the analysis of the
frequency range of a time series that can provide further insights into the degra-
dation process. In this step we distinguish between time spectrum, frequency
spectrum and time-frequency spectrum analysis. By time spectrum, we denote
the raw time series on which no frequency analysis is performed. By frequency
spectrum, we denote a time series that is transformed by discrete Fourier trans-
form (DFT). DFT transforms a finite sequence of equally-spaced observed data
points (x0, ..., xT ) into another sequence (X0, X1, . . . , XT ) that is a complex-
valued function of frequency The fast Fourier transform (FFT) is an efficient
algorithm for computing DFT. Showing a trend, degradation time series are
inherently non-stationary, i.e., the mean is not constant over time. To analyse
the frequency spectrum of non-stationary time series, short-time Fourier trans-
form (STFT) is used. To assume stationarity, the STFT uses a window function
to select short time periods with constant mean. Several frequency spectra are
calculated per window by DFT. By time-frequency spectrum, we denote a time
series on which STFT is performed. Note that in the next step of the overall
process, not every feature extraction method can be applied on every frequency
analysis method. Implementation details follow in Section 4.

3.3 Feature Extraction

A model cannot represent information that it does not have. The extraction of
features in step four visualised in Figure 2 refers to the creation of new informa-
tion that was previously not available. Techniques for feature extraction can be
classified into two groups, namely feature engineering and feature learning.
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Table 1. List of statistical features.
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T
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Feature Engineering is the older discipline of the two. New features are cre-
ated by processing domain-specific knowledge or by transforming data. Tech-
niques for feature engineering origin from at least two research areas. The first
way to extract features is by means of statistical analysis. A list of the statistical
features for a univariate time series x ∈ RT used in this work is given in Table 1.
Another way of extracting features is by using information-theoretic measure-
ments, called entropies. The concept of entropy was first introduced by Claude
Elwood Shannon in 1948 and has since been used to quantify the complexity
of data in numerous other fields. (Shannon) entropy is defined as the expected
number of bits needed to encode a message that is H = −∑

z∈Z pz log2(pz),
where Z is the set of possible symbols used in a message, pz is the probability of
z ∈ Z appearing in a message. The number of bits required is in direct relation to
the complexity (and entropy) of the message, meaning few or many bits reflect a
low or high entropy, respectively. To use entropies as features for time series, ob-
servations are encoded as sequences of symbolic abstractions. As far as current
research is concerned, there are two general approaches of symbolisation [17].
Classical symbolisation approaches use data range partitioning and thresholds
for symbol assignment such as the well-known Symbolic Aggregate approXima-
tion (SAX). The ordinal pattern symbolisation approach, describing the up and
downs in a time series, is based on an approach by Bandt and Pompe [3]. Com-
bining the ordinal pattern symbolisation approach with Shannon entropy leads
to a special case called permutation entropy. All listed features can be applied
directly to time and frequency spectrum.

Feature Learning compared to feature engineering, solve optimisation prob-
lems to learn features from a set of time series. Learned features can reveal task-
specific patterns that are not obvious to humans, including non-linear patterns.
There are numerous ways to learn features as principal component analysis,
autoencoders, and convolutional neural networks.

The principal component analysis (PCA) is a well-known method converting
a set of observations of possibly correlated variables X ∈ Rn×p into a set of
values of linearly uncorrelated variables X ′ ∈ Rn×p. Using eigenvalue analysis,
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an orthogonal transformation that preserves greatest variance in data yields in
new p basis vectors, also called principal components. Keeping only the first r
principal components gives the truncated transformation X ′r = XWr, where
W ∈ Rp×r is a matrix whose columns are the eigenvectors of XTX sorted in
descending order of the r highest corresponding eigenvalues, and a new lower-
dimensional representation of the data.

