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Abstract. In data-communication networks, network reliability is of great con-
cern to both network operators and customers. To provide network reliability it
is fundamentally important to know the ongoing tasks in a network. A particular
task may depend on multiple network services, spanning many network devices.
Unfortunately, dependency details are often not documented and are difficult to
discover by relying on human expert knowledge. In monitored networks huge
amounts of data are available and by applying data mining techniques, we are
able to extract information of ongoing network activities. Hence, we aim to au-
tomatically learn network dependencies by analyzing network traffic and derive
ongoing tasks in data-communication networks. To automatically learn network
dependencies, we propose a methodology based on the normalized form of cross
correlation, which is a well-established methodology for detecting similar signals
in feature matching applications.

1 Introduction

For deriving how susceptible a network is to software vulnerabilities or attacks, it is
essential to understand how ongoing network activities could potentially be affected.
A network is built with a higher purpose or mission in mind and this mission leads
to interactions of network devices and applications causing network dependencies. A
monitored infrastructure’s missions can be derived through human labor, however mis-
sions are subject to frequent change and often knowledge of how an activity links to
network devices and applications is not available. So we are challenged to automatically
derive these missions as network activity patterns through network service dependency
discovery.

In the context of this work, we introduce a novel framework for Mission Oriented
Network Analysis (MONA). To motivate our approach, in Section 2 we provide a back-
ground to other network dependency assessment methodologies and illustrate their lim-
itations. We introduce a network model in Section 3 and in Section 4 we uncover net-
work dependencies based on network traffic. In a monitored network large amount of
unlabeled data, in form of network traffic, are available for knowledge discovery. This
allows us to develop a deeper understanding of network activities. For uncovering net-
work dependencies, we propose a methodology based on normalized cross correlation,
which is a well-established methodology for detecting similar signals in feature match-
ing applications. In Section 5, we evaluate MONA based on network traffic traces pro-
vided by an energy distribution network.
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2 Related Work

Network activities in a data-communication network follow from a network having a
higher task. Others refer to a network having a higher task as a mission. The concept of
missions is sometimes also referred to as mission-centricity in cyber security.

Multiple distinct mission-centric approaches to cyber security have been proposed [8,
4, 10, 1, 11]. Albanese et al. [8] use ontologies for integrating available data into a com-
mon model. Barreto et al. introduced an impact assessment methodology [4] incor-
porating vulnerability descriptions [12] and other numerical scores acquired through
a BPMN model via human input. Another mission-centric approach is introduced by
Jakobson [10], who presents an interdependency model representing an infrastructures
operational capacity. Albanese et al. [1] present an interdependency model focusing on
cost minimization based on information acquired via human input. Another mission-
centric approach is the Cyber Attack Modeling and Impact Assessment Framework [11],
which supports computational analysis of a monitored infrastructure and allows impact
assessment. An example for a mission-centric approach is the framework for cyber
attack modeling and impact assessment [11]. They rely on a mission model for gener-
ating attack graphs. All these models do not focus on how to acquire the information
used to derive interdependency models. Network dependency analysis allows automat-
ically deriving interdependency models based on network traffic. Recent efforts have
explored network-based approaches that treat each host as a black box and passively
analyze the network traffic between them. For network administrators that are planning
to upgrade or reorganize existing applications a dependency discovery approach named
Leslie Graph [2] was designed. The approach aims at identifying complex dependencies
between network services and components that may potentially be affected and prevent
unexpected consequences. NSDMiner [13] addresses the same problem of network ser-
vice dependency for network stability and automatic manageability. Sherlock [3] is an-
other approach, which learns an inference graph of network service dependency based
on co-occurrence within network traffic. A well-known approach is called Orion [6],
which was developed to use spike detection analysis in the delay distribution of flow
pairs to infer dependencies. All previously mentioned approach require large amounts
of network traffic compared to MONA, and where developed to minimize false nega-
tive network service dependencies. To our knowledge, MONA is the first stream-based
network service dependency analyzer.

