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Abstract. An agent in pursuit of a task may work with a corpus con-
taining text documents. To perform information retrieval on the corpus,
the agent may need annotations—additional data associated with the
documents. Subjective Content Descriptions (SCDs) provide additional
location-specific data for text documents. SCDs can be estimated without
additional supervision for any corpus of text documents. However, the es-
timated SCDs lack meaningful descriptions, i.e., labels consisting of short
summaries. Labels are important to identify relevant SCDs and docu-
ments by the agent and its users. Therefore, this paper presents LESS, a
LEan computing approach for Selective Summaries, which can be used as
labels for SCDs. LESS uses word distributions of the SCDs to compute
labels. In an evaluation, we compare the labels computed by LESS with
labels computed by large language models and show that LESS computes
similar labels but requires less data and computational power.

1 Introduction

An agent in pursuit of a task, explicitly or implicitly defined, may work with a
corpus of text documents as a reference library. From an agent-theoretic perspec-
tive, an agent is a rational, autonomous unit acting in a world fulfilling a defined
task, e.g., providing document retrieval services given requests from users. We
assume that the corpus represents the context of the task defined by the users of
the retrieval service. Further, documents in a given corpus might be associated
with additional location-specific data making the content nearby the location
explicit by providing descriptions, references, or explanations. We refer to these
additional location-specific data as Subjective Content Descriptions (SCDs) [10].

Associating documents with SCDs supports agents in the task of informa-
tion retrieval. SCDs may cluster similar sentences across the agent’s—possibly
tiny—corpus [1]. The agent then uses the clusters to answer requests from users
by retrieving the sentences in a cluster matching the request. However, a cluster
is only a set of similar sentences and it is difficult to describe such set to a human
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user in a comprehensible way. For this purpose, a label or a short description
helps the agent to present retrieved clusters and its SCDs more comprehensibly
to users. Therefore, each SCD needs a label in addition to the referenced sim-
ilar sentences. The computation of such labels shall require less computational
resources and shall work in an unsupervised way even with tiny corpora.

State-of-the-art Large Language Models (LLMs) might be applied to com-
pute the labels. However, LLMs like Bidirectional Encoder Representations from
Transformers (BERT) [5] need specialized hardware to run fast and huge amounts
of computational resources resulting in high energy consumption [13]. In addi-
tion, BERT uses a pre-trained model that must be trained beforehand on large
amounts of data while we are interested in an approach working even with less
data, e.g., tiny user supplied corpora.

Existing approaches solve the problem of tiny corpora, e.g., by unifying train-
ing data for multiple tasks, like translation, summarization, and classification.
Together, the unified data is sufficient to train the model and the model becomes
multi-modal for solving the different tasks of the training data [6]. However, we
are interested in an unsupervised approach requiring no training data at all. In
general, a label for an SCD can be estimated by a summarization, i.e., the label is
the summarization of a cluster of similar sentences. TED [16] is an unsupervised
summarization approach, but it uses a transformer architecture [14] which is the
basis for most LLMs. Thus, TED still needs specialized hardware to run fast and
huge amounts of computational resources. More lightweight approaches exist for
topic models. There, a topic consist of representative words for which a label
needs to be computed. However, many approaches need supervision [3, 9, 11].

The main problems with the above approaches are the need for extensive
training data and the need to compute on specialized hardware. As a solution,
this paper presents LESS, an unsupervised LEan computing algorithm for Selec-
tive Summaries. LESS uses the previously mentioned clusters of similar sentences
to create selective summaries which then can be used as labels. LESS builds on
the Unsupervised Estimator of SCD Matrices (UESM) [1], which provides the
clusters of similar sentences needed by LESS. We assume that the concept of
each SCD is implicitly defined by the content of the sentences referenced and
each label describes the concept of an SCD: So, LESS identifies the best fitting
sentence. Together, LESS and UESM associate any corpus with labelled SCDs,
where each SCD references similar sentences of the same concept, has a label
describing its concept, and an SCD-word distribution. LESS in conjunction with
UESM neither needs specialized hardware nor additional training data. In the
evaluation, LESS computes labels with less time and computational resources
while providing similar results as BERT.

