
Event Prioritization and Correlation based on
Pattern Mining Techniques

Mona Lange and Ralf Möller
Institute of Information Systems

Universität zu Lübeck
Lübeck, D-23562 Germany

Email: {moeller, lange} @ifis.uni-luebeck.de

Gregor Lang
Friedrich-Alexander Universität

Erlangen-Nürnberg
Erlangen, D-91058 Germany
Email: gregor.lang@fau.de

Felix Kuhr
Technische Universität

Hamburg-Harburg
Hamburg, D-21071 Germany

Email: felix.kuhr@tu-harburg.de

Abstract—With the growing deployment of host and network
intrusion detection systems in increasingly large and complex
communication networks, managing low-level events from these
systems becomes critically important. A network has multiple
tasks, which consist of multiple network services aiding the
execution of a task. An emerging track of security research
has focused on event prioritization and correlation to rank the
criticality of events and reduce the number of low-level events. To
prioritize and correlate events, the ongoing tasks in an enterprise
network are identified, as the goal of network operators is
to protect ongoing tasks when a security breach occurs. The
prioritization of an event depends on the criticality of an ongoing
task that is potentially threatened by the event. Additionally, in
order to support network operators, we correlate all events that
target the same task. A particular task may depend on multiple
network services and involve multiple network devices.So, if one
network service becomes unavailable, other network services will
be affected over time since they are dependent on one another.
Unfortunately, dependency details are often not documented and
are difficult to discover by relying on human expert knowledge.
In order to solve this problem, a network dependency analysis
based on network traffic is conducted. We rely on pattern mining
techniques to discover tasks in a monitored enterprise network.
A formal description of the identified tasks is provided and
events are prioritized and correlated based on this model. The
pattern mining based network dependency analysis algorithm is
evaluated based on a real-world network and three networks that
where created with a network simulator.

I. INTRODUCTION

Malicious actors exploiting cyberspace have been identified
by the United States intelligence community as the top national
security threat [1]. Similarly, Dell’s annual threat report states
a 100% increase in SCADA attacks [2]. This report is based
on an analysis of data gathered by Dell’s global response
intelligence defense network that consists of millions of se-
curity sensors in more than 200 countries. Due to the rising
of cybercrime, there has been a great demand for information
security systems, e.g., intrusion detection systems.

In the following we understand an Intrusion Detection
System (IDS) as a system, which has been developed to mon-
itor an enterprise network for malicious events. An IDS can
either be a software or hardware-based system and resulting
information is referred to as events or alerts. Generally, these
systems are positioned to detect cyber attacks originating from
outside a company’s own network. IDSs are placed in positions

where high volumes of network traffic occur as they can only
report on malicious activity that they are able to observe. To
monitor network traffic these systems generally are based on a
low-level network traffic model. Thus, low-level events events
are created due to the low-level of data that IDSs analyze.
Knowledge of both networking technology and infiltration
techniques is required to correctly interpret high amounts of
high paced low-level events. Furthermore, IBM’s 2015 cyber
security intelligence index reveals that approximately half
of all cyber attacks originate from within a company’s own
network [3]. Cyber attacks means in effect that at least one
network service was exploited.

We depend on network services in many aspects of our daily
lives (e.g., email, smart homes, medical services, electricity
supply, water supply). Network services operate on distributed
sets of clients and servers and rely on supporting network
services, such as Kerberos, Domain Name System (DNS),
and Active Directory. Hence, network services need to interact
with each other in order to function correctly. Since, engineers
use the divide-and-conquer approach to implement a new task,
they are able to reuse network services and do not need to re-
implement complex customized ones. Unfortunately, imple-
mentation and dependency details are often not documented,
and are difficult to discover by referring to human expert
knowledge, for obvious reasons.

Currently, conventional network security approaches focus
on perimeter protection instead of identifying the most busi-
ness critical assets and protect those. Stuxnet [4] or Flame [?]
have taught us that in order to protected critical infrastructures
against these advanced persistent threats, perimeter protection
simply is not enough. To underpin this statement we refer to
the director Sean McGurk of the National Cybersecurity and
Communications Integration Center (NCCIC) at the Depart-
ment of Homeland Security [5]:

“In our experience in conducting hundreds of vulnerability
assessments in the private sector, in no case have we ever
found the operations network, the SCADA system or energy
management system separated from the enterprise network.
On average, we see 11 direct connections between those
networks. In some extreme cases, we have identified up to
250 connections between the actual producing network and
the enterprise network.”

