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Abstract. Various research groups of the description logic community,
in particular the group of Franz Baader, have been involved in recent ef-
forts on temporalizing or streamifying ontology-mediated query answer-
ing (OMQA). As a result, various temporal and streamified extensions
of query languages for description logics with different expressivity were
investigated. For practically useful implementations of OMQA systems
over temporal and streaming data, efficient algorithms for answering con-
tinuous queries are indispensable. But, depending on the expressivity of
the query and ontology language, finding an efficient algorithm may not
always be possible. Hence, the aim should be to provide criteria for eas-
ily checking whether an efficient algorithm exists at all and, possibly, to
describe such an algorithm for a given query. In particular, for stream
data it is important to find simple criteria that help deciding whether
a given OMQA query can be answered with sub-linear space w.r.t. the
length of a growing stream prefix. An important special case dealt with
under the term “bounded memory” is that of testing for constant space.

This paper discusses known syntactical criteria for bounded-memory pro-
cessing of SQL queries over relational data streams and describes how
these criteria from the database community can be lifted to criteria of
bounded-memory query answering in the streamified OMQA setting. For
illustration purposes, a syntactic criterion for bounded-memory process-
ing of queries formulated in a fragment of the stream-temporal query
language STARQL is given.

Keywords: streams, bounded memory, ontology-mediated query an-
swering, ontology-based data access

1 Introduction

Ontology-mediated query answering (OMQA) [8] is a paradigm for accessing
data via declarative queries whose intended sets of answers is constrained by an
ontology. Usually, the ontology is represented in a formal logic such as a descrip-
tion logic (DL). Though OMQA has been of interest both for researchers as
well as users from industry, a real benefit for the latter heavily depends on the



possibility to handle temporal and streaming data. So, various research groups of
the DL community, in particular the group of Franz Baader (see, e.g., [6,10,27]),
have been involved in recent efforts on temporalizing or streamifying classical
OMQA. As a result, various temporal and streamified extensions of query lan-
guages for description logics with different expressivity were investigated.

For practically useful implementations of OMQA systems over temporal
and streaming data, efficient algorithms for answering continuous queries are
indispensable. But, depending on the expressivity of the query and ontology
languages, finding an efficient algorithm may not always be possible. Hence,
the aim should be to provide criteria for easily checking whether an efficient
algorithm exists at all and, possibly, to describe such an algorithm for a given
query. For those queries that are provably bounded-memory computable, one
knows that there exists an algorithm using only constant space [3]. That means,
if one had a (preferably simple) criterion for testing whether a given query is
bounded-memory computable and, moreover, if one had a constructive procedure
to generate a memory-bounded algorithm producing exactly the answers of the
original query (over all streams), then one would make a considerably big step
towards performant stream processing.

A special sub-scenario for performant query answering over streams is to
provide simple criteria that help deciding whether a given OMQA query can be
answered with sub-linear space w.r.t. the length of the growing stream prefix.
An even more special (but important) case dealt with under the term “bounded
memory” [13] is that of testing for computability in constant space. We note
that, in particular in research on low-level data stream processing for sensor
networks [1], there is an equal interest in considering other sub-linear space
constraints such as (poly)logarithmic space. In this paper, we focus on constant
space requirements, however.

Usually, when considering bounded-memory computability one is interested
in what we call here bounded-memory computability w.r.t. the input : It denotes
the constraint that at most constant space (in the length of the input) is required
to store the relevant information of the ever growing input stream(s). Following
the approach of [3] we are also going to consider what we call bounded-memory
computability w.r.t. the output : This notion denotes the constraint of constant
space required to memorize the required information of the output produced
so far in order to compute new output correctly. This kind of constraint is
required in particular for a processing model where the output in each time
point consists only of the delta w.r.t. the output written in earlier time points.
Such an output model is implemented, e.g., with the so-called IStream operator
(“I” for “inserted”) in the relational stream query language CQL [4].

As bounded-memory computability is motivated by implementability and
performance, it has a flavour of a low-level issue that should be handled when
considering the implementation of an OMQA system. However, it would be an
asset to have criteria for bounded-memory computability at the ontology level,
i.e., to have criteria deciding whether a given query w.r.t. a stream of abox
assertions, an ontology and, possibly, integrity constraints can be computed in



constant space w.r.t. the length of the stream of abox axioms. The reason is that
ontology axioms or integrity constraints may have effects on bounded-memory
computability, either positively or negatively. For example, if the ontology allows
to formulate rigidity assumptions, then bounded-memory computability may not
hold anymore [12]. On the other hand, functional integrity constraints over the
whole stream may lead to a bound on an otherwise unbounded set of possible
values, thereby ensuring bounded-memory computability.