The remainder of this paper is structured as follows: First, we recap the basics
of SCDs and UESM. Second, we formalize the problem of computing labels for
SCDs and provide our solution LESS. Afterwards, we evaluate the performance
of LESS against the well-know BERT and demonstrate that LESS is on par with
BERT, while being lean and requiring less resources and no pre-trained models.
Finally, we conclude with a summary and short outlook.
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2 Preliminaries

This section specifies notations, recaps the basics of SCDs and describes UESM.

2.1 Notations

First, we formalize our setting of a corpus.

– A word wi is a basic unit of discrete data from a vocabulary V = {w1, . . . , wL},
L ∈ N.

– A sentence s is defined as a sequence of words s = (w1, . . . , wN ), N ∈ N,
where each word wi ∈ s is an element of vocabulary V. Commonly, a sentence
is terminated by punctuation symbols like “.”, “!”, or “?”.

– A document d is defined as a sequence of sentences d = (sd1, ..., s
d
M ), M ∈ N.

– A corpus D represents a set of documents {d1, . . . , dD}, D ∈ N.
– An SCD t is a tuple of the SCD’s additional data C, i.e., containing the label
l of the SCD, and the referenced sentences {s1, ...., sS}, S ∈ N. Thus, each
SCD references sentences in documents of D, while in the opposite direction
a sentence is associated with an SCD.

– A sentence associated with an SCD is called SCD window, inspired by a
tumbling window moving over the words of a document. Generally, an SCD
window might not be equal to a sentence and may be a subsequence of
a sentence or the concatenated subsequences of two sentences, too. Even
though, in this paper, an SCD window always equals a sentence.

– For a corpus D there exists a set g called SCD set containing K associated
SCDs g(D) =

{
tj =

(
Cj ,
⋃

d∈D{sd1, ...., sdS}
)}K

j=1
. Given a document d ∈ D,

the term g(d) refers to the set of SCDs associated with sentences from doc-
ument d.

– Each word wi ∈ sd is associated with an influence value I(wi, s
d) representing

the relevance of wi in the sentence sd. For example, the closer wi is positioned
to the object of the sentence sd, the higher its corresponding influence value
I(wi, s

d). The influence value is chosen according to the task and might be
distributed binomial, linear, or constant.

2.2 Subjective Content Descriptions

SCDs provide additional location-specific data for documents [10]. The data
provided by SCDs may be of various types, like additional definitions or links
to knowledge graphs. In this paper, we focus on computing labels for SCDs and
adding these labels as data to the SCDs. However, before we can compute labels,
we need the SCDs themselves.

Kuhr et al. use an SCD-word distribution represented by a matrix when
working with SCDs [10]. The SCD-word distribution matrix, in short SCD ma-
trix, can be interpreted as a generative model. A generative model for SCDs is
characterized by the assumption that the SCDs generate the words of the doc-
uments. We assume that each SCD shows a specific distribution of words of the
referenced sentences in the documents.
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Before we describe LESS, we outline the details of SCD matrices and UESM,
which trains an SCD matrix δ(D). UESM works unsupervised on a corpus D. In
particular, UESM does not require an SCD set g(D) containing initial SCDs.

The SCD matrix δ(D) models the distributions of words for all SCDs g(D)
of a corpus D and is structured as follows:

δ(D) =



w1 w2 w3 · · · wL

t1 v1,1 v1,2 v1,3 · · · v1,L

t2 v2,1 v2,2 v2,3 · · · v2,L
...

...
...

...
...