This work is funded by the Seventh Framework Programme (FP7) of the European Commission as part of 
the project PANOPTESEC (http://www.panoptesec.eu, GA 610416)



IDS events can only be prioritized if the implications of
a network service or network device failing are understood.
For example an IDS event that is linked to a critical network
service needs to be prioritized over an event that is linked to
a network service of little importance. To monitor the status
of a BP based on all incoming IDS events, all events that
target involved network services need to be correlated. In
the content of this work we conduct a network dependency
analysis based on network traffic to identify activity patterns
that we denote as tasks. We formally describe our notion of a
task, before prioritizing and correlating events based on task
data structures. An evaluation of the identified tasks is based
on a real-world network and three networks that where created
with the network simulator ns-3 [6].

II. RELATED WORK

Most approaches correlate intrusion events and extract
attack scenarios to predict the next attacker action [7], [8],
[9], [10], [11]. However, different intrusion event approaches
have different focuses. Several researches have concentrated
on how to reduce the amount of events as well as decreasing
the false positive rate [12], [13], [14]. Others cluster similar
events [10], [11] to discover high-level attack scenarios or
represent and reason with operator preferences regarding
the events they analyze [15]. Others focus on solving the
problem of aggregating events into multi-step attacks as a
data mining problem [8], [9]. Regardless of their slightly
different research focuses, event correlation approaches
can be separated into three different categories: Similarity-
based, statistics-based and knowledge-based approaches.
Similarity-based event correlation approaches rely on features
to compare the similarity of two events or a single event
with a cluster of events. Statistics-based security focused
approaches [10], [12], [14], [11] focus on clustering similar
events. Knowledge-based event correlation methods rely on
formal knowledge representations to provide predicate-based
event correlation. A common drawback of these approaches
is that they rely on a lot of human input[10], [12], [16]. As
the complexity of computer networks is growing faster than
the ability to understand them, the quality of the human input
is questionable. Statistics-based event correlation methods
depend on underlying attribute distributions (such as Gaussian
distribution) of deviations from what is expected. Valdes et
al. [7] use statistical methods on multiple event metrics to
establish a lower level of correlation before discovering attack
step correlations. Farhadi et al. [8] studied how to correlate
event patterns using Hidden Markov Models and focused on
machine learning based attack plan recognition to correlate
and predict events. Unfortunately, most of the presented
approaches implicitly rely on a threat agent model [7], [8],
[9], [10], [11]. However, threat agents range from individual
hackers, to organized hacker groups, organized crime,
industrial espionage, disgruntled employees, terrorist groups
to nation state attacks. Due to the lack of information on these
different threat agents, predicting their next possible action
and validating the proposed adversary model is very difficult.

Rather than focusing on how events affect ongoing tasks in
the monitored network, the above mentioned approaches focus
on aggregating similar events or extracting attack scenarios
to predict the next attacker action. Evaluating the quality of
a threat model is difficult as little information is available
about different threat agents. However, network operators
know the purpose of their network and monitored networks
provide a multitude of information available for data mining
problems. Among the available information is network traffic,
routing tables, Network Address Translation (NAT) rules and
events. This information can be used to exploit pattern mining
approaches to discover tasks in the monitored network. The
focus of the approach introduced in the context of this work is
to monitor how events affect ongoing tasks in the monitored
network. The reasoning behind this approach is that events
affecting business-critical tasks have more impact in the eyes
of a network operator than others. Also, network operators
can judge whether they agree with the identified tasks. Due
to little information being available about threat agents, we
argue that it is very difficult to conduct a similar evaluation
with attacker model based approaches. In contradiction
to knowledge-based approaches we focus on minimizing
the required human input. The approach introduced in the
following is able to (i) automatically discover activities in the
network and (ii) correlate incoming events based on targeted
tasks.

III. NETWORK MODEL

Modeling an IT network requires a basic understanding of
the Open Systems Interconnection (OSI) model. For under-
standing network connectivity, the following layers of the OSI
model are of particular interest: data link layer, network layer,
transport layer and application layer. We define a network
device as a physical device on the network. The data link
layer physically links network devices using MAC addresses
to identify devices. However, the data link layer only provides
point-to-point connectivity. For enabling network connectivity
beyond a point-to-point communication, a network layer proto-
col such as the Internet Protocol (IP) is required. IP addresses
are used to identify source and destination of an end-to-end
connection. In other words, MAC addresses allow a point-
to-point connection, while IP addresses provide an end-to-
end connection. Therefore, switches and routers are used to
forward packets, i.e. they act as intermediate hosts.

