
Concept Drift Detection in Dynamic Probabilistic Relational Models

Nils Finke and Tanya Braun and Marcel Gehrke and Ralf Möller
Institute of Information Systems, University of Lübeck, 23562 Lübeck, Germany

{finke, braun, gehrke, moeller}@ifis.uni-luebeck.de

Abstract
Dynamic probabilistic relational models, which are fac-
torized w.r.t. a full joint distribution, are used to cater
for uncertainty and for relational and temporal aspects
in real-world data. While these models assume the un-
derlying temporal process to be stationary, real-world
data often exhibits non-stationary behavior where the
full joint distribution changes over time. We propose an
approach to account for non-stationary processes w.r.t.
to changing probability distributions over time, an effect
known as concept drift. We use factorization and com-
pact encoding of relations to efficiently detect drifts to-
wards new probability distributions based on evidence.

1 Introduction
In order to cope with uncertainty and relational informa-
tion of numerous objects over time, in many real-world ap-
plications, probabilistic temporal (also called dynamic) re-
lational models (PDRMs) need often be employed (Finke
et al. 2020). Lifted inference approaches use relations in
PDRMs, allowing for tractable inference w.r.t. domain sizes
(Niepert and Van den Broeck 2014). Typically, the tempo-
ral aspect is encoded under the first order Markov assump-
tion, with probability distributions of future states neces-
sarily being dependent on only the present state, i.e., it is
stationary. Due to their efficient representation formalism
and runtime behavior, PDRMs together with lifted infer-
ence approaches provide a powerful toolset for real-world
challenges. Unfortunately, challenges in practice frequently
clash with one of the assumptions, namely, an underlying
stationary process. Non-stationarity can manifest itself in
many aspects, such as probability distributions that change
over time, also known as concept drifts. Research about
over time changing probability distributions already pro-
vided a variety of different concept drift detection mech-
anisms. Robinson and Hartemink (2009) introduced non-
stationary dynamic Baysian networks, which allow for an
underlying conditional dependency structure to change over
time. They explicitly encode drifts within the model by
defining sets of edges to change, i.e., add or delete them
to adjust conditional dependencies over time. Choi, Yeung,
and Zhang (2001) define hidden-mode Markov decision pro-
cesses (HM-MDP), in which changes are limited to a fixed

Copyright © 2021by the authors. All rights reserved.

and known number of modes. Each mode represents a sta-
tionary environment, formalized as an MDP. The modes are
part of a hidden Markov model, encoding when the process
switches from one mode to another. Hadoux, Beynier, and
Weng (2014) also treat non-stationary environments within
Markov models by a set of different contexts, i.e., modes,
encoded as MDPs. They detect changes in the transition and
reward function of an MDP and use hypothesis testing to test
if a drift has occurred, assuming that the observations are in-
dependent and identically distributed (iid). If the test reveals
that the observations no longer match the MDP, a new MDP
is learned. To the best of our knowledge, we are the first
to examine concept drifts for factorized (relational) models,
without knowing the new process in advance, enabling us
to efficiently detect concept drifts. Motivated by examples
from a logistics application, we present an approach exploit-
ing the factorization in PDRMs enabling for efficient con-
cept drift detection. The approach is universal and applies to
different kinds of PDRMs.

2 Reference Formalism
Note that our approach to concept drift detection does not
depend on any specific formalism. However, we use prob-
abilistic dynamic relational models (PDRMs) presented by
Gehrke, Braun, and Möller (2018), based on parametric fac-
tor graphs introduced by Poole (2003) as a reference. Fur-
ther, we here leave out formal definitions as much as possi-
ble and only give the intuition. We encourage to read on in
(Gehrke, Braun, and Möller 2018) for a full specification.

Parameterized Dynamic Models PDRMs combine first-
order logic with a factor graph, representing first-order con-
structs using logical variables (logvars) as parameters. Ran-
dom variables (randvars) are parameterized with logvars
(PRV) to compactly represent sets of randvars that are con-
sidered indistinguishable without further evidence. PRVs are
linked through parametric factors (parfactors), which are
functions that take those PRVs as arguments to represent
their relation, and return a real number, called potential.