...
tK vK,1 vK,2 vK,3 · · · vK,L


The SCD matrix consists ofK rows, one for each SCD in g(D). Each row con-

tains the word probability distribution for an SCD. Therefore, the SCD matrix
has L columns, one for each word in the vocabulary of the corpus D.

The SCD matrix can be estimated in a supervised manner given the set g(D)
for a corpus D. The algorithm used for supervised estimation iterates over each
document d in the corpus D and each document’s SCDs. For each associated
SCD t, the referenced sentences sd1, ..., sdS are used to update the SCD matrix.
Thereby, the row of the matrix representing SCD t gets incremented for each
word in each sentence by each word’s influence value.

2.3 Unsupervised Estimator for SCD Matrices

This subsection describes UESM [1], which estimates an SCD matrix δ(D) with-
out needing the SCD set g(D) of a corpus D. UESM only has a corpus of text
documents as input for which the SCD matrix has to be estimated. Commonly,
a sentence is associated with an SCD and each SCD references one or multi-
ple sentences. UESM initially starts by associating each sentence to one unique
SCD, which leads to an initial SCD matrix consisting of a row for each sentence
in the document’s corpus. The SCD-word distribution of each SCD then only
contains the words of the referenced sentence.

The next step is to find the sentences that represent the same concept and
group them into one SCD. There are three different methods to identify simi-
lar sentences, namely K-Means [12], greedy similarity, and DBSCAN [7], which
need to be chosen depending on the corpus. Each method uses the SCD-word
distribution to identify similar sentences, combined with the cosine similarity or
Euclidean distance. The SCDs of identified similar sentences form a cluster and
are then merged to become one row of the SCD matrix.

Summarized, UESM estimates the SCD matrix δ(D) for any corpus D. How-
ever, the SCDs estimated by UESM miss a label or short description of their
represented concept. Next, we present LESS, which computes the missing labels.
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SCD 
Word Distribution

Referenced Sentences

Additional Data

Computed Label

... More Data

Fig. 1. An SCD ti with its inter-SCD relations to various parts forming the SCD.
LESS uses the word distribution and the referenced sentences to compute labels.

3 Computing Labels for SCDs

Before we introduce how LESS solves the problem of computing an SCD’s label,
we take a look at the different relations among SCDs for a better understanding
of the proposed approach.

3.1 Relations and SCDs

There are two different types of relations among SCDs. First, there are rela-
tions between SCDs, e.g., to model complementarity between two SCDs [2].
Second, and faced in this paper, are the relations within an SCD to its various
parts, which together form the SCD. The SCD ti has the SCD-word distribution
(vi,1, ..., vi,L), the matrix’ row, and the referenced sentences {s1, ..., sS}. In this
paper, we are interested in the label li. The label li is part of SCD’s additional
data Ci, in this paper the only element in Ci. The various parts which form the
SCDs together can be seen in Figure 1.

Therefore, our setting is that there are intra-SCD relations to various parts
and inter-SCD relations to other SCDs. Additional, relations can be added by
storing data or references in Ci, e.g., inter-SCD relations may be added as refer-
ences to other SCDs [2].

3.2 Labels to Select From

Given that LESS builds upon UESM, the SCD ti, containing the SCD-word
distribution (vi,1, ..., vi,L) and the referenced sentences {s1, ..., sS}, is the input
LESS has to compute a label. Thus, the label of the SCD needs to be computed
only based on these two parts or additional supervision would be needed. In
general, a good label could be a short summary given the word distribution of
the SCD, since we assume that the word distribution generated the sentences.
Therefore, we look for a short sentence, i.e., without many filler words, that is
close to the word distribution. We define a utility function in the next Subsec-
tion 3.3 to measure how well a candidate for a label fits the concept described
by an SCD.

The problem to be solved can be formulated as follows:

li = argmax
lj∈ all possible labels

Utility(lj , ti = ((vi,1, ..., vi,L), {s1, ..., sS}))
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The computed label li for ti (currently consisting of the word distribution and
the referenced sentences) is the label with the highest utility. Now, there are two
points to address (i) is it not possible to iterate over all possible labels and (ii)
what is a label with a high utility.