Definition 1 (Device): Let MAC and IP be non empty sets
of MAC and IP addresses, respectively (MAC∩IP = ∅), then
D ⊆ P(MAC)\{∅}×P(IP ) is the set of (network) devices.

Definition 1 allows a device to be assigned multiple MAC
addresses and IP addresses. Being able to assign multiple
MAC addresses to a network device is needed as routers and
switches supply multiple point-to-point endpoints. However,
switches do not necessarily need to have IP addresses as they
work on the data link layer. From this it follows that they are
not visible on the network layer.



Definition 2 (Network): A (communication) network N is
tuple (D,E) consisting of a finite set of devices D and a finite
set of edges E, along with E ⊆ {{di, dj}|di, dj ∈ D, di 6=
dj}.
The end-to-end connection between network devices is the
basis of this network model and can automatically be derived
based on routing tables or router configuration. Due to the
derivation of the network formally introduced in Definition 2,
data link layer devices such as switches are opaque. In
Example 1 we introduce a running example based on a power
grid’s communication network and illustrate the corresponding
network in Figure 2.

Fig. 1. Running example of a communication network in a power grid.

Example 1: The schematic diagram in Figure 1 illustrates
an excerpt of a power grid network. A primary control center
hosts a Human Machine Interface for Medium Voltage Sub-
station (HMI MV) and an HMI for High Voltage Substation
(HMI HV). A so called Historian stores historical event and
measurement data, and an Application Server analyzes the
status of the monitored power grid. Remote Terminal Units
(RTUs) collect data from sensors and control actuators situated
at remote sites and send data to a Master Terminal Unit
(MTU) through the network. The remote sites consist of High
Voltage (HV) and Medium Voltage (MV) Substations. Buses
are connection points and within the running example they in-
terconnect a generator that is located within the HV Substation
via a tranformator and a MV Substation to a “smart home”.
The “smart home” incorporates a smart meter, intelligent
heating and a thermostat. Figure 2 shows the corresponding
network of the schematic diagram introduced in Figure 1. The
network is represented as an undirected graph as introduced
in Definition 2. Network devices are represented as nodes and
communication links correspond to edges.

Generally, devices that are end points in your network can
host network services. An application can rely on multiple

GW

Front End Server

Router 2

Router 3

Concentrator

Smart Meter

HeatingThermostat

Router 5

RTU51 RTU52

Generator

Router 1 Router 4

RTU41

HMI HV

HMI MV

Application Server

Fig. 2. A small excerpt of the network described in Example 1.

network services to achieve a certain goal. However, a single
network service can unambiguously be assigned to an appli-
cation given that it is not running on a dynamically assigned
port. In this paper, we do not make a formal distinction
between network services and applications, and we use the
term network services. These network services are located on
the application layer and are able to communicate end-to-end
with each other through a transport layer protocol.

Definition 3 (Network Service): To derive all network
services hosted by a device dj , we define the relationship
HOSTS(dj), which returns all network services hosted by
dj . In order to derive the device a service s is hosted by,
we write HOSTS−1(s), and associate service si with device
dj by writing sji . Given a service sji ∈ S, the corresponding
device dj can be derived by dj = HOSTS−1(sji ).
Below we show how to identify network dependencies based
on the presented network model.

IV. NETWORK DEPENDENCY ANALYSIS

Tasks consist of multiple network services that depend on
each other to fulfill a common goal. Network services can
be directly or indirectly dependent on each other. In order
to automatically derive tasks, we need to identify direct and
indirect dependencies between network services. Thus, we
design a network dependency analysis approach to identify
direct and potential indirect dependencies between network
services in data networks. The aim of network dependency
analysis is to find typical sequences of operation in data
networks. A network captures devices that are communication
endpoints and additional intermediate devices, over which
endpoints communicate. Network devices that are endpoints
can host network services. Based on network traffic analysis
we will detect network services and determine how they com-
municate in an end-to-end manner with each other. We conduct
a network dependency analysis based on packet headers (e.g.
IP, UDP and TCP) and timing data in network traffic.

