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Abstract

One probabilistic inference task concerns answering queries for conditional marginal distri-
butions, where a set of events is given. In this paper, we investigate the problem of only
knowing that events are observed, from a number of sensors or for individuals, but not
which sensors or individuals exhibit those events specifically. This situation might occur in
multi-agent settings, such as in nanosystems, where single agents can no longer be tracked.
However, to be able to perform probabilistic inference, those events need to be mapped
to random variables, specifically to those that are most likely to exhibit those events. For
the mapping, we show how lifting allows for generating all different possibilities to map
those events, as we can do it over sets of indistinguishable random variables, leading to a
set of queries. Given the mapping that leads to the most likely answer, we can construct
evidence to perform probabilistic inference with. Finally, we compare solving the problem
on the propositional level, which cannot be done in reasonable time, to our approach, which
returns liftable evidence for tractable inference.

Keywords: Under-specified Evidence; Lifting; Query Answering; Probabilistic Inference.

1. Introduction

Query answering in probabilistic graphical models often means computing conditional mar-
ginal distributions of random variables (randvars) given observations for other randvars
(events). For example, we may observe people attending a conference or having a paper
accepted and ask for the probability of a researcher’s reputation being excellent. However,
a paper also requires that research has to be done on the topic of the paper, which we might
not be able to observe directly, but which we can attribute to some parts of a research group.
Consider nanosystems (Braun et al., 2021) for a more technical example: We cannot track
each of the many agents and thus only observe that a task was performed a certain number
of times but not by which agents specifically. So, what happens if we cannot observe the
exact randvars for which events occurred, but only a number of events? In such a case,
standard query answering is not possible as we cannot enter specific evidence in a model.
Thus, this paper studies the problem of only knowing that an event has occurred a certain
number of times, which implies that at least some randvars are interchangeable. We call
this the problem of under-specified evidence.

Given under-specified evidence, the problem boils down to identifying those individuals
that most likely exhibit the events in the model given all other (specified) evidence. Doing
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so on a propositional level is highly combinatorial and therefore not solveable in reasonable
time as one has to consider assigning the number of events to different sets of randvars.
With indistinguishable randvars for different individuals, i.e., graph symmetries, we may
use lifting, which refers to efficiently handling sets of indistinguishable individuals using
representatives (Poole, 2003), encoding symmetries using logical variables (logvars) with
domains. As such, lifting has the potential to enable efficiently handling of under-specified
evidence, allowing for tractability w.r.t. domain sizes Niepert and Van den Broeck (2014).

In general, lifted probabilistic inference leverages the relational aspect of a model, using
representatives for groups of indistinguishable constants. Poole (2003) presents parametric
factor (parfactor) graphs as relational models and proposes lifted variable elimination (LVE)
as an exact inference algorithm on them. Taghipour et al. (2013b) extend LVE to its
current form using an extensional constraint language for logvar. Algorithms such as the
lifted junction tree algorithm (Braun and Möller, 2016) or first-order knowledge compilation
(Van den Broeck et al., 2011) focus on efficient lifted inference for a set of queries. Braun and
Möller (2019) consider the setting of all domains being unknown without evidence. Milch
et al. (2005) investigate unknown objects and evidence for them. They look at a different
problem, namely generating new constants for evidence, in contrast to the problem here,
attributing evidence to existing constants.

Therefore, with the problem unsolved to the best of our knowledge, this paper formally
defines the problem of under-specified evidence and introduces the Likely Constraints for
Under-specified Evidence algorithm (CLUE) to solve the problem. The idea of CLUE is to
identify all possible ways to use and reuse the sets of indistinguishable constants to match
the cardinality of the under-specified events. Having all possibilities, CLUE asks, which
possibility makes the under-specified evidence most likely in the model (multi-query an-
swering). Based on the possibility yielding the most likely evidence, CLUE builds specific
evidence, which can then be used with a lifted inference algorithm. When using liftable ev-
idence only, CLUE also returns liftable evidence, allowing for continued tractable inference.