Of course, if one considers ontology-mediated query answering in the strict
sense, namely so-called ontology-based data access (OBDA), there is an obvious
alternative approach for testing bounded-memory computability. In OBDA, a
query is rewritten w.r.t. the tbox and then unfolded w.r.t. some mappings into an
SQL query, so that answers to the original query can be calculated by answering
a streamified SQL query over a backend data stream management system. For
streamified OBDA this means that one can reduce the bounded-memory test
of a query on the ontology level to a bounded-memory test of the transformed
query over the backend data stream and then use the known bounded-memory
criteria for queries on relational data streams. In this paper, we do not deal
with the aspects of mapping and unfolding. Instead we consider how to lift the
known criteria [3] for relational stream queries to ontological queries. For this we
consider the case of lightweight description logics as representation languages for
ontologies so that perfect rewriting of queries according to the OBDA paradigm
is possible.

Quite a common scenario of stream processing (in particular for model check-
ing of infinite words [7]) is that the queries on a stream have to be answered
over the whole growing prefixes of a stream. Using the window metaphor, this
corresponds to applying a window whose right end slides whereas its left end
is set to a constant, i.e., to a fixed time point. Of course, the question arises
whether the problem of ensuring bounded-memory computability is not solved
by using a finite sliding window over the data stream. If one considers only row-
based windows, i.e., windows where the width-parameter denotes the number of
elements that make up its content (see [4]), then bounded-memory computabil-
ity is always guaranteed by definition of the semantics of row-based windows.
But sometimes one cannot easily decide on the appropriate width of the window
that is required to capture relevant information on the prefixes of the streams.
And even if it would be possible, the necessary size of the window could still be
too big so that in optimizing algorithms one could benefit from the use of less
memory.

For example, a naively implemented query that requires a quadratic number
of comparisons such as a query asking for the monotonic increase of tempera-
ture value sensors, may be implementable more efficiently with a data structure
storing a state with relevant data that are updated during stream processing. In
general, any optimized algorithm would have to rely on some appropriate state
data structure. The data structure for states we are going to consider stores
values in registers and allows manipulating them with basic arithmetical opera-
tors. In low-level stream processing scenarios, where the queries (such as top-k)



are required to be answered only approximately, the state data structures are
called sketches, summaries or synopses, as these data structures really give some
approximate summary of the stream prefixes [14,1].

In this paper we discuss known syntactical criteria for bounded-memory pro-
cessing of SQL queries over relational data streams [3] and describe how and
to what extent these criteria from the database community can be lifted to cri-
teria of bounded-memory query answering in the streamified OMQA setting.
For illustration purposes we consider a syntactic criterion of bounded-memory
computability applied to a fragment of STARQL [21,23,24,19,18] which was de-
veloped as a general query framework for accessing temporal and streaming data
in the OMQA paradigm.

2 The STARQL Framework

STARQL is a stream query language framework for OMQA scenarios with tem-
poral and streaming data. As such, it is part of recent efforts of streamifying and
temporalizing OMQA [6,5,9,15,11,26,23,28,10] with, amongst others, contribu-
tions by Franz Baader and members of his group. We are referring to STARQL
as a framework, because it describes a whole class of query languages which
differ regarding the expressivity of the DL used for the tbox and regarding the
embedded query languages used to query the individual intra-window aboxes
constructed in the sequencing operation (see below).

2.1 Example

The following example for an information need in an agent scenario illustrates the
main constructors of STARQL. A rational agent has different sensors, in partic-
ular different temperatures attached to different components. The agent receives
both, high-level messages and low-level measurement messages, from a single in-
put stream Sin. The agent has stored in a tbox some background knowledge on
the sensors. In particular, the tbox contains an axiom stating that all temper-
ature sensors are sensors and that all type-X temperature sensors are tempera-
ture sensors. Factual knowledge on the sensors is stored in a (static) abox. For
example, the abox may contain assertions type-X-temperature-Sensor(tcc125),
attachedTo(tcc125,c1), locatedAt(c1,rear) stating that there is a temperature sen-
sor of type X named tcc125 that is attached to some component c1 at the rear.
There is no explicit statement that tcc125 is a temperature sensor, this can be
derived only with the axioms of the tbox.