A. Direct Dependency

Data is exchanged in the form of packets between the net-
work service sji and slk. We term these end-to-end interactions



between network services as direct dependencies. The direct
dependency between network services sji and slk is denoted as

SDEP = {(sji , s
l
k) | s

j
i sends a packet to slk

in the period under consideration}
(1)

Based on Definition 3 a direct dependency between network
services sji and slk leads to a direct dependency between the
respective hosts dj and dl. This can be written as

DDEP = {
(
HOSTS−1(sji ), HOSTS

−1(slk)
)
| (sji , slk) ∈ SDEP} (2)

Definition 4 (direct dependency): Let a direct dependency
between network services be denoted as SDEP and defined in
Equation 1. We write δ(sji , s

l
k) to denote (sji , s

l
k) ∈ SDEP .

Based on Definition 3, a direct dependency between network
services results in a direct dependency between devices. We
write δ(HOSTS−1(sji ), HOSTS

−1(slk)) = δ(dj , dl) to state
the derivation of DDEP based on SDEP . Over time, net-
work services that are directly dependent exchange packets. A
direct dependency δ(sji , s

l
k) means that a network device dj

hosts a service sji that sends data to another service slk, which
is located on network device dl. This means slk depends on
service sji and a delay, disruption, degradation or failure in
service sji will lead to delay, disruption, degradation or failure
of service slk. Packets include timestamps that denote when
the package was exchanged between the two hosts dj and
dl via the network service sji and slk. A continuous timeline
is monitored for finite period of time, which is sliced into k
timesteps of a predefined size. Predefined time steps can for
example be seconds, milliseconds or nanoseconds. Based on
this model we can see when data was exchanged and are able
to count the number of packets exchanged within a time step.
The packages exchanged between directly dependent network
services δ(sji , s

l
k) over time constitute a vector from Nk. We

use δ(sji , s
l
k) in a predicative way as well as for denoting time

series, hence we write δ(sji , s
l
k) ∈ Nk.

B. Indirect Dependency

Beyond direct dependencies there exist more complex de-
pendencies in an IT network. Estimating complex depen-
dencies with SDEP+ would derive complex dependencies
based on device connectivity. This would overestimate the
number of indirect dependencies and forgo the derivation of a
deeper semantic understanding of complex dependencies in a
network. To derive a deeper semantic understanding of com-
plex dependencies in a network, we analyze communication
patterns and derive indirect dependencies based on “similar”
communication patterns. Given a direct dependency δ(sji , s

l
k),

all network services hosted by HOSTS−1(slk) = dl are
candidates for an indirect dependency. An indirect dependency
implies that the data received by slk is processed on device dl.
Then, data is sent to another network service slm. Due to the
processing of data on device dl, the request might be sent to
slm τdelay time steps later. Hence, the communication patterns
of both direct dependencies would be similar, although shifted
by τdelay time steps.

Example 2: Consider the schematic diagram of a network in
an electrical power grid presented in Figure 2 with an operator
using HMI MV. The operator intends to send a request to a
substation’s Remote Terminal Unit (RTU). Hence, an HMI
MV sends this request to the Front End Server (FES). The
FES transfers the request to a router, which transmits the
request to the corresponding router of the substation. The
substation’s router then sends the request to the RTU. Based on
the assumption that communication is based on TCP/UDP, the
involved network devices send and receive requests via hosted
network services. Problems at any of these involved network
services may lead to a failed request for the operator, namely
the request not being sent. Operators need to understand the
respective indirect dependencies in order to locate the reason
why the task “send request to RTU” failed. Also, indirect
dependencies help an operator understand the impact of a
failed task. If the task “send request to RTU” involves a highly
critical device, then a failure of the task could be critical, too.
In order to understand the general case, we consider two
direct dependencies δ(sji , s

l
k) and δ(slm, s

o
n) that are hosted

by network devices dj , dl and do. In some sense, the network
services are adjoined.