In the following, we recap parameterised probabilistic models (PMs) as a formalism for
specifying probabilistic relational models, present CLUE, and discuss its implications.

2. Notation

We use PMs as a general formalism based on Poole (2003) and Taghipour et al. (2013b).
PMs combine first-order logic with probabilistic models, using logvars as parameters in
randvars to represent sets of indistinguishable randvars, forming parameterised randvars
(PRVs). As an example, we set up a PM to model the reputation of researchers, inspired
by the so-called competing workshop example (Milch et al., 2008), with a logvar represent-
ing researchers and journals respectively. A reputation is influenced by activities such as
publishing, doing active research, and attending conferences.

Definition 1 (Logvar, PRV, Event) Let R be a set of randvar names, L a set of logvar
names, Φ a set of factor names, and D a set of constants. All sets are finite. Each
logvar L has a domain D(L) ⊆ D. A constraint is a tuple (X , CX ) of a sequence of
logvars X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi). The symbol > for C marks that
no restrictions apply, i.e., CX = ×ni=1D(Xi). A PRV R(L1, . . . , Ln), n ≥ 0 is a syntactical
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Figure 1: Parfactor graph for Gex

construct of a randvar R ∈ R possibly combined with logvars L1, . . . , Ln ∈ L. If n = 0, the
PRV is parameterless and forms a propositional randvar. A PRV A (or logvar L) under
constraint C is given by A|C (L|C). We may omit |> in A|> or L|>. The term R(A) denotes
the possible values (range) of a PRV A. An event A = a denotes the occurrence of PRV A
with range value a ∈ R(A).

Consider R = {Att,DoR,Rep, Pub} for attends conference, does research, has a good
reputation, and publishes in journals, respectively, and L = {X, J} withD(X) = {x1, x2, x3}
(people) and D(J) = {j1, j2} (journals), combined into Boolean PRVs Att(X), DoR(X),
Rep(X), and Pub(X, J). A parfactor describes a function, for mapping argument values to
real values (potentials).

Definition 2 (Parfactor, Model, Semantics) We denote a parfactor g by φ(A)|C with
A = (A1, . . . , An) a sequence of PRVs, φ : ×ni=1R(Ai) 7→ R+ a function with name φ ∈ Φ,
and C a constraint on the logvars of A. We may omit |> in φ(A)|>. The term lv(Y ) refers
to the logvars in some element Y , a PRV, a parfactor, or sets thereof. The term gr(Y|C)
denotes the set of all instances of Y w.r.t. constraint C. A set of parfactors {gi}ni=1 forms
a PM G. The semantics of G is given by grounding and building a full joint distribution.
With Z as the normalisation constant, G represents PG = 1

Z

∏
f∈gr(G) f .

Figure 1 shows a PM Gex = {gi}1i=0, with g0 = φ0(Rep(X), Att(X), Pub(X, J))|> and
g1 = φ1(Rep(X), Att(X), DoR(X))|>, each with eight input-output pairs (omitted).

Evidence displays symmetries when observing the same value for n instances of a PRV
(Taghipour et al., 2013b). In a parfactor gE = φE(R(X))|CE

, a potential function φE
and constraint CE encode the observed values and instances for PRV R(X). Assume we
observe the value true for 10 randvars of the PRV Rep(X). The corresponding parfactor
is φE(Rep(X))|CE

. CE represents the domain of X restricted to the 10 instances and
φE(true) = 1 and φE(false) = 0. A technical remark: To absorb evidence, we split all
parfactors gi that cover Rep(X), in a process called shattering (de Salvo Braz et al., 2005),
restricting Ci to those tuples that contain gr(Rep(X)|CE

) and a duplicate of gi to the rest.
The parfactor gi absorbs gE (see Taghipour et al. (2013b) for details).