3 IT Network Model

Modeling an IT network requires a basic understanding [7] of the Open Systems Inter-
connection (OSI) model. For understanding network connectivity, the following layers
of the OSI model are of particular interest: data link layer, network layer, transport layer
and application layer. We define a network device as a physical device on the network.
The data link layer physically links network devices using MAC addresses to identify
devices. However, the data link layer only provides point-to-point connectivity. For en-
abling network connectivity beyond a point-to-point communication, a network layer
protocol such as the Internet Protocol (IP) is required. IP addresses are used to identify
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source and destination of an end-to-end connection. In other words, MAC addresses al-
low a point-to-point connection, while IP addresses provide an end-to-end connection.
Therefore, switches and routers are used to forward packets, i.e. they act as intermedi-
ate hosts. Data-communication networks are built with a common higher purpose. This
leads to reoccurring interactions between distinct network devices and services, which
we call network activity patterns. An example for such a network activity pattern is
given in the following example.

Definition 1 (Network Device). Let MAC and IP be non empty sets of MAC and IP
addresses, respectively (MAC ∩ IP = ∅), then

DCY ⊆ P(MAC) \ {∅} × P(IP ) (1)

is the set of network devices.

This allows a device to be assigned multiple MAC addresses and IP addresses. Be-
ing able to assign multiple MAC addresses to a network device is needed as routers
and switches supply multiple point-to-point endpoints. However, switches do not nec-
essarily need to have IP addresses as they work on the data link layer. From this it fol-
lows that they are not visible on the network layer. A network captures devices that are
communication endpoints and additional intermediate devices, over which endpoints
communicate. Network devices that are endpoints can host network services.

Definition 2 (Network Service). Let S be a set of network services such that a network
service sji ∈ S is hosted by a network device dj ∈ DCY . Additionally, the network
service is associated by a transport protocol Ψ = {TCP,UDP} and a port. This
allows us to define a relation SERV , which links a network device, a transport protocol
and a port number to a network service by the follow equation

SERV : DCY × Ψ × N→ S. (2)

To derive all network services hosted by a device dj , we define a relationship HOSTS (dj),
which returns all network services hosted by dj . In order to derive the device a service s
is hosted by, we writeHOSTS−1(s), and associate service si with device dj by writing
sji . Given a service sji ∈ S, the corresponding device dj can be derived by

dj = HOSTS−1(sji ). (3)

Additionally, for a given IP-address and port, we are able to derive the corresponding
network device by

DEV : P(IP )× N. (4)

This allows us to derive all involved network services for a given IP-address and port
pair by HOSTS(DEV (sIP, sPort)) → P(S). Based on network traffic analysis we
will detect network services and determine how they communicate in an end-to-end
manner with each other. Aside from intermediate devices (e.g. routers and switches),
network devices can be categorized into client and server network devices. In the fol-
lowing we will refer to client network devices as clients and server network devices
as servers. Clients and servers are able to send requests. Servers additionally provide
network services that answer these requests. Generally, the number of clients by far
surpasses the number of servers.
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Definition 3 (Network Packet). The basic building block of our approach are network
packets exchanged between directly dependent network services. A network packet is
exchanged by a source and destination IP address srcIP and dstIP via source and des-
tination port srcPort and dstPort. In addition, a network packet relies on a specific
transport layer protocol. In the context of this paper we distinguish the transport layer
protocols TCP and UDP. We define a network packet as a 6-tuple

P = (sIP, sPort, dIP, dPort, ψ, t), (5)

for source IP addresses sIP , a source ports sPort, destination IP addresses dIP ,
destination ports dPort, a transport protocol Ψ = {UDP, TCP} and timestamps t.

Requests are often sent through a dynamically assigned port. Dynamically assigned
ports are chosen from specifically assigned port ranges [14]. Ephemeral port ranges are
available for private, customized or temporary purposes. Although IANA recommends
ephemeral port ranges to range from 215 + 214 to 216, the range is highly dependent
on the operation system. Microsoft assigns ephemeral ports starting as low as 1025
for some windows versions and a lot of Linux kernels have the ephemeral port range
start at 32768. We follow the IANA recommended ephemeral port range for clustering
purposes.

Definition 4 (Cluster Network Service). Let S be a set of services that are hosted by
device dj . All network services communicating through a dynamically assigned port,
are grouped by

sj∗ ∈ S, (6)

whereas ∗ represents a dynamically assigned port and j represents the device a network
service is hosted on. Known network services have to be linked to ports statically, such
that other network services can routinely communicate requests with them. It should
also be noted that multiple statically assigned ports could be assigned to the same
application.

