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Abstract. This paper summarizes results on embedding ontologies ex-
pressed in the ALC description logic into a real-valued vector space, com-
prising restricted existential and universal quantifiers, as well as concept
negation and concept disjunction. The main result states that an ALC
ontology is satisfiable in the classical sense iff it is satisfiable by a partial
faithful geometric model based on cones. The line of work to which we
contribute aims to integrate knowledge representation techniques and
machine learning. The new cone-model of ALC proposed in this work
gives rise to conic optimization techniques for machine learning, extend-
ing previous approaches by its ability to model full ALC.

This is an extended abstract of the paper “Cone Semantics for Logics
with Negation” to be published in the proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI 2020).

1 Introduction

This extended abstract reports on results related to the general framework of
cone-based semantics as developed in [15]. The framework relies on the idea
of embedding ontologies into low-dimensional continuous vector spaces. This
idea goes back to the idea of embedding words into low-dimensional continuous
vector spaces which has been implemented successfully in various algorithms with
various applications in the realm of information retrieval [6, 16, 12]. However,
these approaches are insensitive to the relational structure of documents. The
embedding idea was pushed further (see, e.g., [14, 3] and, for an overview, [17])
in order to design embeddings of knowledge graphs or embeddings of ontologies
consisting of axioms in some (expressive) logic [13, 10, 8].

The main aim of our framework is to find embeddings of ontologies that give
a better compromise between the geometrical models that can be constructed by
means of learning and the (expressivity and consistency) demands of ontologies.
Convex cones are an ideal data structure for such embeddings, as they combine
two desirable properties: On the one hand, computational feasibility is ensured
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by convexity (see work on convex or conic optimization, e.g., [4] as well as work
on conceptual spaces [5]). And on the other hand, sufficient expressivity is en-
sured by conicity; cones have a well-defined polarity operation that behaves as a
negation operator, in fact as an orthonegation operator [7, 9]. Arbitrary convex
sets do not provide a well-defined negation operation (convex sets are closed
under intersection but not under set-complement or set-union.) The main result
of [15] states that an ontology defined over the description logic ALC [1], which
provides full concept negation, is satisfiable in a classical sense iff it is satisfi-
able by a geometric model that interprets all concept descriptions as axis-aligned
cones, for short al-cones. And one can even ensure that the embedding is faithful:
The cone-based geometric models used in [15] are partial and thus allow some
uncertainty to be retained, i.e., if x is only known to be a member of the union of
two atomic concepts, then our partial model will not commit to saying to which
atomic concept x belongs. A faithful partial model will represent exactly those
axioms derivable from the ontology.

2 Embedding ALC Ontologies with Al-Cones

The core of our cone-based semantics evolves around the notion of the polarity
operator, which is defined for arbitrary convex cones X, i.e. sets fulfilling: If
v, w ∈ X, then also λv + µw ∈ X for all λ, µ ≥ 0. The polar cone X◦ for X is
defined for Euclidean spaces with a scalar (dot) product 〈·, ·〉 as follows:

X◦ = {v ∈ Rn | ∀w ∈ X : 〈v, w〉 ≤ 0}

The use of the polarity operation for concept negation ¬ is motivated by the
idea of providing an operator that always maps a concept to a disjoint concept
such that the disjoint concept is maximally so w.r.t. the underlying similarity
structure 〈·, ·〉 (see also Farkas’ classical lemma on polarity).

Interpreting set intersection as concept-conjunction u and using de Morgan’s
rule to define concept-disjunction t one already has the main ingredients to
interpret arbitrary Boolean ALC concepts. But, as arbitrary cones do not fulfil
the distributivity property of ALC concepts w.r.t. u and t (Fig. 1, lhs), our
embeddings are constrained to axis-aligned cones, for short al-cones:

X is al-cone :⇔ X = X1 × · · · ×Xn, Xi ∈ {R,R+,R−, {0}}

As a simple example for embedding (Boolean) ALC ontologies we consider
the case of all concept descriptions over two atomic symbols A,B (Fig. 1, rhs). In
the al-cone embedding of Figure 1 the A is interpreted by the left upper quadrant
and B by the right upper quadrant. This induces uniquely the positions of all
other hyperoctants corresponding to the other boolean concepts.

One can check that the concepts are associated with appropriate al-cones.
For example, the negation ¬A of A is indeed the polar cone of the quadrant of A.
Similarly, consider B u¬A, which is interpreted as the positive x-axis R+×{0}.

The example demonstrates also the partiality of al-cone models. Consider,
e.g., the difference between a2 and a3 in the geometric model on the rhs of Fig.
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Fig. 1. Counterexample distributivity (lhs) and example al-cone model (rhs)

1. The individual a3 is completely identified w.r.t. the given concepts A,B: it
lies in the extension of B and in the extension of ¬A. For a2 we “only” know
that it must be an B, but we do not know whether it is also an A.

Using the construction idea of the example one can prove that a Boolean ALC
ontology is classically satisfiable iff it satisfiable by an al-cone based model. And
one can guarentee faithfulness: The geometric model encodes all and only the
information of the ontology. Using some more thoughts on how to deal with re-
lations (roles) one can generalize the result to hold for arbitrary ALC ontologies.

Proposition 1. ALC ontologies are classically satisfiable iff they are satisfiable
by a faithful geometric model on some Rn using sets of the form b1 × · · · × bn
with bi ∈ {{0},R+,R−,R}.
This result has important consequences for possible supervised learning algo-
rithms relying on al-cone based geometric models (such as the prototypical multi-
labelling algorithm described in [11]): If the algorithm is not able to find a model
fitting the training data, this is due to a small feature dimension n chosen in the
beginning or due to inconsistencies of the ontology. The inconsistency cannot be
due to the fact that concepts are represented as al-cones.

3 Conclusion and Outlook

By interpreting negation as a polarity operator it is possible to find embeddings
of ALC ontologies that interpret all concepts as axis-aligned cones. This result
adds an interesting alternative to embeddings considered so far.

In [15] we only consider the case where the logic (ALC) has been specified
beforehand, not the case of investigating logics induced by the intersection and
polarity operators for arbitrary cones. In ongoing work we are investigating non-
distributive logics suitable for arbitrary cones. These logics are extensions of
so-called orthologics [7]—which describe lattices equipped with an orthonega-
tion. We are able to identify non-trivial rules (weakenings of orthomodularity, a
property used for minimal quantum logic [2]) that are fulfilled by cones.



4 Ö. Özçep, M. Leemhuis, et al.

References

1. Baader, F.: Description logic terminology. In: Baader, F., Calvanese, D., McGuin-
ness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook,
pp. 485–495. Cambridge University Press (2003)

2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Math-
ematics 37(4), 823–843 (1936)
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