Definition 3 (Query) Given a PM G, a query term Q (ground PRV), and events E =
{Ei = ei}ki=1, the expression P (Q | E) denotes a query w.r.t. PG.

To answer a query using, e.g., LVE, LVE first absorbs evidence lifted and then elimi-
nates all non-query terms. Lifting allows for eliminating a PRV R(X) without grounding
(conditions apply, Taghipour et al. (2013b)), which includes summing out R(X) from the
parfactor it occurs in as in propositional variable elimination, followed by taking the result
to the power of the number of constants X represents in relation to the remaining constants.
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The evidence just seen above is a case of specified evidence as we have the exact constants
for which the evidence is observed in the constraint CE . For under-specified evidence, the
constraint is basically missing and as such, the parfactor is not complete.

3. Dealing with Under-specified Evidence

In standard lifted inference, we have to specify the constants for which an event is observed.
Therefore, currently we cannot handle the information that there are 10 constants with
Rep = true without naming specific constants. We begin by defining this problem formally
and then investigate how to solve it, before pouring our findings into CLUE.

3.1 The Problem of Under-specified Evidence

The problem deals with evidence for a specific PRV where the number of observations
is known but the groundings are not. Since we aim for tractable query answering and
evidence is only guaranteed to be liftable for PRVs with one logvar (Van den Broeck and
Darwiche, 2013), we only consider evidence for PRVs with one logvar. We further assume
that the model is preemptively shattered and the logvars are standardised apart for ease
of exposition. We do not consider so-called counting randvars (CRVs) (Milch et al., 2008)
as part of the initial model, i.e., only PRVs and classical propositional randvars occur.
Those are standard assumptions for lifted inference. Additionally, we assume that logvars
that have the same origin in terms of domain are identifiable. In such a model, we define
under-specified evidence as follows:

Definition 4 (Under-specified Evidence) Given a PRV R(X), a range value r ∈ R(R),
and a number n, 0 < n ≤ |D(X)|, indicating for how many groundings of the PRV the event
R = r is observed, we denote under-specified evidence by (R(X) = r, n).

The problem with under-specified evidence is that lifted inference algorithms cannot
perform inference with such evidence as they need the constants for which the events are
observed, i.e., specified evidence. Thus, on the technical side, the problem involves turning
under-specified evidence into specified evidence by specifying a proper constraint CE for
an evidence parfactor φE(R(X)) to then use standard lifted inference algorithms. For this
transformation, we need to assign the evidence to some constants of the logvar domain, i.e.,
fill CE with n constants from the domain of X. However, we do not want to assign random
constants but rather those constants that are most likely to exhibit the observations. The
formal definition of the problem follows:

Definition 5 (Problem of Under-specified Evidence) Given a model G, some speci-
fied evidence E, and under-specified evidence (Re(Xe) = re, ne)

m
e=1, the problem of under-

specified evidence is to find those constants that make (Re(Xe) = re, ne)
m
e=1 most likely as

specified evidence, i.e., with C a constraint on X1, . . . , Xm:

arg max
C

P (R1(X1) = r1, . . . , Rm(Xm) = rm | E)|C .

In terms of the semantics, we could ground the model, find all possible combinations
of sets of randvars Re(x) of size ne of all grounded randvars gr(Re(X)), and test which
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combination is most likely in the grounded model. This course of action requires grounding,
which we aim to avoid in lifted inference. Additionally, in lifted inference, we have the
information about indistinguishability that we can use when finding the sets of size ne,
which means we have to test fewer combinations compared to the ground level. Thus, we
next investigate how to solve this problem efficiently using lifting. We first look at finding
the combinations and then we discuss answering the necessary queries.

3.2 Finding Possible Constraints for Under-specified Evidence

Let us first have a look at the example modelGex, shown in Fig. 1, to illustrate the mechanics
behind finding possible constraints given under-specified evidence.