Based on Equation 5, we conduct a network dependency analysis based on packet
headers (e.g. IP, UDP and TCP) and timing data in network traffic. Hence, our ap-
proach operates on network flows. To identify network flow boundaries, we look into
the definition of TCP and UDP flows. A TCP flow starts with a 3-way handshake (SYN,
SYN-ACK, ACK) between a client and a server and terminates with a 4-way handshake
(FIN, ACK, FIN, ACK) or RST packet exchange. If network services communicate fre-
quently, they may forgo the cost of repetitive TCP handshakes by using KEEPALIVE
messages to maintain a connection in idle periods. In comparison the notion of UDP
flows is vague, since UDP is a stateless protocol. This is due to the protocol not hav-
ing well-defined boundaries for the start and end of a conversation between server and
client. In the context of this work, we consider a stream of consecutive UDP pack-
ets between server and client as a UDP flow, if the time difference between to con-
secutive packets is below a predefined threshold. In our analysis we exclude all net-
work packet that are necessary for establishing a communication between server and
client. So given that additional data is exchanged between network service sji and slk,
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we term these end-to-end interactions between network services as direct dependen-
cies. The direct dependency SDEP between network services sji and slk is denoted
as SDEP = {SDEP rq

⋃
SDEP rsp}. We distinguish requests and responses ex-

changed between network services based on Equation 6. If a network services uses an
ephemeral port to send a network packet to a network service on a static port range, we
assume it is a request. Thus, an exchanged request SDEP rq is denoted by

SDEP rq = {(sj∗, slk) | sj∗ sends a request to slk
in the period under consideration,}

(7)

where k is in the statically assigned port range. Conversely, this means that a network
service using its static port range to answer a network service on an ephemeral port is
defined as a response. An exchanged response SDEP rsp is written as

SDEP rsp = {(slk, sj∗) | slk, sends a response to sj∗
in the period under consideration.}

(8)

4 Network Service Dependency Discovery

A data-communication network consists of network devices, which interact due to ap-
plications via network services. For example an application “email” uses network ser-
vices IMAP and POP3 to access email messages from a remote network device (i.e.
host). From this it follows that an application can rely on multiple network services
to fulfill a common goal, which is also referred to as mission. Additionally, we note
network activities such as accessing email messages lead to network packets being ex-
changed by directly dependent network service. The purpose of network service de-
pendency discovery is to abstract network packets in order to detect reoccurring com-
munication pattern. Reoccurring communication patterns indicate that the involved net-
work services are dependent. In order to detect reoccurring communication patterns, we
first abstract monitored network traffic into communication histograms. This analysis is
done online based on continously captured network traffic.

4.1 Communication Histograms

Let us suppose that we are mirroring network traffic from an initial time point tmin to a
time point tmax within an IT network. We are observing network packets p ∈ P , which
are defined as a 6-tuple according to Equation 5. For communicating network services,
we build communication histogram with a bin size ∆t. In the context of work we set
∆t to 1 second. The number of histogram bins is given by

bins = b (tmax − tmin)
∆t

c, (9)

assuming we want to build a communication histogram for network traffic mirrored
from time point tmin to tmax with a bin size ∆t.
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Given that we are monitoring a set of S network services then the data structure for
all communication histograms is defined by

H : S × S × Ψ → ({0, · · · , bins− 1} → N0), (10)

where the communication histogram bins {0, · · · , bins−1} are mapped to N0. Now for
every network packet exchanged between directly dependent network services, assum-
ing it was received during the considered time period, the corresponding bin I(H(s, s′, ψ)
in the communication histogram is incremented. The corresponding bin in the commu-
nication histogram is determined by

(tmin − t) mod bins, (11)

assuming that the network packet p contains the time stamp t.

4.2 Indirect Dependencies

Network services operate on distributed sets of clients and servers and rely on sup-
porting network services, such as Kerberos, Domain Name System (DNS), and Active
Directory. To fulfill a network’s mission, network services need to interact. Since, en-
gineers use the divide-and-conquer approach to implement a new task, they are able
to reuse network services and do not need to re-implement complex customized ones.
This leads to multiple network services interacting for a common high-level task. For
the purpose of detecting indirect dependencies, we analyze the communication his-
tograms of directly dependent network services in order to derive re-occurring commu-
nication patterns. Detecting re-occurring communication patterns requires clustering
direct dependencies. Similarly to previous work, we distinguish two different types of
remote-remote dependencies and local-remote dependencies [6]. A local-remote (LR)
dependency is an indirect dependency, where a system must issue a request to a remote
system in order to complete an outstanding request issued to a local service. A remote-
remote (RR) dependency is one in which a system must first contact one host before
issuing a request to the desired host.