ISDEP = SDEP ./HOSTS−1(2)=HOSTS−1(1) SDEP (3)

If a network service sji sends a request to slk, which processes
the data on device dl, and an application on dl sends a
request via network service slm to son, then we refer to
the two direct dependencies δ(sji , s

l
k) and δ(slm, s

o
n) as in-

direct dependency (sji , s
l
k, s

l
m, s

o
n). For brevity, we denote

this indirect dependency as ι(δ(sji , s
l
k), δ(s

l
m, s

o
n)). Note that

network service slk and slm are both hosted by device dl, i.e.
HOSTS−1(slk) = HOSTS−1(slm). Based on Definition 3 an
indirect dependency ISDEP between network services leads
to an indirect dependency IDDEP between the involved
devices. The relation IDDEP is defined as

IDDEP = map(λ ((s′, s′′, s′′′)) .
(
HOSTS−1(s′), HOSTS−1(s′′), HOSTS−1(s′′′)

)
,

∏
1,2,4 ISDEP )

(4)

The assumption of indirect dependencies is that data being
exchanged within a direct dependency δ(sji , s

l
k) is also used

by a direct dependency δ(slm, s
o
n). Hence, the two direct

dependencies are dependent on each other. Consequently, a
failure, degradation or delay of δ(sji , s

l
k) can lead to failure,

disruption or degradation of the other direct dependency
δ(slm, s

o
n) and vice versa. Additionally, all direct dependencies

are also described by communication patterns. Example 2
describes a scenario containing such indirect dependencies.

Normalized cross-correlation [17] according to Equation 5
is used to detect how similar both communication patterns
δ(sji , s

l
k) and δ(slm, s

o
n), which are both vectors of length k,

are. Equation 6 is used to detect the temporal shift between
the δ(sji , s

l
k) and δ(slm, s

o
n). The normalized cross correlation



ρ(δ(sji , s
l
k), δ(s

l
m, s

o
n)) is defined as

ρ(δ(sji , s
l
k), δ(s

l
m, s

o
n))[τ ] =

1
k

k∑
n=0

(
δ(sji ,s

l
k)[n]−δ(s

j
i ,s

l
k)

)
·(δ(slm,s

o
n)[n+τ ]−δ(slm,son))

σ
δ(s

j
i
,sl
k
)
σ
δ(slm,s

o
n)

,
(5)

where σδ(sji ,slk)
, σδ(slm,son) are the standard deviations and

δ(sji , s
l
k), δ(s

l
m, s

o
n) are the means of δ(sji , s

l
k) and δ(slm, s

o
n),

respectively.
The point in time τdelay, where both signals are best aligned

can be found with

τdelay = argmaxtρ(δ(s
j
i , s

l
k), δ(s

l
m, s

o
n))[τ ]. (6)

If ρ(δ(sji , s
l
k), δ(s

l
m, s

o
n))[τdelay] > θ, we consider both com-

munications to be correlated and therefore indirectly depen-
dent and shifted by τdelay. The delay τdelay is added to every
indirect dependency in ISDEP .

C. Clustering Dependencies

Aside from intermediate devices (e.g. routers and switches),
network devices can be categorized into client and server
network devices. In the following we will refer to client
network devices as clients and server network devices as
servers. Clients and servers are able to send requests. Servers
additionally provide network services that answer these re-
quests. Generally, the number of clients by far surpasses
the number of servers. Requests are often sent through a
dynamically assigned port. These ports are in the range from
215 + 214 to 216 and are available for private, customized or
temporary purposes.

Definition 5 (Cluster Network Service): Let S be a set
of services that are hosted by device dj . All network ser-
vices communicating through a dynamically assigned port, are
grouped by sj∗ ∈ S, which is called cluster network service.

D. Tasks

Indirect dependencies are elementary building blocks for de-
riving tasks in communication networks. We consider indirect
dependencies as the smallest possible task, because according
to our communication approach a similar communication
pattern is detected. Hence, we conclude all network services
within the involved direct dependencies are dependent on each
other. An indirect dependency ι(δ(sji , s

l
k), δ(s

l
m, s

o
n)) contains

the notion that a failure or delay of δ(sji , s
l
k) leads to a failure

or delay of δ(slm, s
o
n). Tasks broaden this notion and cluster

all network services that might lead to or be affected by a
delay or failure. Hence, the set of tasks TS is defined as

TS = SCC ((S,map(asSet, ISDEP ))) , (7)

where SCC denotes the strongly connected components (SCC)
of the hypergraph given as parameter (asSet maps a tuple into
a set of components). Figure 3 illustrates a possible set of
tasks TS. To find the devices TD associated to a task, we use
dev : P(S)→ P(D) as

dev(t) = map
(
HOSTS−1, t

)
(8)

sji

slk

slm

son

spr slp sqs

Fig. 3. An example of a set of tasks TS.