For the first point, we have to specify how a label should look like. A label is
a sequence of words like a short description. We argue that a sentence straight to
the point, i.e., without many filler words, is a good description and thus a good
candidate for a label. Furthermore, each SCD has a set of referenced sentences
which together represent the concept which is represented by the SCD. Thus, we
use the referenced sentences {s1, ..., sS} as set of possible labels for each SCD.

Using sentences from the corpus and not generating sentences with, e.g.,
Generated Pre-Trained Transformer (GPT) [4], has multiple benefits: No pre-
trained model or training data is needed while the sentences used as labels will
still match the style of writing in the corpus. Additionally, no computational re-
sources for GPT are needed and the sentences must not be checked for erroneous
or other troublesome content, e.g., LLMs may degenerate into toxic results even
by seemingly innocuous inputs [8].

The problem can now be reformulated as:

li = argmax
sj∈{s1,...,sS}

Utility(sj , (vi,1, ..., vi,L))

The computed label li for SCD ti is the referenced sentence of the SCD which
provides the highest utility. The utility function now only gets the word distribu-
tion as input because the referenced sentences are already used as set of possible
labels. Thus, LESS computes for each sentence its utility given the word distri-
bution and takes the best. Again, an LLM like BERT may be used to calculate
the utility. However, we are interested in a lean computing approach.

3.3 Utility of Sentences as Labels

The utility shall describe by a value between 0 and 1 how well a sentences fits the
concept described by the SCD. The referenced sentence with the highest utility
is assumed to be a good label for the SCD in human interception.

Recall that we assume that each SCD’s word distribution generates the ref-
erenced sentences, then the best label for this SCD is a sentence that is most
similar to the word distribution. Thus, the cosine similarity allows to determine
the similarity between two vectors and a word distribution can be interpreted
as a word-vector. Thus, we define the utility function as the cosine similarity
between the SCD-word distribution and the referenced sentence’s word-vector.
In addition, the cosine similarity has proven to be a good choice for identify-
ing sentences with similar concepts by using their word distributions: The Most
Probably Suited SCD (MPS2CD) algorithm [10] uses the cosine similarity to
identify the best SCD for a previously unseen sentence based on its word-vector.
Thus, we use the most similar referenced sentence by cosine similarity as the
computed label of an SCD.
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Algorithm 1 LEan computing for Selective Summaries
1: function LESS(D)
2: Input: Corpus D
3: Output: SCD matrix δ(D); SCD set g(D) containing labels li for SCDs ti
4: δ(D)← UESM(D) . Run UESM [1]
5: g(D)← {} . Initialize empty SCD set g(D)
6: for each row of matrix i = 1, ...,K do
7: vi ← g(D)[i] . Extract SCD-word distribution
8: {s1, ..., sS} ← ReferencedSentences(i) . Get referenced sentences

9: li ← argmaxsj∈{s1,...,sS}
~sj · vi

‖~sj‖2 · ‖vi‖2
. Compute label

10: ti ← ({li}, {s1, ..., sS}) . Compose associated SCD with computed label
11: g(D) ∪ {ti} . Add to SCD set
12: return δ(D), g(D)

Altogether, the lean computation of a label for an SCD can be formulated
as:

li = argmax
sj∈{s1,...,sS}

~sj · vi
‖~sj‖2 · ‖vi‖2

The word-vector of each referenced sentence is represented by ~sj and the SCD-
word distribution by vi. In general, the cosine similarity yields results between
−1 and 1, in this case all inputs are positive and thus the utilities are between
0 and 1 only.

Finally, the computed sentence to become the label my be slightly post-
processed, s.t., it becomes a sentence straight to the point without many filler
words. This can be achieved by removing stop words.