Example 1 Assume that |D(X)| = 100 and remember that we have > constraints in g0 and
g1, which means that the parfactors are valid for all of these 100 persons in the domain of X,
i.e., the persons are indistinguishable. Given under-specified evidence (DoR(X) = true, 10)
and (Rep(X) = true, 10), we have to identify those constants that are most likely to exhibit
these observations. With > constraints, we have two possibilities, namely, that (i) the
same 10 constants exhibit both observations at the same time (overlapping) and (ii) that 10
constants exhibit DoR(X) = true and 10 other constants exhibit Rep(X) = true (disjoint)
.

In this example, we have a model with > constraints and then observe two events for
10 constants each. Such a scenario is the ideal case for a lifted algorithm w.r.t. queries it
needs to answer and therefore, also from a computational perspective. The reason lies in
the fact that we only have to test two possibilities. As the original model has > constraints,
we do not have to query P (Rep(X ′′) = true,DoR(X ′) = true) as the result is identical to
querying P (Rep(X ′) = true,DoR(X ′′) = true). The reason lies in the constants behind
X ′ and X ′′ being indistinguishable and therefore yielding the same distributions. Thus, we
do not have to test all possible permutations, but only those that might lead to a different
likelihood. On a propositional level, we actually would have to compute the queries for all
possible permutation without the information of indistinguishability.

In case we observe events for 10 and 5 constants, the described procedure is also ap-
plicable. Here, one would also test one possibility with the 5 constants a subset of the 10
constants assigned to the other event or if they are a disjoint set. Then, we also just have
to test the two possibilities. Thus, for how many constants we observe events does not
change the basic idea if looking at > constraints. But what happens to the search space
if we combine specified and under-specified evidence? To that end, we extend the previous
example with specified evidence.

Example 2 Assume that we observe that x1, .., x5 attend a conference and x6, .., x10 do not,
which we enter as evidence into the example model Gex using absorption. Absorption yields
three versions of g0 and g1 each, namely, one version for the constants {x1, .., x5} absorbing
Att(X) = true, one for the constants {x6, .., x10} absorbing Att(X) = false, and one

for the remaining constants, i.e., φt1(DoR(Xt), Rep(Xt))|Ct, φf1(DoR(Xf ), Rep(Xf ))|Cf ,
and φ1(Att(X), DoR(X), Rep(X))|C , respectively, for g1 with analogous versions for g0.
In this setting, we have to generate more combinations for the under-specified evidence of
Example 1, (DoR(X) = true, 10) and (Rep(X) = true, 10).
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Overall, there are 19 possibilities. The first case is to solely use the constants from Ct

and Cf for both the 10 unspecified evidence instances. The second case of using Ct and the
rest from C is more tricky. Here, we have the possibilities of:

• Rep(Xt) = true,DoR(Xt) = true,Rep(X ′) = true,DoR(X ′) = true
(5 constants from Ct for both; same 5 constants from C for both),

• Rep(Xt) = true,DoR(Xt) = true,Rep(X ′) = true,DoR(X ′′) = true
(5 from Ct for both; different 5 from C for each),

• Rep(Xt) = true,DoR(X ′′) = true,Rep(X ′) = true,DoR(X ′) = true
(5 from Ct for Rep; same 5 from C for both and different 5 from C for DoR),

• Rep(Xt) = true,Rep(X ′) = true,DoR(X ′′′) = true
(5 from Ct and 5 from C for Rep, different 10 from C for DoR),

• Rep(X ′′) = true,DoR(Xt) = true,Rep(X ′) = true,DoR(X ′) = true
(5 from Ct for DoR; same 5 from C for both and different 5 from C for Rep), and

• Rep(X ′′′) = true,DoR(Xt) = true,DoR(X ′) = true
(5 from Ct and 5 from C for DoR, different 10 from C for Rep).

