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Abstract

Probabilistic dynamic relational models (PDRMs) al-
low for an expressive, yet sparse and efficient represen-
tation of uncertain temporal (dynamic) and relational
information with a fixed (static) set of domain objects
(entities). While for different points in time, informa-
tion about objects may differ, the set of objects under
consideration is the same for all time points in standard
PDRMs. Motivated by examples from a logistics appli-
cation, in this paper we extend the theory of PDRMs
with dynamically changing sets of domain objects. The
paper introduces the semantics of so-called PD2RMs
and analyses model management as well as query an-
swering problems and algorithms.

1 Introduction
In order to cope with uncertainty and relational information
of numerous objects over time, in many real-world appli-
cations, probabilistic temporal (also called dynamic) rela-
tional models (PDRMs) need often be employed (Finke et
al. 2020). The sizes of sets of domain objects determine the
overall joint distribution behind a PDRM unrolled over time.
While for different points in time, information about objects
may differ, the set of objects under consideration is the same
for all time points in standard PDRMs. Providing semantics
for dynamically changing sets of domain objects is impor-
tant for modeling real-world applications, as it is very hard
to foresee in advance about which objects an intelligent sys-
tem needs to reason. The problem we face in this paper is
to define the semantics of a PDRM formalism with dynam-
ically changing sets of domain objects to be substituted for
variables used in the model, such that sparse domain mod-
els can be specified and efficient query answering algorithms
can be provided for practically relevant application domains.

Research about the effect of changing sets of domain ob-
jects on overall probability distributions of static relational
models has provided partial solutions. If the model’s full
joint distribution keeps being valid with a change in the do-
main, models are called projective. Based on the work of
Shalizi and Rinaldo (2013), Jaeger and Schulte (2018) define
conditions, when predictions are robust to changes in the do-
main size. For non-projective models, various research about
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how to scale probability distributions with changes in the
domain size have been performed (Jain, Barthels, and Beetz
2010; Weitkämper 2020; Poole et al. 2014). The notion of
non-stationarity has indeed been discussed in the literature
very often. However, non-stationarity as found in the litera-
ture refers to changes in distributions (and respective factors
in a model). We extend the theory of probabilistic dynamic
relational modeling with dynamically changing sets of do-
main objects over time. The paper introduces the semantics
of so-called PD2RMs and analyses model management as
well as query answering problems and algorithms.

2 Preliminaries
We recapitulate PDRMs (Gehrke, Braun, and Möller 2018)
in context of an example in logistics, specifically, shipping.

2.1 Parameterized Dynamic Models
PDRMs combine first-order logic with a factor graph, rep-
resenting first-order constructs using logical variables (log-
vars) as parameters. Random variables (randvars) are param-
eterized with logvars (PRV) to compactly represent sets of
randvars considered indistinguishable without evidence.

Definition 1 Let R be a set of randvar names, L a set of log-
var names, Φ a set of factor names, and D a set of entities.
All sets are finite. Each logvar L has a domain D(L) ⊆ D.
A constraint is a tuple (X , CX) of a sequence of logvars
X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi). A PRV
R(L1, . . . , Ln), n ≥ 0 is a construct of a randvar R ∈ R
possibly combined with logvars L1, . . . , Ln ∈ L. The term
R(A) denotes the possible values (range) of a PRV A.

PRVs are linked through parametric factors (parfactors),
which are functions that take PRVs as arguments to represent
their relation, and return a real number, called potential.

Definition 2 We denote a parfactor g by φ(A)|C with A =

(A1, . . . , An) a sequence of PRVs, φ : ×n
i=1R(Ai) 7→ R+

a function with name φ ∈ Φ, and C a constraint on the
logvars of A. A PRV A or logvar L under constraint C is
given by A|C or L|C , respectively. The term gr(P ) denotes
the set of all instances of P . An instance is a grounding of
P , substituting the logvars in P with a set of entities from
the constraints in P . The term lv(P ) refers to logvars in P .
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Figure 1: Two-slice parameterized probabilistic model G→ (and G0)

Like most dynamic model formalisms, PDRMs use two
static parameterized models (PRMs) to describe how a
model changes from one time step to the next. Changes from
one time step to the next follow the same distribution. A
PDRM encodes a sequential dimension by a pair of PRMs,
one representing an initial time step and the other represent-
ing how the model transitions from one time step to the next.
Semantics of a PDRM are given by instantiating a PDRM for
a given number of time steps using G0 for the initial time
step and appending G→ for the other time steps, followed
by grounding and building a full joint distribution.