V. EVENT PROCESSING

After having conducted a network dependency analysis, the
focus of this section is to use previously identified network
dependencies for event processing. Incoming event streams
are heterogeneous data streams. Hence, events have to be
normalized before prioritizing and correlating them.

A. Event Normalization

Based on syslog-ng [18], we integrate events generated
by heterogeneous IDS sensors into a standardized data for-
mats called Intrusion Detection Message Exchange Format
(IDMEF) [19]. IDMEF was the first attempt to address the
problem of formatting and standardizing events [20]. The
IDMEF data model is a standard representation of events with
a predefined set of attributes.

B. Event Prioritizing and Correlation

Considering a set of events E, every event can be linked to
a set of network services according to Equation 9,

ES : E → P(S), (9)

with a mapping function ES, an event set E and a network
service set S. Based on the identified set of network services,
a set of involved devices can be derived with the function dev.

Events that affect the same devices are correlated into a
single IDMEF event. Whether two events ex, ey ∈ E are
correlated is derived by,

∀ex, ey ∈ E : ES(ex) ∩ ES(ey) 6= ∅
=⇒ {ex, ey} ∈ IDMEFEV

(10)

Correlated events CORREV are defined as the SCCs of the
graph (S, IDMEFEV ). In order to support an operator in
understanding how a correlated event affects the monitored
network, we map events to a set of devices.

affectedDevices : E → P(D)

affectedDevices(e) =
⋃
t∈TS,

ẽxy∈CORREV

{dev(t) | ES(ẽxy) ∩ t 6= ∅} (11)

An operator is then able to see all events and all devices, which
might potentially by affect them. All network devices are
assigned criticality values according to the following equation.

CRIT : D → {low, medium, high} (12)



Based on the criticality map for devices, we are able to
prioritize correlated events by defining the following order
relation on CORREV :
≤= {(ex, ey) ∈ CORREV × CORREV |

reduce(max,map(CRIT, affectedDevices(ex)), low)

≤ reduce(max,map(CRIT, affectedDevices(ey)), low)}

(13)

A correlated event is ranked as the highest criticality category
of all affected network devices. So, a correlated event is
assigned a criticality value and it can be ranked into one of the
three criticality categories {low, medium, high}. This allows
a network operator to prioritize events that might potentially
affect more critical network devices.

VI. EXPERIMENTAL EVALUATION

The purpose of the experimental evaluation is to prove the
following Hypothesis 1.

Hypothesis 1: Normalized cross correlation is able to un-
cover true positive indirect dependencies between network
services.

According to the definitions presents below we implemented
an algorithm, which is implemented in C++ and we use
OpenCV [21] to apply normalized cross correlation to com-
munication patterns. We analyze the implemented algorithm
based on a data set from a real-world enterprise network.
In order to get a ground truth from the identified indirect
dependencies are shown to a network operator. The network
operator classify the indirect dependencies as true positive
or false positive. Given a listing of the identified indirect
dependencies, all of them where classified as true positives.
However, giving an exhaustive list of all indirect dependencies
in the monitored network was outside the field of knowledge
of the network operator.

This is why we explored the possibility of creating a com-
munication networks synthetically in order to have a known
ground truth. The underlying structure of our synthetically
created communication networks is based on three topologies
introduced in the “Guide to Industrial Control System Secu-
rity” from [22], which is modeled with the network simulator
Ns-3 [6] and we add 10% of indirect dependencies randomly.
Implementing the test network gives us the ground truth to
evaluate the results of the implemented algorithm.

TABLE I
RESULTS OF THE ANALYZED DATA SETS.

data network number of number of true number of false
set services direct positive indirect positive indirect

dependencies dependencies dependencies

enterprise
network 802 829 103 ?

ns-3
network 1 48 144 16 1

ns-3
network 2 54 162 19 2

ns-3
network 3 47 141 15 1

The results of the analyzed data sets is shown in Table I and
show few false positives.

VII. CONCLUSION

In this paper we proposed an event prioritization and corre-
lation approach. In order to correlate all events potentially af-
fecting the same task, we proposed a approach for identifying a
network’s underlying tasks based on network traffic. Underly-
ing tasks are identified by comparing communication patterns
between network service via normalized cross-correlation.