The third case for Cf and the rest from C is analogous to Ct and C. The fourth case is to
use Xf , Xt, and X. Here, we have the following possibilities:

• Rep(Xt) = true,DoR(Xf ) = true,Rep(X ′) = true,DoR(X ′) = true
(5 from Ct for Rep, 5 from Cf for Rep, same 5 from C for both),

• Rep(Xt) = true,DoR(Xf ) = true,Rep(X ′) = true,DoR(X ′′) = true
(5 from Ct for Rep, 5 from Cf for Rep, different 5 from C for each),

• Rep(Xf ) = true,DoR(Xt) = true,Rep(X ′) = true,DoR(X ′) = true
(5 from Cf for Rep, 5 from Ct for Rep, same 5 from C for both), and

• Rep(Xf ) = true,DoR(Xt) = true,Rep(X ′) = true,DoR(X ′′) = true
(5 from Cf for Rep, 5 from Ct for Rep, different 5 from C for each).

The last case of only using X is analogous to Example 1 with two possibilities, the same 10
constants for both or different 10 constants for each.

Example 2 illustrates a few points worth noting: First, the number of possibilities
depends on (i) the number of constraints per original logvar X in the model after absorbing
specified evidence and (ii) the number mx of under-specified evidence terms (Ri(X) =
r, ni)

mx
i=1 per original logvar X. Second, to obtain the possible constraint sets, we have

to check, for all possible combinations of existing constraints, how we can use them with
and without reusing sets of their constants to fill up the under-specified evidence. More
specifically, for a particular order of the under-specified evidence, we have to look at each
constraint and see how we can use those constants with or without reusing them to fill the
under-specified evidence in the given order in combination with all the other constraints
and their ways of filling the under-specified evidence in that order. This procedure is to
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be repeated for all permutations of the order of the under-specified evidence. Third, such
a problem can only be solved in reasonable time for a limited number of under-specified
evidence PRVs as well as a limited number of sets of indistinguishable constants. In the
example, the three constraints and two sets of under-specified evidence have already lead
to 1 + 6 + 6 + 4 + 2 = 19 possibilities. From the third point follows the last point, namely
that solving this problem on a propositional level without exploiting indistinguishability
leads to a deadly combinatorial explosion. The 19 possibilities in the lifted case is a drastic
reduction to the propositional case, which would need to consider all possible subsets of
cardinality 10 of the 100 grounded randvars of Rep(X) and DoR(X) each. Thus, using
lifting enables problem instances to be solvable in reasonable time that otherwise would not
be practically computable.

With the set of possibilities, each encoded as a constraint, the next steps are identifying
the constraint that leads to the most likely evidence and using that constraint to build
specified evidence out of the under-specified evidence.

3.3 Finding the Most Likely Constraint and Building Specified Evidence for It

The two steps of finding the most likely constraint and building the specified evidence based
on that constraint are more straightforward compared to the previous step of finding all
possible constraints. To illustrate the steps, let us come back to Example 1 and look at how
we can compute how likely a constant is to exhibit a given event.

Example 3 In continuation of Example 1 with > constraints and two sets of under-specified
evidence terms, we query P (Rep(X ′)|C′ = true,DoR(X ′)|C′ = true) and P (Rep(X ′)|C′ =
true,DoR(X ′′)|C′′ = true) for the two possibilities that we have found. Given the two
answers, we know now whether it is more likely that the identical 10 constants (from C ′

for both Rep(X ′) and DoR(X ′)) or different 10 constants (from C ′ for Rep(X ′) and from
C ′′ for DoR(X ′)) exhibit the two event sets. Thus, we take the constraint that returns
the higher probability for the query and construct specified evidence with it. Assuming that
the setting with C ′ for both is the one with higher probability, we construct two evidence
parfactors φE(DoR(X ′))|C′ and φE(Rep(X ′))|C′ with constraint C ′.