Figure 1 shows a PDRM illustrating seaborne transporta-
tion. Variable nodes (ellipses) correspond to PRVs, factor
nodes (boxes) to parfactors. Parfactors gS , gV , and gD are
so called inter-slice parfactors. The submodel to the left and
to the right of these inter-slice parfactors are duplicates of
each other, with the left referencing time step t − 1 and
the right referencing time step t. Parfactors reference time-
indexed PRVs, namely, a Boolean PRV InArea(Z, V ) and
PRVs Supply(Z), Rate(Z), Demand(Z) with range val-
ues {high,medium, low}, built from randvar names R =
{Supply, Rate, InArea, Demand} and logvar names L =
{Z, V }. Seaborne transportation using vessels is mainly
driven by supply (Supply(Z)) and demand (Demand(Z))
of commodities across various locations (zones Z). Vessels
V move between these zones, captured by InArea(Z, V ),
representing trade flows: Vessels are in zones with high sup-
ply (to load cargo), in zones with high demand (to discharge
cargo), and in between while traveling. For transportation, a
fee per ton, called freight rate (Rate(Z)), is charged.

Joining all parfactors within the model using a join over
the arguments and multiplication for the potentials leads
to a full joint probability distribution after normalising
the join result (Sato 1995). Given a PDRM, one can ask
queries for probability distributions or the probability of an
event, possibly given a set of observations as evidence, like
P (Rate(z1) | Supply(z2) = high, Supply(z3) = high).
Here, Supply(z2) = high and Supply(z3) = high denote
evidence. Sets of parfactors can encode evidence, one par-
factor for each subset of evidence that concern one PRV with
the same observation.
Definition 3 A parfactor ge = φe(E(X))|Ce

specifies evi-
dence for a set of events {E(xi) = o}ni=1 of a PRV E(X).
The function φe maps the value o to 1 and the remaining
range values of E(X) to 0. Constraint Ce encodes the ob-
served groundings xi of E(X), i.e., Ce = (X, {xi}ni=1).

3 Dynamic Domains
As follows, we characterize and discuss, how entity changes
can be incorporated in PDRMs, yielding PD2RMs.
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Figure 2: Changing vessel counts in dry-bulk shipping.

3.1 Characteristics of Domain Size Changes
In shipping, vessels are continuously joining or leaving the
market. Figure 2 shows the number of vessels over time of
a specific ship class (Capesize vessels) available on the mar-
ket. The lines indicate continuous changes in the number of
vessels due to a variety of different reasons, such as ves-
sels are newly build, dumped, going into maintenance, or are
laid up in case freight rates do not cover running costs any
more. We assume that these domain changes are directly ob-
servable and are not affected by uncertainty. In general, we
differentiate between the following cases: An entity (here,
a vessel) is (a) fully removed from the model (Removal),
(b) either completely new to the model (Addition), or (c) is
temporally removed and at a later stage again added to the
model (Restoration).

3.2 Challenges with Domain Size Changes
In general, domain size changes can be encoded within
PDRMs without changing the model structure itself as
PRVs, in simple terms, use a single representative randvar
for all entities within the model. In contrast, in the proposi-
tional case, randvars are duplicated for entities of the same
type. Thus, encoding changing domain sizes within PDRMs
relates to changes in the domain represented through the log-
vars of a model. Each logvar L traditionally represents a fix
set of entities D(L) (its domain). To allow for a dynamic
domain, thus for changes (in- or decrease) in the set of enti-
ties D(L), it is required to adopt the model’s parfactor con-
straints whenever a change in the domain occurs. Without
any splits in the model (due to no new evidence after the cre-
ation of the model), new entities easily integrate as no fur-
ther changes are necessary. The challenge of incorporating
entity changes in relational models comes with evidence in-
troducing splits in PDRMs. With splits, constraints (X , CX)
on parfactors have to be adjusted as they limit the domain
of logvars X = (X1, . . . , Xn) to a certain set of entities
CX ⊆ ×n

i=1D(Xi). We define models splits as follows.

Model Splits Suppose we observe a vessel at a certain
position (InAreat(z1, v1) = true). Then evidence is en-
coded in the parfactors g1t and g2t by duplicating each of



the parfactors and use one to encode evidence and one to
represent all sets of entities, which are still considered in-
distinguishable. Each parfactor represents a different set of
entities limited by the use of constraints, e.g., limiting the
domain for the evidence parfactor to z1 and v1. The par-
factor that encodes evidence is adjusted so that all lines of
range value combinations in the parfactors distribution φ are
dropped for InArea(z1, v1) 6= true. Formally, for a model
Gt = {git}ni=1 at timestep t and with evidence, the modelGt

is split w.r.t. its parfactors such that its structure remains:

Gt = {gi,1t , . . . , gi,kt }ni=1, k ∈ N+ (1)

Every parfactor git can have up to k ∈ N+ splits

gi,jt = φi,jt (Ai)|Ci,j , 1 ≤ j ≤ k (2)

with Ai as a sequence of the same PRVs but with different
constraint Ci,j and varying functions φi,jt due to evidence.