The agent has to recognize whether the sensed temperature is critical. Due to
some heuristics, a critical state is identified with the following pattern: In the last
5 minutes there was a monotonic increase on some interval followed by an alert
message. As we assume that temperature values have been pre-processed via a
smoothing operation, monotonic increase is not prevented from appearing quite
often. The agent is expected to output every 10 seconds all temperature sensors
showing this pattern and to mark them as critical. A STARQL formalization of



the information need the agent is going to satisfy is given in the listing of Figure
1.

1 CREATE STREAM Sout AS

2 CONSTRUCT GRAPH NOW { ?s a :inCriticalState }

3 FROM Sin[NOW -5min , NOW]->10s

4 <http :// www.ifis.uni -luebeck.de/abox >

5 <http :// www.ifis.uni -luebeck.de/tbox >

6 USING PULSE AS START = 0s, FREQUENCY = 10s

7 WHERE { ?s a :TempSens }

8 SEQUENCE BY StdSeq

9 HAVING

10 EXISTS i1, i2, i3:

11 0 < i1 AND i2 < MAX AND plus(i2 ,1,i3) AND i1 < i2

12 GRAPH i3 { ?s :message ?m . ?m a :AlertMessage } AND

13 FORALL i, j, ?x,?y:

14 IF i1 <= i AND i < j AND j <= i2 AND

15 GRAPH i { ?s :val ?x } AND GRAPH j { ?s :val ?y }

16 THEN ?x <= ?y

Fig. 1: Example STARQL query

The CONSTRUCT operator (line 2) fixes the format of the output stream. Here,
as well as in the HAVING clause (see below), STARQL uses the named-graph nota-
tion of the W3C recommended RDF1 query language SPARQL2 for specifying a
basic graph pattern (BGP) and attaching a time expression. The output stream
contains expressions of the form

GRAPH NOW { ?s a :inCriticalState }

where NOW is instantiated by time points and ?s by constants fulfilling the re-
quired conditions as specified in the following lines of the query. The evolvement
of the time NOW is specified in the pulse declaration (line 6).

The resources to which the query refers are specified using the keyword FROM

(line 3–5). Following this keyword one can refer to one or more streams (by
names or further stream expressions) and to URIs to a tbox and an abox, which
are understood as static knowledge bases. In this example, only one stream is
referenced, the stream named Sin. In this case, the stream consists, first, of
timestamped triples matching the BGPs of the form

GRAPH t1 { ?s :val ?y }
1 https://www.w3.org/RDF/
2 https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/


stating that ?s has value ?y at time t1. In logical notation, these subgraphs
would be written as timestamped abox assertions of the form val(?s,?y)〈t1〉.
Secondly, the input stream may contain timestamped triples matching BGPs of
the form

GRAPH t2 { ?m a :AlertMessage }

stating that at time point t2 an alert message arrived. In DL-notation this would
be expressed as: AlertMessage(?m)〈t2〉. The window operator attached to the
input stream, [NOW-5min, NOW]->10s, is meant to give snapshots of the stream
with the slide of 10s (update frequency) and range of 5 minutes (all stream
elements within last 5 minutes).

For both types of BGPs the number of possible triples in a stream are un-
bounded: in the first case this is due to the attribute val with its range being
real numbers, an infinite (even dense and continuous) domain to represent pos-
sible measurement values. In the second case, this is due to the possibly infinite
number of messages that are generated. We think of messages being produced
by a controller that generates message IDs from a (discrete but still) infinite
domain.

The WHERE clause (line 7) specifies the sensors ?s that are relevant for the
information need, namely temperature sensors. Already here it becomes clear
that the agent has to incorporate his background knowledge from the tbox: in
order to get all temperature sensors ?s it also has to find all type-X sensors. The
WHERE clause is evaluated only against the static abox. The stream-temporal
conditions are specified in HAVING clause.