Like most dynamic model formalisms, PDRMs use two
static parameterized models (PRMs) to describe how a
model changes from one time step to the next. A PDRM
encodes a sequential dimension by a pair of PRMs, one rep-



Demandt−1(Z)
g2t−1

InAreat−1(Z, V )

g1t−1

Supplyt−1(Z)

Ratet−1(Z)
gS gV gD

Supplyt(Z)

g1t
Ratet(Z)

InAreat(Z, V )

g2t

Demandt(Z)

Figure 1: Two-slice parameterized probabilistic model G→ (and G0)

resenting an initial time step and the other representing how
the model transitions from one time step to the next. They
follow the same idea as DBNs with an initial model and a
copy pattern for further time steps. PDRMs are based on the
first-order Markov assumption, i.e., randvars from each time
slice t depend only on randvars from the preceding time slice
t−1. PDRMs model a stationary process, i.e., changes from
one time step to the next follow the same distribution. Se-
mantics of a PDRM are given by instantiating a PDRM for
a given number of time steps using G0 for the initial time
step and appending G→ for the other time steps, followed
by grounding and building a full joint distribution.

Figure 1 shows a PDRM illustrating seaborne transporta-
tion. Variable nodes (ellipses) correspond to PRVs, factor
nodes (boxes) to parfactors. Edges between factor and vari-
able nodes denote relations between PRVs, encoded in par-
factors. Parfactors gS , gV , and gD are so called inter-slice
parfactors. The submodel to the left and to the right of
these inter-slice parfactors are duplicates of each other, with
the left referencing time step t − 1 and the right refer-
encing time step t. The figure depicts G→, while the left
part with t = 0 depicts G0. Parfactors reference time-
indexed PRVs, namely, a Boolean PRV InArea(Z, V ) and
PRVs Supply(Z), Rate(Z), Demand(Z) with range val-
ues {high,medium, low}, built from randvar names R =
{Supply, Rate, InArea, Demand} and logvar names L =
{Z, V }. Thus, intuitively a PRV represents multiple enti-
ties of the same type represented through the logvar, e.g.
here supply within zones Z ∈ {z1, z2, . . . , zn}. Seaborne
transportation using vessels is mainly driven by supply
(Supply(Z)) and demand (Demand(Z)) of commodities
across various locations (zones Z). Vessels V move be-
tween these zones, captured by InArea(Z, V ), representing
trade flows: Vessels are in zones with high supply (to load
cargo), in zones with high demand (to discharge cargo), and
in between while traveling. For transportation, a fee per ton,
called freight rate (Rate(Z)), is charged.

Joining all parfactors within the model using a join
over the arguments and multiplication for the potentials
leads to a full joint probability distribution after normalis-
ing the join result (Sato 1995). Given a PDRM, one can
ask queries for probability distributions or the probability
of an event, possibly given a set of observations as evi-
dence, like P (Supply(z1)), P (Demand(z1) = high), or
P (Rate(z1) | Supply(z2) = high, Supply(z3) = high).
Here, Supply(z2) = high and Supply(z3) = high, as
given in the last query, denotes evidence.

Lifted Dynamic Junction Tree Algorithm For PDRMs,
LDJT (Gehrke, Braun, and Möller 2018) provides an effi-

cient way to answer a set of queries for probability distri-
butions. LDJT constructs a so-called first-order junction tree
(FO jtree) as an auxiliary structure. For details see the work
of Gehrke, Braun, and Möller (2018). For query answering,
LDJT uses lifted variable elimination as a subroutine that en-
sures lifted calculations (Poole 2003; Taghipour et al. 2013).

3 Concept Drift Detection
To ensure accuracy of an underlying model, it is important to
detect and handle concept drifts. In the following, we con-
sider an example from the field of dry-bulk shipping and
characterize different types of drifts. We present an approach
to detect such concept drifts in dynamic factorized models,
using PDRMs as the reference formalism. Further, we show
how to include concept drift detection in an online query an-
swering algorithm, using LDJT as reference.