A challenge that arises from a model as given in Eq. (1) is
to add a new entity xz ∈ D(X∪{xz}) to the model, consid-
ering additional knowledge encoded in the model as given in
Eq. (2). In simple terms, it is to decide and identify if and in
case to which group, denoted by a parfactor split, the entity
can be added. In general, a new entity can either be added to
one of the existing parfactor groups (Eq. (2)) or can be sep-
arated by introducing further parfactor groups. Adding new
entities to a parfactor group comes done to adjust parfactor
constraints, which is defined as follows.

Adding Entities Adding an entity xz to a parfactor group
gi,jt = φi,jt (Ai)|Ci,j , requires to change the constraint
Ci,j limiting all logvars L ∈ lv(A). Thus, for all L ∈
lv(A) with Ci,j = (L, {xi}ni=1) include xz such that
Ci,j = (L, {xi}ni=1 ∪ {xz}). In further course of this pa-
per, we are using the term adding to a parfactor group as an
equivalent for adjusting the constraint of a parfactor group.

When observing an entity change, e.g., a new entity xz ,
further additional evidence for that specific entity xz can be
present. If such additional evidenceEt(xz) = o for any PRV
Et(X) in Gt is available, it can be used to identify one of
the parfactor groups, representing entities xi ∈ X behaving
similar to xz . In the following, we define an auxiliary con-
struct, called parfactor partitions, over sets of parfactors P in
Gt, denoting groups with similarities to xz .

Model Partitioning Every parfactor git ∈ Gt can have up
to k ∈ N+ splits as given in Eq. (1). Each parfactor git con-
tains a sequence of PRVs A = (A1, . . . , An), which can be
affected by evidence by having observations A(xi) = o for
any entity xi ∈ D(X) \ {xz} over PRVs A ∈ A, leading to
those splits. A parfactor partition PE(xz)

t under evidence E
for xz is defined as a subset of those parfactor groups

P
E(xz)
t = {gi,1t , . . . , gi,lt }ni=1 (3)

with l ≤ k having matching evidence between xz and
xi ∈ D(X) \ {xz} w.r.t. PRVs inA. More specifically, if an
additional observation o (evidence) for xz over any PRV E
is available (E(xz) = o), and similarly the same observation
o has already been made for any x ∈ D(X) \ {xz} (which

has lead to a parfactor split), PE(xz)
t denotes all matching

parfactors. Formally, for at least one PRV E ∈ A for all
gi,lt ∈ P

E(xz)
t , it is E(xi) = E(xz) with xz, xi ∈ D(X)

and X ∈ lv(E). Note, that the initial parfactor distribution
(as if no evidence have been observed yet), is as well part
of the partition PE(xz)

t as this parfactor group will as well
match evidence. Let gi,1t here always denote the initial par-
factor distribution of the model. Further, it is to be noted
that when adding a new entity xz to the model, additional
evidence for xz might not be limited to just one observation
o. In case of having multiple observations, e.g., E(xz) = o
and F (xz) = p, an additional parfactor partition is created,
such as P

E(xz)
t and P

F(xz)
t . Let Pt denote the set of all par-

titions. Next, we introduce adoption to domain size changes
utilizing parfactor partitions.

3.3 Adapting to Domain Size Changes
We handle cases as defined in Section 3.1 and give advice
and highlight limitations based on options for new entities.

Removal Removing an entity xz from the model denotes
an easy case as it comes down to adjusting all constraints,
limiting parfactors groups to the entity xz . Formally, find-
ing all constraints (X , CX) on logvars X , such that for all
X ∈ X it is xz ∈ D(X), and adjusting them to remove the
entity accordingly. After removing an entity from a parfac-
tor group by adjusting constraints and one of those adjusted
constraints becomes empty, the parfactor group is similarly
removed. A constraint becomes empty in case a constraint
only limits a parfactor group to xz before its removal.

Entities might only be temporarily removed from the
model, thus, we do bookkeeping, to keep the state of the en-
tity, before its removal, in memory. Therefore, we extract all
observations made for xz after the initial model setup, and
store them for later use. Extracting evidence for xz refers to
extracting evidence encoded in the model’s parfactor groups.

Addition Adding a new entity xz splits into the two cases,
whether xz comes (a) with additional evidence, or (b) with-
out additional evidence. Following, we look at both cases.

In case of (a) having additional evidenceEt(xz) = o for a
new entity xz ∈ D(X ∪{xz}) for a PRV Et(X) at timestep
t, we can make use of partitions P as per Eq. (3). With in-
cluding xz in the model, one has to ensure to group xz into
all parfactors git ∈ Gt, containing the logvar X ∈ lv(git) as
xz ∈ D(X). For adding under additional evidence, we dis-
cuss the following three approaches: (i) Group xz into the
evidence parfactor group gi,lt ∈ P

E(xz)
t , in which most of

the other entities are organized (denoted as Max Evidence),
or (ii) create a new parfactor group gi,l+1

t by weighting the
initial parfactor distribution gi,1t based on other evidence
parfactor groups in PE(xz)

t (denoted as Weighted Initial), or
(iii) add xz into the initial parfactor distribution gi,1t (de-
noted as Initial).