Definition 5 (Candidates for an Indirect Dependency). Given a direct dependency
δ(sji , s

l
k), all network services hosted by

HOSTS−1(slk) = dl or HOSTS−1(sji ) = dj (12)

are candidates for an indirect dependency.

The communication histograms contain the communication pattern of all involved di-
rectly dependent network services.

4.3 Measuring Communication Histogram Similarity

Suppose we have two communication histograms r and s ∈ H , which are candidates
for being indirectly dependent. The two communication histograms are time series r =
(r1, r2 · · · , rbin), consist of bin samples.
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In statistics, the Pearson product-moment correlation coefficient the linear correla-
tion σ between two variables X and Y by

σ =
[(X − µX)(Y − µY )]

σXσY
, (13)

where µY and σY denotes the mean and standard deviation of Y . The Pearson product-
moment correlation coefficient is a measure of the linear correlation between two vari-
ables X and Y, giving a value between +1 and -1 inclusive, where

1 is total correlation,
0 is no correlation, and

-1 is total anti-correlation.

To apply the Pearson correlation coefficient as a distance measure on a time se-
ries [9], we define the Pearson Distance as

d%(r, s) =
1

bins

∑bins
t=0 (rt − µr)(st − µs)

σrσs
, (14)

where µr and σr are mean and standard deviation of r, such that −1 ≤ d% ≥ 1.
An indirect dependency implies that the data received by slk is processed on device

dl. Then, data is sent to another network service slm. Due to the processing of data
on device dl, the request might be sent to slm τdelay time steps later. Network latency
can lead to communication patterns being shifted due to the time it takes for a net-
work packet to be transferred. Communication patterns are stored in communication
histograms and they contain the same pattern, which thus are also shifted due to net-
work latency. Hence, the communication patterns of both direct dependencies would be
similar, although shifted by τdelay time steps. In pattern recognition, normalized cross
correlation has been proposed to take a shift, such as τdelay, into account.

To overcome the lack of a perfect alignment between two communication net-
works, we extend the Pearson distance, introduced in Equation 14, to normalized cross-
correlation [5].

%r,s(τ) =
1

bins

∑bins
t=0 (rt − µr)(st+τ − µs)

σrσs
, (15)

The point in time τdelay, where both signals are best aligned can be found by com-
puting

τdelay = argmaxt%r,s(τ). (16)

If %r,s(τ) ≥ θ, we consider both communication histograms r and s to be correlated
and therefore indirectly dependent and shifted by τdelay. Normalized cross-correlation
is applied to all indirect dependency candidates and returns a set ISDEP , which is
derived by applying

ISDEP = SDEP ./ SDEP (17)

on all LR (local-remote) and RR (remote-remote) dependencies.
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Algorithm 1 Building communication histograms algorithm
1: Input:
2: Network packet P = (sIP, sPort, dIP, dPort, ψ, t),
3: start time tmin, stop time tmax, time step ∆t

4: Output: Communication histograms H
5: . compute number of bins for communication histogram H
6: bins = (tmax − tmin) div ∆t . all histogram vectors are initialized and filled with zeros
7: . fill histogram bins for every network packet in a network flow
8: for all p = (sIP, sPort, dIP, dPort, ψ, t) ∈ P
9: and t ≥ tmin and t ≤ tmax do

10: tb = (t− tmin) mod bins
11: H(SERV (DEV (sIP ), sPort),
12: SERV (DEV (dIP ), dPort),
13: ψ)[tb]++
14: end for
15: return H

5 Experimental Evaluation

The disaster recovery site of an energy distribution network, provided an Italian water
and energy distribution company, was available for network traffic analysis. Based on
this network, we are able to deploy MONA for online analysis. In addition, we are col-
lect and analyze real-life network traffic with the help of network operators. Real-life
network traffic consists of network services frequently to rarely interacting and we are
able to test MONA with typical communication patterns occurring in an operational
environment. As this network is a real-life network, absolute knowledge of all exist-
ing and non existing network dependencies can only be assumed. Data communication
networks are dependent on third party software and operators do not have complete
knowledge. However, all identified indirect network service dependencies, which are
shown in Figure 1, where classified as true positives.