A relatively new method for reducing dimensionality are autoencoders, a
branch of ANNs. The architecture consists of two connected ANNs compressing
the input variable into a reduced dimensional space, also called encoder, and
re-creating the input data, also called decoder. Each node of the hidden “bottle-
neck” layer of compressed information can be treated as a feature in subsequent
learning tasks, just as the selected principle components. The autoencoder as
well as PCA can be applied directly to the time and frequency spectrum.

A convolutional neural network (CNN) is another type of ANNs typically
used for image recognition, but also for signal processing. The architecture of a
classical CNN consists of one or more convolutional layers followed by a pool-
ing layer. In a convolutional layer, a matrix, also called filter kernel, is moved
stepwise over the input data calculating the inner product of both. The result
is called feature map. Accordingly, neighbouring neurons in the convolutional
layer correspond to overlapping regions such as similar frequencies in signals. In
a pooling layer, superfluous information is discarded and a more abstract lower-
dimensional representation of the relevant information is obtained by combining
neighbouring elements of the map, e.g., by calculating the maximum. To feed
the matrix output of the convolution layer and the pooling layer into a final fully
connected layer, it must first be unrolled (flattened). The flatten layer is then
treated as a feature. The CNN has to be applied to the time-frequency spectrum.
Implementation details for all feature extraction methods are listed in Section 4.

3.4 Degradation Regression

Regression models, as one of the most popular data-driven techniques for RUL
prediction, fit available degradation data by regression functions and extrapolate
the future progression. We consider the following regression models: multiple lin-
ear regression, Gaussian process regression, artificial neural network regression,
and support vector regression.

Multiple linear regression (MLR) is a statistical technique that fits an ob-
served dependent variable by several independent variables using the method of
least squares. More precisely, the coefficients of a linear function yt = xt1w1 +
xt2w2 + · · ·+ xtKwK + εt = x>t w + εt, t = 1, 2, . . . , T , are estimated, where y is
the response variable, xK are the predictors, and w the coefficients of the model.

In a traditional regression model, we infer a single function, Y = f(X). In
Gaussian process regression (GPR), we place a Gaussian process over f(X).
A Gaussian process (GP) is a collection of random variables, of which any fi-
nite subset of random variables is Gaussian distributed. It is completely spec-
ified by its mean µ = m(x) = E[f(x)] and its covariance or kernel function
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k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))]. As such, GP describes a distribu-
tion over possible Gaussian density functions. The chosen kernel k (e.g. periodic,
linear, radial basis function) that describes the general shapes of the functions,
defines a prior distribution of f(X). This similarly equals selecting the degree
of a polynomial function for regression. Placing the Gaussian prior over f(X)
yields a posterior joint distribution being used to determine the future process.

An artificial neuronal network (ANN) can pretend to be any type of regres-
sion model. The output of an ANN is based on the activation function between
input and output layer. As an ANN is mainly used for classification, sigmoid
function is used as a popular activation function, whereas when using ANN
to solve a linear regression problem, the activation function is chosen as linear
equation y = w0 + w1x1 + · · ·wnxn.

Support vector regression (SVR) is based on similar principles as support vec-
tor machine (SVM) for classification, identifying the optimal support vectors of
a hyperplane that separates the data into their respective classes. Instead of sep-
arating classes, SVR fits a hyperplane describing the training data best. To solve
the optimisation problem of finding the best hyperplane, the coefficient vector of
the hyperplane is minimised – in contrast to ordinary least squares fitting where
the squared error is minimised. Instead the squared error term is handled in the
constraints allowing a certain error range ε, i.e., min 1

2‖w‖2 s.t. |yi − wixi| < ε.

4 Case Studies

We present two case studies from two different branches of industry. We in-
troduce the case studies and follow with general experimental settings before
evaluating our proposed approach in each case study.

4.1 Introduction and Data

In the first case study, we address degradation of mechanical bearings in man-
ufacturing. In the second case study, we consider performance degradation of
vessels in dry-bulk shipping. In the first case study we focus on one specific ma-
chine part, whilst in the second case study we address not only one specific part,
but an entire system.