For every binding of ?s, the query evaluates conditions that are specified in
the HAVING clause (lines 9–16). A sequencing method (here StdSeq) maps an
input stream to a sequence of aboxes, annotated by states3 i, j, according to a
grouping criterion. Note that the index variables for states i1, i2 are not prefixed
by a question mark, as is done for the other variables. This is to indicate the dif-
ferent types of variables. Index variables need to be bound by a quantifier, they
are not allowed as answer variables. The built-in sequencing method StdSeq is
called standard sequencing. It puts all stream elements with the same timestamp
into the same mini abox. Note that abox sequencing gives the user the flexibility
of defining its own abox sequence—whereas most of the other approaches of tem-
poralized and streamified OMQA, such as [6] already presuppose a sequence of
aboxes. This flexibility, on the other hand, means a burden for classical OBDA
where queries have to be transformed to queries over the backend. But fortu-
nately for simple sequencing strategies (and possibly for others) such as standard
sequencing one can get rid of the additional sequencing layer by reducing the
state indexes to the timestamps of the triples in the stream (see [24]).

3 Note that we prefer to use the term “state” instead of the temporally connotated
“stage”, because we allow in principle sequencing methods that are not temporal,
e.g., sequencing by clustering.



Testing for conditions at a state is done with the SPARQL sub-graph mech-
anism. So, e.g.,

GRAPH i3 {?s :message ?m . ?m a :AlertMessage} (line 12)

asks whether ?s showed an alert message at a state annotated by the variable
i3. State i3 is further determined as the successor of the end state i2 in the
interval [i1, i2] (line 11). Over the interval [i1, i2] the usual monotonicity
condition (FORALL condition, lines 13–15) is expressed using a first-order logic
pattern. Note that a naive implementation of this condition would store all values
received so and make a quadratic number of comparisons over them.

As in the case of the WHERE clause, also for the evaluation of the HAVING clause
the background knowledge (static tbox and static abox) must be incorporated in
order to guarantee a complete set of answers. For example, the tbox may contain
a taxonomy of different types of messages, in particular different sub-types of
alert messages. If only instances of these subtypes are mentioned in the abox,
then their super-types have to be inferred by the agent.

2.2 Syntax

The example in the previous subsection illustrated the syntax and the intended
semantics of STARQL. For the sake of completeness we recapitulate here the
grammar that captures the syntax of STARQL. This grammar leads to a sub-
fragment of the original STARQL language [22]. In particular, the HAVING clauses
are less expressive than the original ones. Further we leave out aggregation con-
structors and macro definitions. For a full description see [22,23]. For the full
STARQL language, the bounded-memory results of this paper may not hold
anymore.

The grammar (Figure 2) is denoted STARQL (OL,ECL) and it contains pa-
rameters that have to be specified in its instantiations: the ontology language OL
and the embedded condition language ECL. OL constrains the languages of the
aboxes and the tboxes that are referred to in the grammar (underlined in Figure
2). ECL is a query language referring to the signature of the ontology language.
STARQL uses ECL conditions in its WHERE and HAVING clauses. The adequate
instantiation of STARQL(OL, ECL) may vary depending on the requirements
of the use case.

We are not going to discuss the whole grammar but only make some com-
ments on the most interesting part, which is the set of rules for the specifica-
tion of HAVING clauses (abbreviated hCl in the grammar). In the full STARQL
grammar (see [23]) HAVING clauses are allowed to use arbitrary first-order logic
constructors, in particular all boolean connectors, and also exists- as well as
forall-quantifiers. As STARQL allows infinite domains (such as the real numbers
in order to specify, say, temperature values) queries using FOL constructors have
to be used with care in order to give safe queries, i.e., queries that output only
finite sets of bindings. A query such as φ(y) = ¬val(tcc125, y) for example is not
safe as it would require outputting all of the infinitely many ys not being values
of tcc125.



starqlQuery −→ [prefix ] createExp

createExp −→ CREATE STREAM sName AS

constrExp

pulseExp −→ PULSE AS

START = start,

FREQUENCY = freq

constrExp −→ CONSTRUCT cHead(x,y)

FROM listWStrExp

URI − To − abox ,

URI − To − tbox

[USING pulseExp]

[WHERE whereCl(x)]

SEQUENCE BY seqMeth

HAVING safeHCl(x,y)

cHead(x,y) −→ GRAPH timeExp triple(x,y)