In this work we formally identify tasks as consisting of
multiple network services that depend on each other to fulfill
a common goal. Future work includes merging indirect de-
pendencies that have multiple common network services into a
single dependency. Also, we plan to investigate communicable
formats for these low-level tasks.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement No. 610416 (PANOPTESEC). The opin-
ions expressed in this paper are those of the authors and do
not necessarily reflect the views of the European Commission.

REFERENCES

[1] J. R. Clapper, “Statement for the record, worldwide
threat assessment of the us intelligence community,”
http://www.dni.gov/index.php/newsroom/testimonies/209-congressional-
testimonies-2015/1174-statement-for-the-record-worldwide-threat-
assessment-of-the-u-s-ic-before-the-sasc, 2014.

[2] Dell Inc., “Dell security annual threat report,” Tech. Rep., 2015.
[3] I. Corporation, “2015 cyber security intelligence index,” july 2015.
[4] R. Langner and P. Pederson, “Bound to fail: Why cyber security risk

cannot simply be “managed” away,” Cyber Security Series, 2013.
[5] Subcommittee on National Security, Homeland Defense, and

Foreign Operations. (2011) Cybersecurity: Assessing the
immediate threat to the united states. [Online]. Available:
http://www.youtube.com/watch?v=x1URPa1jG60

[6] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for NS-3,” NDN, Technical Report, 2012.

[7] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Recent
advances in intrusion detection. Springer, 2001, pp. 54–68.

[8] H. Farhadi, M. AmirHaeri, and M. Khansari, “Alert correlation and
prediction using data mining and HMM,” The ISC International Journal
of Information Security, vol. 3, no. 2, 2015.

[9] M. GhasemiGol and A. Ghaemi-Bafghi, “E-correlator: an entropy-based
alert correlation system,” Security and Communication Networks, vol. 8,
no. 5, pp. 822–836, 2015.

[10] F. Cuppens and A. Miege, “Alert correlation in a cooperative intrusion
detection framework,” in Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on. IEEE, 2002, pp. 202–215.

[11] X. Peng, Y. Zhang, S. Xiao, Z. Wu, J. Cui, L. Chen, and D. Xiao, “An
alert correlation method based on improved cluster algorithm,” in Com-
putational Intelligence and Industrial Application, 2008. PACIIA’08.
Pacific-Asia Workshop on, vol. 1. IEEE, 2008, pp. 342–347.

[12] B. Morin, L. Mé, H. Debar, and M. Ducassé, “M2D2: A formal
data model for IDS alert correlation,” in Recent Advances in Intrusion
Detection. Springer, 2002, pp. 115–137.

[13] T. Pietraszek, “Using adaptive alert classification to reduce false posi-
tives in intrusion detection,” in Recent Advances in Intrusion Detection.
Springer, 2004, pp. 102–124.

[14] R. Smith, N. Japkowicz, M. Dondo, and P. Mason, “Using unsuper-
vised learning for network alert correlation,” in Advances in Artificial
Intelligence. Springer, 2008, pp. 308–319.



[15] K. Tabia, S. Benferhat, P. Leray, and L. Mé, “Alert correlation in
intrusion detection: Combining AI-based approaches for exploiting se-
curity operators’ knowledge and preferences,” in Security and Artificial
Intelligence (SecArt), 2011, p. NC.

[16] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios
through correlation of intrusion alerts,” in Proceedings of the 9th ACM
conference on Computer and communications security. ACM, 2002,
pp. 245–254.

[17] K. Briechle and U. D. Hanebeck, “Template matching using fast nor-
malized cross correlation,” in Aerospace/Defense Sensing, Simulation,
and Controls. International Society for Optics and Photonics, 2001,
pp. 95–102.

[18] Balabit, “Syslog-ng,” https://www.balabit.com/network-security/syslog-
ng, 2015.

[19] H. Debar, D. A. Curry, and B. S. Feinstein, “The intrusion detection
message exchange format (IDMEF),” in IETF, 2007.

[20] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in Recent Advances in Intrusion Detection. Springer,
2001, pp. 85–103.

[21] G. Bradski, “Opencv,” Dr. Dobb’s Journal of Software Tools, 2000.
[22] K. Stouffer, K. Falco, and K. Scarfone, “National institute of standards

and technologies - guide to industrial control systems (ics) security,”
National Institute of Standards and Technology, Tech. Rep., 2011.