Bearing Degradation in Manufacturing The research project Collaborative
Smart Contracting Platform for digital value-creation Networks (KOSMoS) pro-
vides a cross-company platform for a secure and semi-transparent exchange of
production data1. The system establishes the optimal conditions for transparent
documentation of the maintenance processes of a machine and thus supports, for
example, the planning of service deployments. In addition, machine downtimes
can be avoided by combining transparent documentation of maintenance history

1 https://www.kosmos-bmbf.de/
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Fig. 3. Horizontal and vertical acceleration (vibration) of bearings b14 (top left) and
b32 (top right). Fuel consumption, draught, speed, wave height and wind speed for two
vessels (bottom left and right). The red line indicates end of useful lifetime.

and production data in predictive maintenance models [16]. A common chal-
lenge for the KOSMoS consortium partners from industry is the RUL prediction
of mechanical bearings, a degrading machine part, which is installed in almost
every machine, and thus has significant relevance for maintenance.

The dataset used for the case study is the well-known bearing dataset pro-
vided by FEMTO-ST institute within PRONOSTIA, an experimental platform
dedicated to the testing and validation of bearing failure detection, diagnostic,
and prognostic approaches [18]. The FEMTO bearing dataset contains run-to-
failure tests of 17 bearings each with time series data of vibration acceleration
along the horizontal and vertical dimension as well as temperature. Tempera-
ture is not present in every run, thus, we exclude it in our experiments. Details
can be found in [18]. The observed data are divided into a training and a test
set with six and eleven bearings, respectively. Figure 3 visualises the horizontal
and vertical vibration acceleration over time for two bearings in the training set.
Degradation itself corresponds directly to increasing vibrations.

Vessel Performance Degradation in Dry-Bulk Shipping Seaborne trans-
portation is considered to be the most energy-efficient type of transportation due
the amount of cargo carried on one single vessel. Nonetheless, the CO2 emission
made up form shipping is substantial when considering the overall global emis-
sion. The amount of fuel burned for vessel propulsion stands in direct relation
to the emission and is one major cost driver of the vessels operational costs.
Thus, from an environmental and commercial perspective it is key to reduce the
amount of fuel burned. An increase in the fuel consumption can be interpreted
as a decrease of a vessel performance and thus a decrease of its RUL. One of
the main reasons for increasing fuel consumption is hull fouling, requiring vessel
owners to periodically perform hull cleaning and propeller polishing [1].

To determine the effect of hull fouling on the fuel consumption, the relation
of other variables impacting consumption such as weather, speed and vessel load
need to be considered. Figure 3 gives an intuition of the relation of some of the
variables considered to determine performance degradation due to hull fouling.
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Table 2. All combinations of preprocessing steps used in the case studies.
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Fuel consumption (blue) decreases/increases with changing speed (green) and
changing draught (orange) due to different load of the vessel. Further, to retain
vessel speed resistance effects like wind and waves need to be overcome, in turn
as well impacting consumption. Waves and wind might positively impact propul-
sion (and thus consumption) depending on their direction. Please note, that for
simplicity we here do not present all variables used. For this case study, we mainly
follow the suggestions made by Adland et al. [1] and would like to emphasise to
read on for better understanding of the variables. For the sake of completeness,
we just name all variables used: air temperature, mean draught, draught forward,
draught aft, fuel consumption, log speed, trim, speed over ground, wave height,
wave direction, water salinity, water temperature, wind speed, wind direction.
Our dataset consists of sensor data of 15 vessels splitted into sets of 12 vessels
for training and 3 vessels for testing. Data are ranging from beginning of 2016
to end of 2020 with a time interval of five minutes between each observation
of the variables. The point in time of the hull cleaning and propeller polishing
operation is used as target variable.