3.4 Algorithm LESS

Based on the two previous subsections, LESS is formulated in Algorithm 1. LESS
first estimates the SCD matrix using UESM, a step that might be skipped if an
SCD matrix is supplied, and initializes an empty SCD set g(D). In Lines 6-11,
the label li is computed for each of the K SCDs ti iterating over the rows of
the SCD matrix. First, the SCD-word distribution vi is extracted and also all
candidates for the label—the referenced sentences of each SCD—are fetched
from the corpus. In Line 9 the label is computed as described in Subsection 3.3.
Finally, the associated SCD ti is composed, containing the additional data Ci

including the computed label li and the referenced sentences, and added to the
SCD set g(D).

Next, we present an evaluation of LESS and compare the results to an ap-
proach using BERT for computing labels for SCDs.
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4 Evaluation

After we have introduced LESS, we present an evaluation. First, we describe
the used corpus, two approaches using BERT to compute labels, and the evalu-
ation metrics. Afterwards, we present the results of the evaluation and show the
performance and runtime of LESS in comparison to BERT.

4.1 Dataset

In this evaluation we use the Bürgerliches Gesetzbuch (BGB)3, the civil code
of Germany, in German language as corpus. The BGB does not provide enough
training data to train a specialized BERT model. Additionally, it does not pro-
vide labels which can be used for supervised training.

Given the vast amount of text written in English and the fact that English is
the language of computer science, most natural language processing techniques
work better with English language. The BGB is therefore a difficult dataset and
a good example to use with approaches such as LESS that require only little data
and no supervision. To apply BERT on the BGB, we have to rely on external
pre-trained models that have been trained on other data.

The BGB is freely available and can be downloaded as XML file. Therefore,
it is easily parsable and processable. As the corpus is a law text it consists of
correct language, i.e., punctuation and spelling follow the orthographic rules.
Thus, less preprocessing and no data cleaning is needed.

The entire corpus consists of 2 466 law paragraphs and overall 11 904 sen-
tences which are used as SCD windows. Each law paragraph contains between
1 and 49 sentences with an average of 4.83 sentences. The vocabulary consist of
5 315 words, where each sentence is between 1 and 35 words long with an average
of 7.36 words.

4.2 Approaches using BERT

We evaluate LESS against two approaches using BERT to compute labels for
SCDs. Thereby, BERT is compared to LESS in terms of runtime and actual
content of the labels.

We use BERT as different utility function to select the best sentence as label
from the set of referenced sentence for each SCD. We do not use freely gener-
ated texts, e.g., by GPT, as labels because these labels need to be checked for
erroneous content as already stated in Subsection 3.2. Additionally, comparing
freely generated text to a label selected from a set of referenced sentence is like
comparing apples and oranges.

The two approaches using BERT work as follows:

3 https://www.gesetze-im-internet.de/bgb/, English translation https://www.
gesetze-im-internet.de/englisch_bgb/

https://www.gesetze-im-internet.de/bgb/
https://www.gesetze-im-internet.de/englisch_bgb/
https://www.gesetze-im-internet.de/englisch_bgb/
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BERT Vectors works similar to LESS, but uses the embeddings produced by
BERT instead of the word distributions of each sentence. Throughout all
referenced sentences an average embedding of each SCD is calculated. The
the referenced sentence with the most similar embedding to the the aver-
age embedding in terms of cosine similarity is used as label. Thereby, the
embedding of the CLS token for each sentence from the pre-trained model
bert-base-german-cased4 is used.

BERT Q&A uses the ability of BERT to answer a question. Thereby, BERT
gets a question and a short text containing the answer. The assumed answer
is then highlighted by BERT in the short text. We use the fine-tuned model
bert-multi-english-german-squad25 and compose our answer and short
text by concatenating all referenced sentences of each SCD. Hence, BERT
highlights a referenced sentence or a part of one while the question consisting
of all referenced sentences asks BERT to represent all sentences.