For (i), let |gi,lt | define the number of entities w.r.t. the
same logvar type xz ∈ X represented by gi,lt ∈ P

E(xz)
t . As

a parfactor may contain more than just one logvar, |gi,lt | de-



fines the number of entities of logvar X in gi,lt . A new entity
xz , added at timestep t and afflicted with further evidence
Et(xz) = o, is grouped into all i parfactors of its partition
P

E(xz)
t as given in Eq. (3). In case of having splits for git,

the new entity xz is put into the group gi,lt ∈ P
E(xz)
t ex-

cluding group gi,1t , such that for all remaining groups, it is
max(|gi,lt |) with l > 1. As gi,1t denotes the initial parfactor,
it is specifically excluded here. Only in case of having no
splits for git, the new entity xz is added to gi,1t since no other
option is available (Approach (iii)). This is similarly done
for all i parfactors of the partition PE(xz)

t . We name the pro-
cedure grouping-in for easier reference. In case of having
more than one additional observation for xz , all partitions in
Pt have to be handled according to the above grouping-in
procedure. Evidence parfactor groups over partitions in Pt

are always disjoint in terms of the entities they represent,
except for all parfactor groups gi,1t . Having no splits in a
parfactor denotes an edge case, requiring to further check if
gi,1t may already represent xz . The parfactor group gi,1t may
only already represent xz , if while adding xt to the model,
more than one further observation (evidence) is available. If
so, the above grouping-in procedure runs m times, with m
denoting the number of further observations for xz . Thus,
in terms of having no splits in parfactor, we have to ensure,
that xz is not put into gi,1t multiple times. In general, this
approach is promising as we potentially have observed how
other entities behave in context of the model, and accord-
ingly assume that new entities may behave similarly.

For (ii), a new parfactor group gi,j+1
t is created based on

the initial parfactor distribution gi,1t weighted by all match-
ing evidence parfactor groups as per Eq. (3). In comparison
to the first approach, this approach is relaxing the assump-
tion that new entities may behave similarly to already exist-
ing entities, and allows for behaviour as defined by the ini-
tial distribution by weighting. To weighting the potentials of
the initial distribution, we first accumulate all matching evi-
dence parfactors gi,lt with l > 1 of the partition PE(xz)

t , nor-
malize the aggregated evidence parfactor to derive the prob-
ability distribution and use these probabilities as weights
on the initial distribution potentials. More specifically, for
a new entity xz with observation E(xz) = o an aggregated
evidence parfactor gi,aggt ∈ P

E(xz)
t is created by building

a joint distribution over evidence parfactor gi,jt , 1 < j < l.
For evidence parfactors all range values (potentials) match-
ing the observation o are set to 1 and all remaining range
values are set to 0. Thus, the joint distribution of the ag-
gregated evidence parfactor only refers to range values for
which an observation is available. The aggregated evidence
parfactor gi,aggt and its probability distribution can then be
used to weight the potentials of the initial parfactor distri-
bution gi,1t , thus to create a new parfactor distribution group
gi,j+1
t for xz with φi,j+1

t (Ai)|Ci,j+1 = gi,1t · g
i,agg
t .

Similar to case (i), if having multiple partitions due to
multiple observations for xz , all partitions in Pt have to
be handled according to this grouping-in procedure. This as
well includes handling of the edge case described in (i).

In case of (b) having no additional evidence for xz , we
assume that the initial distribution (iii) of the parfactor gi,1t
denotes the best fit for the new entity.

Restoration Restoration, thus adding an entity xi, which
was previously already part of the model, back to it, de-
notes a special case w.r.t. the Addition-case. When restoring
an entity xi, we can potentially make use of past evidence,
observed for the entity xi. Therefore we make use of the
books established while doing bookkeeping during removal.
Restoring historical evidence is simply done, by applying
again the set of evidence resulting from bookkeeping.

4 Conclusion and Outlook
This paper introduces the semantics of PD2RMs, covering
over time changing domains in relational dynamic proba-
bilistic models. As part of the formalism, we address the
challenge of new evidence, further forming models if time
proceeds. As such, we are the first providing semantics for
changing domain objects, discussing on how to apply and
transfer historical knowledge to new entities to enable for
more accurate query answering related to those changes.
In contrast, in existing research the effect of changing do-
main sizes on the probability distribution itself has been ad-
dressed. Moving forward, we run an empirical evaluation
testing the proposed approaches to validate accuracy of each
strategy. Further, scaling probability distributions as pro-
posed in research have to be addressed.
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