4.2 Experimental Settings

We perform experiments for each case study, whereas each experiment results
from the combinations of the components introduced in Section 3. Note that
technically not all combinations of components from the frequency analysis and
feature extraction step are possible, thus, we denote them explicitly as follows.
We choose Zi,j to be an experiment, where Z ∈ {A, . . . ,M} denotes a combi-
nation of preprocessing steps listed in Table 2, i ∈ {true, false} denotes if the
HS classifier is used, and j ∈ {MLR,GPR,ANN,SVR} denotes the selected
regression model for prediction. In total, we conduct 104 experiments.

All approaches are compared based on the overall performance accuracy
of each individual approach. To determine performance accuracy, we use root
mean square error (RMSE) and Pearson correlation coefficient (PCC) between
the observed and the estimated process of degradation. RMSE is defined by
RMSE(x, y) = ( 1

n

∑T
i=1(yi− xi)2)1/2, where x = (x1, ..., xT ) and y = (y1, ..., yT )

are time series and T is the length of both time series. PCC measures the
linear correlation of two time series x and y, and is defined by PCC(x, y) =

(
∑T

i=1 xiyi − nx̄ȳ)/((T − 1)sxsy) where x̄, ȳ and sx, sy are the mean and the
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sample standard deviation of each respective time series. PCC describes the sim-
ilarity of the behaviour of two time series, i.e., PCC indicates whether a learned
model is able to correctly identify the degradation pattern (in case, PCC is close
to 1). Note, PCC should be considered together with RMSE.

For the purpose of reproducibility, we list the implementation details as fol-
lows. Outliers are removed based on Z-Score before data is normalised with
Min-Max-Scaler by scikit-learn. In case of different parameters or results, we
write (xcase 1|xcase 2). FFT and STFT are implemented with SciPy. For STFT,
the Hann window function is used with a window length of (256|30) and an
overlap of (128|15). Statistical and entropy features are provided by tsfresh. For
the calculation of Shannon entropy we use the classical symbolisation of the
time series by SAX from pyts. For the calculation of permutation entropy we
use the ordinal symbolisation by tsfresh with delay τ = 10 and order d = 5.
PCA is implemented using scikit-learn with encoding size 25. The autoencoder,
CNN and ANN are implemented using Keras. The autoencoder architecture for
feature learning consists of two encoding layers of size 160 and 80, followed by
the coding layer of size 25 and two decoding layers of size 80 and 160. The CNN
architecture for feature learning consists of 2 convolutional layers of dimension
6× 6, each followed by a pooling layer of dimension 2× 2 and a batch normal-
isation before the flattening layer is used for feature representation. The ANN
architecture for the regression task consists of two hidden layers and an output
layer, each of them with 512 hidden units. The activation function is chosen as
rectified linear unit, i.e., ReLu(x) = max(0, x). To avoid overfitting, the dropout
rate is set to 0.5. The autoencoder, CNN, and ANN are trained using Adam op-
timizer with learning rate 0.001 and loss function as mean squared error. MLR,
GPR and SVR are implemented by scikit-learn with default settings. For health
stage classification only one of the available variables is used, namely horizontal
vibration for bearing and log speed for the vessel dataset. Observations in each
dataset are recorded until end of useful lifetime. Thus, the difference between
the observation time and the end of the recording denotes its RUL (see red line
in Figure 3). RUL for the bearing dataset is in seconds, whilst RUL for the vessel
dataset is in days.

4.3 Results

Each experiment is trained on a training dataset so that the RUL of an unseen
sequence from the test dataset can be predicted before the results are then evalu-
ated using RMSE and PCC. The experimental code and results can be found on
GitHub2. Figure 4 shows violin plots for each experiment. We remind again that
our aim is not to achieve the best prediction accuracy, but to evaluate the influ-
ence of each step in the prediction process. To answer the first research question,
whether HS classification can improve the accuracy of the prediction, we compare
RMSE and PCC of experiments {A, . . . ,M}true,j vs. {A, . . . ,M}false,j for every
regression model j = {MLR,GPR,ANN,SVR}. Experiments show that RMSE