As we do not have supervision for our corpus, we cannot fine-tune BERT models
for label computation.

4.3 Hardware and Metrics

LESS and both approaches using BERT run in a Docker container. The evalua-
tion with off-the-shelf hardware is done on a machine featuring 8 Intel 6248 cores
at 2.50GHz (up to 3.90GHz) and 16GB RAM, referred as CPU. However, this
virtual machine does not provide a graphics card for fast usage of BERT. Thus,
all experiments using BERT are run as well on a single NVIDIA A100 40GB
graphics card of an NVIDIA DGX A100 320GB, referred as GPU. Beneath, the
NVIDIA Container Toolkit is used to run our Docker container with NVIDIA
CUDA support.

The runtime of the approaches is measured in seconds needed to compute all
labels for the BGB. Thereby, the initialization of the BERT models is excluded
but the necessary transformations of the referenced sentences are included. This
transformations include the tokenization for BERT and composition of word
distributions for LESS. SCDs referencing only a single sentence do not require a
computation, and the single sentence is used as label.

The performance is measured by the accuracy between LESS and the results
of each of the two BERT-based approaches. Specifically, for one BERT-based
approach, all SCDs where BERT and LESS compute the same same label are
counted and divided by the total number of SCDs. We distinguish between con-
sidering all SCDs, including those referencing only one sentence, or excluding
those SCDs with only one referenced sentence.

4 https://huggingface.co/bert-base-german-cased
5 https://huggingface.co/deutsche-telekom/bert-multi-english-german-
squad2

https://huggingface.co/bert-base-german-cased
https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2
https://huggingface.co/deutsche-telekom/bert-multi-english-german-squad2
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4.4 Workflow and Implementation

LESS and the BERT-based approaches are implemented using Python. The im-
plementations use the libraries Gensim6, NumPy7, and Huggingface Transform-
ers8. LESS is optimized to run on a single core and does not offer multi-core
capabilities. BERT uses all available cores or a graphics card.

We evaluate LESS on ten similar SCD matrices. The SCD matrices are es-
timated by UESM with methods greedy similarity and K-Means. Each method
is run with five different hyperparameters. The evaluation workflow for each of
the ten matrices follows:

(i) Run UESM and thus estimate the SCD matrix and all SCDs, lacking labels.
This step includes fetching the BGB’s XML file and running preprocessing
tasks [15].

(ii) Run LESS to compute labels for the SCDs. Here, the runtime of LESS is
captured.

(iii) Run BERT Q&A and BERT Vectors to compute two more sets of labels
for the SCDs. Again, the runtime is captured, separately for each approach
and for CPU and GPU.

(iv) Calculate the accuracy of LESS compared to BERT Q&A and BERT Vec-
tors as described in Subsection 4.3. Thereby, use the set of labels computed
by each BERT-based approach and LESS. There is practically no differ-
ence between the labels computed by BERT on the GPU and on the CPU.
Thus, we do not differentiate between CPU and GPU in terms of accuracy.

4.5 Results

In this section, we present the results gained using LESS in comparison to the
BERT-based approaches and the previously described workflow.

In the left part of Figure 2, the runtimes of LESS, BERT Q&A, and BERT
Vectors are displayed. The values are averaged over all ten evaluated SCD matri-
ces and are shown on a square root scale. Comparing both BERT-based methods,
BERT Vectors is always faster than BERT Q&A, especially when running on
CPU. LESS is on off-the-shelf hardware as fast as BERT Vectors on the A 100
GPU and always faster then BERT Q&A. The different computational resources
needed by BERT and LESS are good to grasp by comparing the runtimes of on
the CPU. LESS utilizes only one core while BERT uses eight cores and still
BERT is significantly slower. Thus, LESS needs less time on less cores to com-
pute the labels. Typically distilled LLMs represent lean computing, but distilled
LLMs still need to run on a GPU to be fast, while LESS remains lean.