3.1 Systematic and Non-Systematic Drifts
Decomposition in time series analysis is a common ap-
proach to reveal reoccurring patterns in temporal data (Hyn-
dman and Athanasopoulos 2018). Time series are mainly
decomposed in trend, seasonality, and residual components.
The former two can be summarized as systematic compo-
nents. The latter is called non-systematic and carries what
remains in the time series after systematic components are
removed. While systematic components can be modeled
directly, non-systematic components cannot. More specifi-
cally, when deriving probability distributions from histori-
cal data, a decomposition of the historical data to check for
reoccurring patterns such as trend or seasonality can reveal
potential concept drifts. In that case, it can be intimating to
add variables for these components to encode all known in-
fluencing factors within the model. Although seasonality or
trend can as well be understood as concept drifts (as the sta-
tistical properties of the variable change over time), we here
focus on non-systematic components since they cannot be
included within the model a priori.

3.2 Drift Detection
To detect concept drifts, we use evidence as we progress in
time. Evidence should follow the full joint probability dis-
tribution encoded in the model. Using new evidence, we can
compare the initial model with the current model afflicted
with such new evidence, and learn a new model should the
two differ significantly. We split drift detection in two steps:
(i) Determine an ongoing shift-factor between the initial
model and the current model afflicted with evidence. (ii) De-
tect a drift in the sequence of shift-factors. We assume that
a concept drift manifests itself only across time steps, i.e., a



random event has occurred, changing the environment to the
point that the model no longer accurately describes the envi-
ronment. The event possibly occurs over multiple time steps.

Since a temporal model also considers the past and an al-
tering event may still be ongoing, evidence will not instantly
show that the initial model no longer accurately describes
the environment. Instead, the shift-factor will increase until
it plateaus. More specifically, we look for the point once the
drift is complete to learn a new model. Consider Fig. 2 (a)
for an example based on a sequence S of shift-factors s (blue
dots). A shift-factor s = 0 indicates that both models are
equal. We are interested in finding a new partial sequence of
in average the same distance to the initial distribution, de-
noted as a plateau, such as the sequence starting of t > 70
(blue line). During 0 < t < 70, the drift is still ongoing.

Shift We derive a shift-factor s that denotes the difference
between the two models, i.e., a factor indicating how well
evidence follows the initial model. To determine s, we use
the Kullback–Leibler (KL) divergence. For discrete models,
the KL divergence of two probability distributions P,Q over
random variables R is defined as

DKL(P,Q) =
∑

r∈R(R)

P (R = r) log

(
P (R = r)

Q(R = r)

)
(1)

Typically, P denotes the real, observed probability distribu-
tion, while Q denotes the initial model probability distribu-
tion or the approximation of P . The naive way of using KL
divergence for drift detection is to build a full joint distribu-
tion of the current model as well as the initial model. Un-
fortunately, working with full joint probability distributions
yields a runtime that is exponential in the number of random
variables. Therefore, we use factorization and compare the
two models on the individual parfactors. Algorithm 1 shows
an outline. To use KL divergence, we normalize each parfac-
tor to enforce probability distributions for the comparison.
The sum of all divergences is the shift-factor.

Drift Using the sequence S of shift factors s, we detect
a concept drift by performing curve fitting to find plateaus
in the sequence. We assume that the change in shift-factors
follows a logistic function. Once curve fitting has returned
the logistic function ` ∈ N times as the best fit, where `
is a limit provided a priori, we determine the concept drift
to be complete and thus, to be a signal that a new model
needs to be learned. More specifically, we compare against
a set of functions, namely, a linear, a sinusoid, and a lo-
gistic function. We perform curve fitting on the sequence
S with all named functions and select the function, which
has the best fit to observed data. Thus, based on regression
modelling we determine the coefficients of the functions us-
ing the least square method. The coefficients are determined
such that the mean squared error ε =

∑S
i=1(F (xi) − Si)