2 https://github.com/inovex/RCIS2021-degradation-estimation-bearing-vessels
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Fig. 4. Violin plots for RMSE (dark) and PCC (light) for bearing (top) and vessel
(bottom) data for each experiment. Note, bearing results are log-scaled for readability.

decreases if the HS classifier is applied in (59|100)%, (78|97)%, (64|92)%, and
(74|92)% of the predictions, respectively. Thus, in general, an improvement is ob-
served. This does not imply that the total RMSE over all bearings or vessels must
also decrease. Indeed, for bearing data it even increases for {K,L,M}true,MLR

and {B, J}true,GPR, which can be taken from Figure 4 (top, blue and orange).
In case of vessel data, it increases for {A}true,ANN and {I}true,SVR, which can
be taken from Figure 4 (bottom, green and red). Compared to RMSE, PCC in-
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creases in (41|59)%, (63|28)%, (34|41)%, and (69|38)% of the predictions, which
indicates an overall improvement. Nevertheless, there is a deterioration of the
average PCC in both case studies when using MLR. Hence, it should be checked
individually whether there is an improvement in the functional relationship.

To answer the second research question, whether frequency analysis can
provide additional information, we compare RMSE and PCC of experiments
Ai,j vs. Gi,j , Bi,j vs. Hi,j , Ci,j vs. Ii,j , Di,j vs. Ji,j , Ei,j vs. Ki,j and Fi,j

vs. Li,j for all i, j. The average RMSE and average PCC shows that only in
the case of Bi,j vs. Hi,j an improvement is achieved, i.e., a reduction of the
RMSE and an increase of the PCC. More specifically, we find that the fea-
ture calculation on the frequency spectra leads to a reduction of RMSE only
in (42|21)%, (50|58)%, (47|8)%, (38|50)%, (52|50)% and (55|42)% of the predic-
tions, which is close to random guessing. It is further to point out that Dtrue,GPR

and Etrue,MLR lead to an increase in RMSE in 100% of the predictions for bear-
ing data, while in the case of vessel data they decrease in 100% of predictions.
Therefore, we do not recommend blind use of frequency analysis, but rather use
it wisely. Note, that we did not investigate whether combining features on the
raw time spectrum in combination with features on the frequency spectrum gives
better results. We leave this for future work in the context of feature selection.

To answer the third research question, which feature set is most appropriate,
we compare RMSE and PCC of experiments {A,G}i,j vs. {B,H}i,j vs. {C, I}i,j
vs. {D,J}i,j vs. {E,K}i,j vs. {F,L}i,j vs. Mi,j for i = {true, false} and every j.
For bearing data, the average RMSE per feature extraction method across all 8
experiments (with and without HS classification and 4 regression methods) are
20.299, 93.429, 15.797, 50.555, 10.952, 8.449, and 15.986, respectively, suggest-
ing that CNN as particularly effective or entropy feature particularly ineffec-
tive. However, when considering the effectiveness of the features in the context
of different regression models, experiments {A,G}i,j , {E,K}i,j , {F,L}i,j , and
Mi,j perform worst with MLR, and {B,H}i,j , {C, I}i,j , and {D,J}i,j perform
worst with GPR. Disregarding these two regression methods, average RMSEs
are 6.962, 6.265, 13.603, 13.513, 7.082, 6.721, and 6.238. Learned features per-
form on average more than twice as bad as engineered features. Feature Learning
on engineered features, such as performing PCA or autoencoder on statistical
features, is more efficient. In general, there is no free lunch, i.e., not every fea-
ture set is suitable for every regression model [22]. Across all methods, CNN
performs best, followed by entropy features, which only fail in the context of
GPR. Comparing the model complexities of the two feature extraction methods,
it is even more remarkable that the relatively simple entropy features perform so
well. For further evaluation, a time and space comparison is necessary, which we
leave for future work. For vessel data, the average RMSEs per feature extraction
method across all 8 experiments is 240, 323, 324, 430, 338, 277, and 335, suggest-
ing that statistical features as particularly effective or autoencoder particularly
ineffective. In contrast to bearing data, no outliers are evident across the feature
extraction method, except for {B,D, J}i,GPR, which is related to the regression
model.
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To answer the fourth research question, which regression method yields the
highest accuracy, we compare RMSE and PCC of experiments {A, . . . ,M}i,MLR