In the right part of Figure 2, the accuracies over all ten evaluated SCD
matrices are shown with boxplots. We divide between considering all SCDs or
only SCDs with more than one referenced sentence. There are no big differences
6 https://radimrehurek.com/gensim/
7 https://numpy.org/
8 https://huggingface.co/docs/transformers/

https://radimrehurek.com/gensim/
https://numpy.org/
https://huggingface.co/docs/transformers/
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Fig. 2. Left: Runtime of LESS, BERT Q&A, and BERT Vectors with a square root
scale. Right: Accuracy of BERT Q&A and BERT Vectors (compared to LESS respec-
tively) divided by considering all SCDs or excluding those with one referenced sentence.
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Fig. 3. Theoretical average accuracy of an approach that randomly selects a sentence
as label compared to the accuracy of LESS and BERT.

between BERT Q&A and BERT Vectors. Considering all SCDs gives very good
accuracies, which is particularly important as we are interested in labels for all
SCDs. At first glance, the accuracies considering only SCDs with more than one
referenced sentence do not look good but we have to look at the number of the
referenced sentences of each SCD.

In order to better rate the accuracies, we calculate the accuracy for random
sentence, which is the theoretical accuracy a random approach would result in.
This random approach randomly chooses for each SCD which referenced sentence
becomes the label. In Figure 3, the accuracy for random sentence is added as
baseline to rate the accuracies of BERT and LESS. Besides random sentence,
we have the accuracies for SCDs including single sentences and excluding single
sentences already known from Figure 2. The three accuracies are displayed for
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each of the ten SCD matrices and we do not differentiate between BERT Q&A
and BERT Vectors as the values do not show a relevant difference.

For the leftmost bar in Figure 3, randomly selecting a sentence from the
clustered sentences results in an accuracy of around 0.35. By excluding SCD
with single sentences, LESS and BERT agree 68 % of the time and by including
all SCDs nearly all the time (97 %).

Implicitly, the accuracy for random sentence shows the number of referenced
sentences the SCDs have. The SCD matrices on the left side of Figure 3 have less
referenced sentences per SCD as the ones on the right side. With an increasing
number of sentences, there are more sentences to select from and the computation
becomes more difficult, i.e., it is more easy to correctly select an item from a
set of three than of ten items. This increasing difficulty to the right is also
demonstrated by the fact that all accuracies become smaller to the right.

The accuracy for random sentence is always clearly the lowest, with both
other accuracies following at some distance. Thus, BERT and LESS achieve a
high level of accuracy. In summary, LESS computes good labels requiring less
resources and time.

5 Conclusion

This paper presents LESS and LESS is more. LESS is an unsupervised lean
computing approach to compute labels for SCDs. LESS works on any corpus
and does not require training data. LESS only needs clusters of similar sen-
tences, which are contained in SCDs and are estimated in an unsupervised way
by UESM. Hence, together with UESM, LESS can generate SCDs with labels for
any corpus to help information retrieval agents. We evaluate LESS against two
approaches using an LLM, in this case BERT. The evaluation shows that LESS
requires significantly less computational resources. Furthermore, LESS does not
need any training data. Therefore, we evaluate LESS in a setting, where no
training data is available. Hence, we can not fine-tune a BERT model for our
needs and evaluate LESS against two approaches using already fine-tuned BERT
models. The labels computed by the BERT-based methods significantly coincide
with those of LESS. Summarized, LESS computes good labels needing less com-
putational resources.

In this paper, we have proposed a possibility to compute SCDs with labels and
their referenced sentences for any corpus without needing additional data. Next,
we put efforts in using this computed SCDs to provide an information retrieval
service for humans using SCD-based techniques like MPS2CD [10]. Future work
will then focus on optimizing the computed SCDs and the labels by updating
the matrix incrementally and efficiently based on feedback of the users.
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