2

with F (x) being either a linear, a sinusoid or a logistic func-
tion, is minimized. Algorithm 2 outlines drift detection given
a sequence of shift-factors S and based on a limit `. Note,
that except the common definitions of the named functions,

Algorithm 1: Shift-factor calculation at time t
Input: G0, Gt models
Function getShift(G0, Gt):

s← 0
for each parfactor g ∈ Gt do

Find corresponding parfactor g′ in G0

Normalize distributions of g, g′

s = s+DKL(g, g
′) // see Eq. (1)

return s

Algorithm 2: Drift detection using curve fitting
Input: S sequence of shifts of length t
static Queue F ← () of length `
Function detectDrift(S, `):
E ← ()
for each f in {linear, sinusoid, logistic} do

Perform curve fitting for f on S
Get ε error between f and S
E ← E ◦ ε

Get f according to min(E)
if F full then

Dequeue first element of F
Enqueue f in F
if ∀f ∈ F [0, `− 1] : f = logistic then

return true
return false

we describe the sinusoid function in combination with a lin-
ear function to encode upward or downward behaviour as
f(x) = A · sin(ω ·x+φ)+(b0+ b1 ·x) with A as the mean
level, ω the frequency, φ the phase, b0 as the y-intercept and
b1 the overall slope.

Figure 2 (a) depicts all named fitted functions on S.
Within the algorithm linear and sinusoid function are used
as exclusion criteria. Based on the least square error ε, we
select the function describing the data the best. Figure 2
(b-e) shows how ε evolves with getting more data (here
T = {50, 60, ..., 80}). With T > 70 and ε = 0.123 slowly
the growth of a logistic functions settles, and a concept drift
can be identified. Still, with T < 70 a sinusoid function fits
better to the data. Thus, we use the sinusoid and the linear
function to exclude data which does not follow a logistic
function at all. A linear function with slope a > 0 fits better
to data points in case no plateau at the end of the sequence
S can be identified. Still, the KL divergences increases over
time. Thus, we assume, that we are still within a drift, which
has not leveled off yet. On the other hand, a sinusoid func-
tion fits better to data points, in case the KL divergence pe-
riodically increases and decreases. A general upward trend
with sinusoidal abnormalities in Fig. 2 (a) is apparent. Until
T < 70, a linear and a sinusoid function describes the data
points better than a logistic function.

3.3 Online Query Answering under Concept Drift
As follows, we present an online version of LDJT that in-
cludes drift detection. Before turning to LDJT as a specific



0 20 40 60 80 100

0.2

0.4

0.6

0.8

(a) Fitted Functions for T = 0, ..., 100

Linear, a=0.007, b=0.197, ε=0.580

Sinusoid, A=0.014, ω=1.107, φ=9.313, B0=0.198, B1=0.007, ε=0.570

Logistic, L=0.735, k=0.063, x0=26.121, ε=0.181

Linear, f(x) = a · x+ b

Sinusoid, f(x) = A · sin(ω · x+ φ) + (b0 + b1 · x)

Logistic, f(x) = L/1+e−k·(x−x0)

Linear, f(x) = a · x+ b

Sinusoid, f(x) = A · sin(ω · x+ φ) + (b0 + b1 · x)

Logistic, f(x) = L/1+e−k·(x−x0)

0 10 20 30 40 50 60

0.25

0.50

(b) Fitted Functions for T = 0, ..., 60

Linear, ε=0.113

Sinusoid, ε=0.111

Logistic, ε=0.108

0 20 40 60

0.25

0.50

0.75
(c) Fitted Functions for T = 0, ..., 70

Linear, ε=0.145

Sinusoid, ε=0.131

Logistic, ε=0.123

0 20 40 60 80

0.25

0.50

0.75

(d) Fitted Functions for T = 0, ..., 80

Linear, ε=0.228

Sinusoid, ε=0.223

Logistic, ε=0.137

Figure 2: Curve fitting on DKL (blue dots) with linear (red line), sinusoid (yellow line) and logistic (blue line) function.

algorithm, we look at the general case.
After having collected the newest evidence, one performs

drift detection to check if a new model is required to be
learned (see Alg. 2). If so, the parameters of the initial model
need to be updated. Since we only consider non-systematic
drifts in the distribution, we do not need to learn the struc-
ture anew, only update the potentials in the parfactors. The
whole procedure looks as follows: (1) Collect current evi-
dence. (2) Perform drift detection using Alg. 1, 2. (3) (a) If a
drift is detected: Learn new parameters. (b) Otherwise: Con-
tinue. (4) Answer current queries and go back to (1).