vs. {A, . . . ,M}i,GPR vs. {A, . . . ,M}i,ANN vs. {A, . . . ,M}i,SVR for all i. Regard-
ing all experiments, the average RMSEs for each different regression model
j = {MLR,GPR,ANN,SVR} are (22.677|295), (87.091|459), (9.578|267), and
(8.041|272), respectively, with a standard deviation of (19.166|33), (202.102|304),
(3.663|83), and (3.042|48), respectively. In case of bearing data, if the two worst
preprocessing steps for each regression model are removed from the analysis,
i.e., by omitting {A,G}i,MLR, {B, J}i,GPR, {I, J}i,ANN, and {C,D}i,SVR for all
i, the average RMSEs can be reduced by 29%, 86%, 11%, and 10%, respec-
tively. As a result, GPR has a higher average RMSE than MLR. Also in the
case of vessel data, GPR has some remarkably poor predictions, in particu-
lar on learned features by the autoencoder. The average PCCs are (0.13|0.01),
(0.05|0.07), (0.28|0.01) and (0.21|0.03), respectively, which is not close to 1 but
still implies a positive relationship. In the case of the vessel data, there is more or
less no functional relationship identifiable, which should definitely be improved.
GPR in particular turns out to be unsuitable in both cases at first glance, which
must be examined with regard to the outlier predictions. All in all, ANN and
SVR prove to be particularly stable, which, together with the results of the third
research question, indicates good ability to generalise.

5 Open Challenges, Limits and Recommendations

Since with this paper we provide recommendations for composing several meth-
ods and not a deployment-ready out-of-the-box framework, open challenges exist.
There are still numerous other methods for HS classification, frequency analy-
sis, feature extraction and regression. We have limited ourselves here to the
most popular ones. As the focus of this work was not to achieve the best pos-
sible performance, but to investigate the relation of different components, the
application of regularisation, feature selection methods, a corresponding hyper-
parameter tuning, as well as the optimisation of network architectures are left for
future work. Learning non-linear relationships, as by locally linear embeddings,
isometric mappings or kernel PCA can also further improve the results.

We conclude this paper with recommendations for composing data-driven
prediction processes for degradation estimation based on the conducted experi-
ments. Limits in the application depend on the individual use case that is to be
implemented. Help can be found on GitHub3. Note that finding suitable degrad-
ing data directly related to the RUL of a machine part or complex system is not
trivial. It requires initial analyses of the data and its correlations. The functional
relationship have to be investigated or, if necessary, transformed by appropriate
preprocessing such as creation of indicators. Along the research questions we
recommend as follows.

1. HS classifier : We advise integrating a HS classifier within the degradation
estimation process, as in the vast majority of cases both RMSE and PCC

3 https://github.com/inovex/RCIS2021-degradation-estimation-bearing-vessels
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are improved. Note that there are other HS classifiers that may be more
appropriate for your individual problem.

2. Frequency analysis: We do not recommend predicting the degradation solely
by features calculated on frequency spectra. This does not mean that such
features cannot add value in combinations with others.

3. Feature set : While CNN and entropy features are most suited for bearing
data, classical statistical features are for vessel data. For getting started, we
recommend using feature engineering before putting a lot of effort into fea-
ture learning and tuning its hyperparameters. The feature extraction method
can be easily replaced in the process later. A good prediction depends on
both, the choice of features, as well as the choice of a model.

4. Regression model : GPR may be used with caution and only be applied to
appropriate data. Furthermore, we recommend more complex models than
MLR. Not surprisingly, ANN and SVR perform best, with ANN being able
to better represent the functional relationship. SVR is known for good gen-
eralisation ability, which is also shown here.
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