The queries in the example are actually parameterised queries (Braun and Möller, 2018)
with logvars and constraints occurring in the query. Answering a parameterised query leads
to CRVs in the result that encode how many of the represented groundings have assigned
a specific range value, mapping to a probability. However, in the specific setting of queries
over the same number of constants per constraint, we do not need to ask a parameterised
query over all constants in the constraint but only a query for one representative constant
in the constraint of the query term.1 We can query representatives as the impact for each
constant gets taken to the same power of the group size. Hence, if it is more likely for a
representative, it will also be more likely for the whole group, which is also another upside
to using lifting, which allows for representative (and parameterised) queries compared to a
large conjunctive query in the ground case. In the example, this means that we do not have
to ask the queries for all constants in C ′ and C ′′, but can query representatives for each
group. If using a multi-query answering algorithm, the queries can be computed efficiently.

1. If CRVs occur in the model, we need parameterised queries. Here, we have excluded such a situation.
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In Example 2, the sizes of the constraint sets differ with some over 5 constants and
others over 10 constants. Thus, in this case, we cannot query representatives, but have
to ask the parameterised query. As we need constraints that contain the same number of
constants to be able to use representative queries, one could of course start to split up the
constraints into sets of constants of equal cardinality, ask representative queries, and then
combine the results according to the original constraints. In Example 2, we could split up
the constraints over 10 constants into two constraints over 5 constants and then combine
the results for those two. However, it is not always possible to split up constraints into
sets of equal cardinality other than the trivial solution of cardinality 1. There is actually
a trade-off between easier to compute queries and more constraint sets to handle during
inference, which can lead to grounding in the first case as just argued.

Having illustrated how we can test which constants most likely exhibit an event, we
present CLUE.

3.4 CLUE for Turning Under-specified Evidence into Specified Evidence

We have seen in the examples that there can be many possibilities for turning under-
specified evidence into specified evidence. Further, to obtain all possibilities, CLUE has
to test for many permutations how the sets of indistinguishable objects could be used.
Algorithm 1 outlines our approach. Let us first have a look at the overall idea, before we go
into detail. CLUE assumes liftable evidence, therefore it can go through all logvars one by
one. Having all possibilities of how to use sets of indistinguishable objects for the under-
specified evidence, CLUE still has to combine the possibilities across logvars, by taking the
cross-product. Finally, CLUE computes which assignment leads to the highest probability
and returns the corresponding evidence parfactors. Let us have a closer look at how finding
all possible combinations works.

CLUE begins by absorbing evidence, which might change the sets of indistinguishable
objects as we have seen in Example 2. Then, CLUE goes through each logvar L that has
under-specified evidence. For L, CLUE begins by collecting all under-specified evidence
terms, EL

u , concerning L and setting up a set for the queries for L. Next, CLUE goes
through loops to construct the queries for L. First, CLUE iterates over all permutations
pe of EL

u , as CLUE later on fills the under-specified evidence in order, and by permuting
EL
u , CLUE obtains all orders. Next, CLUE also permutes the constraints, as CLUE has to

start with each constraint to fill up EL
u along pe. The next loop increments a number k

that determines after how many under-specified evidence sets (k), CLUE moves on to the
next constraint. The loop thereafter then ensures that after k PRVs, CLUE switches to the
next constraint. Then, CLUE has one loop for how often a set of constants can be reused,
j, and one loop for how many sets can be reuse, m, overall.

In the last loop, CLUE builds all the combinations given m, j, and the current position
in the constraint permutation, cur. The function pm,j,cur builds all possibilities how to fill up
the under-specified evidence, starting with the constraint at position cur with j constraints
and up to m different sets being reused, using representative constants to be able to identify
identical queries. For example with j = 2, m = 2, and k = 2, CLUE can use Xt and Xf

both for DoR and Rep and fill up the under-specified evidence of our example completely.
CLUE uses the constraint set Ct twice for Rep and DoR, so CLUE already has j = 2 but
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Algorithm 1 Most Likely Constraints for Under-specified Evidence

function CLUE(Model G, Specified Evidence Es, Under-specified Evidence Eu)
if Es 6= ∅ then