The node named mferp2 is a communication server for multiple substations, which
are identified as TTY-T[116-158]. Also, our evaluation shows, how important Eq. 1
is as mferp2 is one physical device, but is assigned two IP address from two differ-
ent subnetworks. The communication server mferp2 hosts a network service, defined
in Equation 2. Port numbers that identify the network service are appended to the host
names. This network service belongs to an application, which sends requests (see Equa-
tion 7) to all substations in order to be updated with current measurement information.
Therefore, a network service dependency joins these substations to the communica-
tion server. Mferp2 communicates via muel2 with Human Machine Interface (HMIs)
msoz19 and mso22. Another HMI msoz17 wants to access information about the sub-
stations TTY-T[116-158]. For this, first muel1 is contacted, who passes the request on
to muel2. As an energy distribution network is a critical infrastructure, it needs to be en-
sured that all communication pathways are always available. Hence, regularly back up
servers and alternate communication pathways are tested, even if no information needs
to be transmitted. All these network service dependencies where verified by operators
as true positives.
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Fig. 1: Network Service Dependency Analysis in an energy distribution network.

6 Conclusion

We have demonstrated a novel network dependency detection approach. During first
experiments on online network traffic from the disaster recovery site, we often found
new network dependencies that had been previously forgotten by the network operators.
Subsequence mining enables deriving a deeper understanding of network activities and
leverages well data-communication networks with different numbers of network de-
vices and indirect dependencies.



10

Acknowledgments

This work has been partially supported by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. 610416 (PANOPTESEC). The
opinions expressed in this paper are those of the authors and do not necessarily reflect
the views of the European Commission.

References

1. Albanese, M., Jajodia, S., Jhawar, R., Piuri, V.: Reliable mission deployment in vulnerable
distributed systems. In: Dependable Systems and Networks Workshop (DSN-W), 2013 43rd
Annual IEEE/IFIP Conference on. pp. 1–8. IEEE (2013)

2. Bahl, P., Barham, P., Black, R., Chandra, R., Goldszmidt, M., Isaacs, R., Kandula, S., Li, L.,
MacCormick, J., Maltz, D.A., et al.: Discovering dependencies for network management. In:
ACM SIGCOMM 5th Workshop on Hot Topics in Networks (Hotnets-V). pp. 97–102. ACM
(2006)

3. Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D.A., Zhang, M.: Towards highly
reliable enterprise network services via inference of multi-level dependencies. In: ACM SIG-
COMM Computer Communication Review. vol. 37, pp. 13–24. ACM (2007)

4. de Barros Barreto, A., Costa, P.C.G., Yano, E.T.: A semantic approach to evaluate the impact
of cyber actions on the physical domain (2012)

5. Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation.
In: Aerospace/Defense Sensing, Simulation, and Controls. pp. 95–102. International Society
for Optics and Photonics (2001)

6. Chen, X., Zhang, M., Mao, Z.M., Bahl, P.: Automating network application dependency dis-
covery: Experiences, limitations, and new solutions. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI). vol. 8, pp. 117–130 (2008)

7. Edwards, J., Bramante, R.: Networking self-teaching guide: OSI, TCP/IP, LANs, MANs,
WANs, implementation, management, and maintenance. John Wiley & Sons (2015)

8. Goodall, J.R., D’Amico, A., Kopylec, J.K.: Camus: automatically mapping cyber assets to
missions and users. In: Military Communications Conference (MILCOM). pp. 1–7. IEEE
(2009)

9. Höppner, F., Klawonn, F.: Compensation of translational displacement in time series clus-
tering using cross correlation. In: Advances in Intelligent Data Analysis VIII, pp. 71–82.
Springer (2009)

10. Jakobson, G.: Mission cyber security situation assessment using impact dependency graphs.
In: Information Fusion (FUSION). pp. 1–8 (2011)

11. Kotenko, I., Chechulin, A.: A cyber attack modeling and impact assessment framework. In:
Cyber Conflict (CyCon), 2013 5th International Conference on. pp. 1–24 (June 2013)

12. MITRE: Common vulnerabilities and exposures. https://cve.mitre.org/ (2000)
13. Natarajan, A., Ning, P., Liu, Y., Jajodia, S., Hutchinson, S.E.: NSDMiner: Automated dis-

covery of network service dependencies. In: IEEE International Conference on Computer
Communications (IEEE INFOCOM 2012). IEEE (2012)

14. Touch, J., Kojo, M., Lear, E., Mankin, A., Ono, K., Stiemerling, M., Eggert, L.: Service
name and transport protocol port number registry. The Internet Assigned Numbers Authority
(IANA) (2013)