For an online version of LDJT with concept drift detec-
tion, which we call LDJTdrift, LDJT needs to be extended
with two streams as inputs. To make LDJT an online algo-
rithm, sets of evidence and query terms, originally provided
before its execution, are replaced with one stream for evi-
dence and one for query terms. Before instantiating the FO
jtree for the current time step, LDJTdrift performs concept
drift detection using Alg. 1,2. If a drift is detected, LDJTdrift

calls a learning algorithm to learn new parameters, updates
the FO jtrees, and resets the current time t to 0.

4 Conclusion and Outlook
This paper presents an approach to efficiently detect concept
drifts in dynamic factorized models, making use of evidence
and the compact encoding of the models in terms of fac-
torization and relations. As dynamic models are often mod-
elled as stationary processes, they frequently clash in prac-
tice having non-stationary environments. This paper con-
tributes an efficient detection algorithm to identify the point
when a drift has settled to relearn the model. We present
LDJTdrift, an online version of LDJT, incorporating the con-
cept drift detection approach, while answering queries under
evidence. Moving on, we run an empirical evaluation testing
runtime performance and detection accuracy.

References
Choi, S. P. M.; Yeung, D.-Y.; and Zhang, N. L. 2001. Hidden-
Mode Markov Decision Processes for Nonstationary Sequential

Decision Making. Berlin, Heidelberg: Springer Berlin Heidel-
berg. 264–287.
Finke, N.; Gehrke, M.; Braun, T.; Potten, T.; and Möller, R.
2020. Investigating matureness of probabilistic graphical mod-
els for dry-bulk shipping. In Jaeger, M., and Nielsen, T. D., eds.,
Proceedings of the 10th International Conference on Proba-
bilistic Graphical Models, volume 138 of Proceedings of Ma-
chine Learning Research, 197–208. PMLR.
Gehrke, M.; Braun, T.; and Möller, R. 2018. Lifted Dynamic
Junction Tree Algorithm. In Proceedings of the International
Conference on Conceptual Structures. Springer.
Hadoux, E.; Beynier, A.; and Weng, P. 2014. Sequen-
tial decision-making under non-stationary environments via se-
quential change-point detection. In Learning over Multiple
Contexts (LMCE).
Hyndman, R. J., and Athanasopoulos, G. 2018. Forecasting:
principles and practice. OTexts.
Niepert, M., and Van den Broeck, G. 2014. Tractability through
Exchangeability: A New Perspective on Efficient Probabilistic
Inference. In AAAI-14 Proceedings of the 28th AAAI Confer-
ence on Artificial Intelligence. AAAI Press.
Poole, D. 2003. First-order Probabilistic Inference. In Proc.
of the 18th International Joint Conference on Artificial Intelli-
gence. IJCAI Organization.
Robinson, J. W., and Hartemink, A. J. 2009. Non-stationary
dynamic bayesian networks. In Koller, D.; Schuurmans, D.;
Bengio, Y.; and Bottou, L., eds., Advances in Neural Informa-
tion Processing Systems 21. Curran Associates, Inc.
Sato, T. 1995. A Statistical Learning Method for Logic Pro-
grams with Distribution Semantics. In Proceedings of the
12th International Conference on Logic Programming, 715–
729. MIT Press.
Taghipour, N.; Fierens, D.; Davis, J.; and Blockeel, H. 2013.
Lifted Variable Elimination: Decoupling the Operators from
the Constraint Language. Journal of Artificial Intelligence Re-
search 47(1).