Absorb Es in G . Includes shattering G on Es

for each logvar L ∈ lv(G) with L ∈ lv(Eu) do
EL
u ← {(Rl(L), nl) | (Rl(L), nl) ∈ Eu} . Under-specified evidence for L

QL ← ∅ . Query parts for L
for each permutation pe of EL

u do
for each permutation pc of sets CX , L ∈ X in φ(A)|(X ,CX ) ∈ G do

for k ← 1, . . . , |EL
u | do

Current constraint cur ← 1
for l = 1, l ≤ |EL

u |, l+ = k do
for j ← 1, . . . , k do . how often to use a set of constants maximally

for m← 1, . . . , k·|pc|j do . how many sets of constants to reuse
for each combination pm,j,cur using c constraints do

C ′ ← Fill under-specified ev. l to l + k − 1 with pm,j,cur
cur ← cur + c+ 1
QL ← QL ∪ {rv(EL

u )|C′}
Q← ×LQL

CX ← arg maxCX P (Q|(X ,CX ) = eu),Q|(X ,CX ) ∈ Q
E← Build specified evidence for Eu using CX
return E

only used up 1 of the m’s. The other m is then used for Cf to fill up Rep and DoR. With
j = 2, m = 1, and k = 2, CLUE can again use Ct for DoR and Rep, but can only use Cf for
either DoR or Rep and has to fill up the other PRV with X. With another permutation of
constraints namely, Ct, C, Cf , CLUE would first use Ct for DoR and Rep and then C ′ for
DoR and C ′′ for Rep. In such a fashion, CLUE constructs all possibilities. Unfortunately,
to ensure that CLUE generates all possibilities, it needs all the loops mentioned before
as well. However, with only limited numbers of under-specified evidence terms as well as
constraints in the model as mentioned before, the loops do not need many iterations.

These combinations are then stored in QL. After CLUE has computed all combinations
for each logvar L, it computes the cross-product of the sets of queries for all logvars to obtain
the queries it needs to ask. CLUE proceeds by asking the queries, selects the constraint
with the highest probability and builds the corresponding evidence for it. Finally, CLUE
returns the specified evidence for an inference algorithm to answer queries with it.

4. Discussion

The problem we set out to solve is how to identify the constants that most likely exhibit some
event given some other events. CLUE uses the information of indistinguishable constants to
solve the problem. The problem CLUE faces is to build all combinations with and without
reusing sets of indistinguishable constants. To construct these possibilities, CLUE has to
permute over the set of indistinguishable objects and the under-specified evidence PRVs as
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well as guarantee a few more restrictions to ensure that all possibilities are built. Overall,
the process can be described as building few balls that fit the under-specified evidence given
the sets of indistinguishable objects with reusing them. But is it possible to compute these
possibilities in the lifted case without getting lost in the combinatorial problem?

Given many splits, the number of combinations increases as we have seen in the example.
The number of possible combinations also increases with the number of PRVs for which
CLUE has under-specified evidence. Nonetheless, we assume that there are groups behaving
indistinguishably and hence, there will not be many different splits. Further, Van den Broeck
and Darwiche (2013) show that given evidence for one-logvar PRVs, we can compute a
lifted solution. In the average case, there will not be many splits, leading to just a few
combinations to be queried. Normally, we expect at most 4 to 5 sets of indistinguishable
objects. Further, we expect that there are at most 4 PRVs with under-specified evidence, as
with graph symmetries, which are used for lifting, many randvars can be grouped together
and it is unlikely that for many different PRVs, we cannot observe the origin of the events.
Thus, the number can be bounded by these assumptions. Independent of the number of
possibilities, the resulting specified evidence remains liftable evidence, which means that
with a lifted inference algorithm and a liftable model and liftable queries, the inference
problem remains practically computable.