{ . cHead(x,y)}
listWStrExp −→ (sName | constrExp) winExp

[, listWStrExp]

winExp −→ [timeExp1 , timeExp2 ]->sl

timeExp −→ NOW | NOW - constant | constant

whereCl(x) −→ ECL(x)

seqMeth −→ StdSeq | seqMeth(∼)
term(i) −→ i

term() −→ MAX | 0 | 1
arAt(i1, i2) −→ term1(i1) op term2(i2)

(op ∈ {<,<=, =, >, >=})
arAt(i1, i2, i3) −→ plus(term1(i1),

term2(i2),

term3(i3))

stateAt(x, i) −→ GRAPH i ECL (x)

atom(x) −→ arAt(x) | stateAt(x)

hCl(x) −→ atom(x) | hCl(x) OR hCl(x)

hCl(x,y) −→ hCl(x) AND hCl(y)

hCl(x) −→ hCl(x) AND FORALL y

IF hCl(x,y) THEN hCl(x,y)

hCl(x, z) −→ EXISTS y hCl(x,y) AND

hCl(z,y)

safeHCl(x) −→ hCl(x)

(x contains no i variable)

Fig. 2: Syntax for STARQL(OL, ECL ) template.

This problem is known since the beginning of classical DB theory and it has
been handled by describing syntactical rules guaranteeing safeness. A similar
approach for handling safeness, but relying on adornments, is described in [23].
The grammar presented here has no adornments but still reflects safety con-
ditions. For example, the boolean connector for disjunction (or) is allowed to
be applied only for disjunctions with the same set of open variables. Further-
more, the existential and the forall quantifiers are allowed to quantify only over
variables which are guarded. Hence, an exists quantifier over x is allowed only
if x is bounded by a safe hCL clause appearing as conjunction in the scope of
the exists quantifier. And universally bounded variables are allowed only if they
are guarded in with the antecedent of an implication in the scope of the for-all
quantifier.

We further note that the grammar allows also unbounded windows, that is,
windows of the form [constant , NOW] where the left interval point is fixed, so
that the window content is going to contain the whole prefixes beginning with
the start time point of the query (set to constant).

2.3 Semantics

The explication of the semantics for STARQL queries rests on the semantics
of the instantiations of the parameter values OL and ECL. The only presump-
tion we make is that the OL and ECL have to fulfill the following condition:
There must be a notion of a certain answer of an ECL w.r.t. an ontology. The



motivation for such a layered—or as we call it here: separated—definition of
the semantics is a strict separation of the semantics provided by the embedded
condition languages ECL and the semantics for the stream query language on
top of it. Hence the separated semantics has a plug-in-flavor, allowing users to
embed any preferred ECL without repeatedly redefining the semantics of the
whole query language.

For ease of exposition we assume that the query specifies only one output
sub-graph pattern and that there is exactly one static abox Ast and one tbox
T . Similar to the approach of [9], the tbox is assumed to be non-temporal in
the sense that there are no special temporal or stream constructors. We give a
denotational specification JSoutK of Sout recursively by defining the denotations
of the components. We will refer to the notion of a temporal abox within this
denotation semantics and also later on. A temporal abox or intra-window abox is
a finite set of timestamped abox axioms ax〈t〉, with t ∈ T . We call structures of
the form 〈(Ai)i∈[n], T 〉 consisting of a finite sequence of aboxes and a pure tbox
a sequenced ontology (SO). The index i of the abox Ai is called its state index.

So assume that the following query template is given.

Sout = CONSTRUCT GRAPH timeExpCons Θ(x,y)

FROM S1 winExp1 , . . . , Sm winExpm ,Ast, T
WHERE ψ(x) SEQUENCE BY seqMeth HAVING φ(x,y)

Windowing Let JSiK for i ∈ [m] be the streams of timestamped abox assertions.
The denotation of the windowed stream wsi = Si [timeExpi

1 , timeExpi
2]->sli is

defined by specifying a function FwinExpi s.t.: JwsiK = FwinExpi(JSiK).
JwsiK is a stream with timestamps from the set T ′ ⊆ T , where T ′ = (tj)j∈N is

fixed by the pulse declaration with t0 being the starting time point of the pulse.
The domain of the resulting stream consists of temporal aboxes.