As the combinatorial bounds depend on the under-specified evidence and the groups
behaving indistinguishably, we provide over-approximated bounds for a specific example:
Assuming we have under-specified evidence for 4 PRVs with n individuals each and we have
4 indistinguishable groups of size at least 4 · n. Thus, we can split each indistinguishable
group in 4 parts of size n. Now, we can consider the 16 split indistinguishable groups as
balls (κ) and the 4 PRVs as urns (ι). In this case, as we allow a ball to be used multiple
times and we do not care about the order, we have

(
κ+ι−1
ι−1

)
= 969 possibilities. Of these

possibilities, there are actually many leading to the very same result, e.g., using the first
n instances of a indistinguishable group for all PRVs leads to the same result as using
the second n instances from that group and so on, which we do not need to compute. In
the ground case however, assuming n = 10, we have at least 160 balls (16 groups each of
the size 10) to distribute on 10 urns for each under-specified evidence. Here, the case is
slightly different, as while we fill up the urns for one under-specified evidence, we are not
reusing the balls, but across under-specified evidence the balls can be reused. Thus, we
have

(
κ
ι

)
=
(
160
10

)
possibilities, in the ground case for each under-specified evidence, leading

to 4 ·
(
160
10

)
. Here, increasing n would further drastically increase the number of possibilities,

while the number stays the same in the lifted case. So, the number of balls and urns will
always be significantly lower in the lifted case than in the ground case.

In some cases, CLUE can also save some computation time by only querying representa-
tives. Further, there are inference engines using the lifted junction tree algorithm (LJT) to
answer queries for the different combinations efficiently, the same holds for parameterised
queries, for lifted models (Braun and Möller, 2018).

To solve such a problem on a propositional level and therefore, without the information of
which constants are indistinguishable, one would have to test each combination of constants.
Thus, we would have distinguishable balls of the number of our domain size, distinguishable
urns for our different under-specified evidence, and for each of the urns an exact number
of balls that have to be placed into. Further, each ball might be placed in each urn, but at
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most once into each urn. Solving such a problem is combinatorial and even for small domain
sizes and just one or two under-specified evidences terms leads to very many possibilities.
Even though also here the number of possibilities would be bounded, the bound would be
really high for larger domain sizes. All of these possibilities would have to be checked and
propositional inference is in the worst case exponential w.r.t. domain sizes (Taghipour et al.,
2013a). Thus, this problem is intractable without the information, about which individuals
are indistinguishable, in addition to lifted inference.

Overall, by using the knowledge of indistinguishable objects and preparing them well,
CLUE solves our problem and does so in a rather efficient manner. Doing the same on a
propositional level, we lose the information of indistinguishability and, therefore, have to
check too many combinations to solve the given problem in all but very simple cases.

5. Conclusion

In this paper, we present CLUE to identify those individuals that most likely exhibit an event
given a model. CLUE uses the information of indistinguishable objects of a lifted model
to solve the problem, as this drastically reduces the search space, allowing for solving this
problem for reasonable parameters. To build all possible combinations using the information
of indistinguishability, CLUE goes through all permutations of PRVs of under-specified
evidence, all permutations of sets of indistinguishable objects, all possibilities of reusing sets
of indistinguishable objects, and how often sets of indistinguishable objects are changed.
For those possibilities, CLUE asks the corresponding parameterised queries and builds for
that assignment that has the highest probability the corresponding evidence parfactors. We
also argue that doing so on a propositional level is not feasible.

The next step in this work involves finding a reasonable heuristics for guiding the search
in the space of possibilities in contrast to generating all possibilities. Beyond that, an
interesting future direction of this line of work lies in temporal probabilistic models, where
we might get under-specified evidence terms for each time step. Given new evidence, it
might turn out that actually another assignment is now more likely for some previous time
step. Hence, the problem is slightly different as we want to find those individuals that most
likely produced the event over time. Here, it might be an interesting idea to keep multiple
assignments and prune the possibilities over time as we gain more information.
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