Assume that λt.gi1(t) = JtimeExpi1K and λt.gi2(t) = JtimeExpi2K are the unary
functions of time denoted by the time expressions in the window. For exam-
ple, if timeExpi2 is NOW - 5, then the function gi2 is just the function λt.(t− 5).
We assume that for all t JtimeExpi1K(t) ≤ JtimeExpiwK(t), as otherwise the win-
dow would not denote a proper interval. We have to define for every tj the

temporal abox Ãitj ∈ JwsiK. If tj < sl − 1, then Ãitj = ∅. Otherwise set first

tistart = btj/slc × sl and tiend = max{tstart − (gi2(tj) − gi1(ti)), 0}, and define

on that basis Ãitj = {ax〈t〉 | ax〈t〉 ∈ JSK and tiend ≤ t ≤ tistart}. Now, the
denotations of all windowed streams are joined w.r.t. the timestamps in T ′:
js(Jws1K, . . . , JwsmK) := {

(⋃
i∈[m] Ãit

)
〈t〉 | t ∈ T ′ and Ãit〈t〉 ∈ JwsiK}.

Sequencing The stream js(Jws1K, . . . , JwsmK) is processed according to the
sequencing method specified in the query. The output stream has timestamps
from T ′. The stream domain now consists of finite sequences of pure aboxes.

The sequencing methods used in STARQL refer to an equivalence relation
∼ to specify which assertions go into the same intra-window abox. The relation



∼ is required to respect the time ordering, i.e., it has to be a congruence over
T . The equivalence classes are referred to as states and are denoted by variables
i, j etc.

Let Ãt〈t〉 be the temporal abox of js(Jws1K, . . . , JwsmK) at t. Let T ′′ =
{t1, . . . , tl} be the time points occurring in Ãt and let k′ be the number of
equivalence classes generated by the time points in T ′′. Then define the sequence
at t as (A0, . . . ,Ak′) where for every i ∈ [k′] the abox Ai is Ai = {ax〈t′〉 |
ax〈t′〉 ∈ Ãt and t′ in ith equiv. class}. The standard sequencing method StdSeq

is just the one using the identity = as equivalence relation. Let F seqMeth be the
function realizing the sequencing.

WHERE Clause In the WHERE clause only Ast and T are relevant for the
answers. So, purely static conditions (e.g. asking for sensor types as in the ex-
ample above) are evaluated only on Ast ∪ T . The result are bindings awh ∈
cert(ψ(x), 〈Ast, T 〉). This set of bindings is applied to the HAVING clause φ(x,y).

HAVING Clause STARQL’s semantics for the HAVING clauses relies on the
certain-answer semantics of the embedded ECL conditions.

The semantics of φ(awh,y), , i.e., the set of certain answers containing bind-
ings for y, is defined for every binding awh from the evaluation of the WHERE

clause. The semantics depends on t. Assume that the sequence of aboxes at t
is seq = (A0, . . . ,Ak). We define the set of separation-based certain answers,
denoted: certsep(φ(awh,y), 〈Ai ∪ Ast, T 〉).

If for any i the pure ontology 〈Ai ∪ Ast, T 〉 is inconsistent, then we set
certsep = NIL, where NIL is a new constant not contained in the signature.
In the other case, the bindings are defined as follows. For t one constructs a
sorted first-order logic structure It: the domain of It consists of the index set
{0, . . . , k} as well as the set of all individual constants of the signature. For every
state atom stateAt GRAPH i ECL(z) in φ(awh,y) with free variables z having
length l, say, introduce an (l + 1)-ary symbol R and replace GRAPH i ECL(z)
by R(z, i). The denotation of R in It is then defined as the set of certain answers
of the embedded condition ECL(z) w.r.t. the ith abox Ai: RIt = {(b, i) | b ∈
cert(ECL(z), 〈Ai ∪ Ast, T 〉)}. Constants denote themselves in It. This fixes a
structure It with finite denotations of its relation symbols. The evaluation of
the HAVING clause is then nothing more than evaluating the FOL formula (after
substitutions) on the structure It.

Let Fφ(awh,y) be the function that maps a stream of abox sequences to the
set of bindings (b, t) where b is the binding for y in φ(awh,y) at time point t.

Summing up, the following denotational decomposition results:

JSoutK = {GRAPH JtimeExpConsK Θ(awh, b) | awh ∈ cert(ψ(x),Ast ∪ T ) and

(b, t) ∈ Fφ(awh,y)
(
F seqMeth(js(FwinExp1(JS1K), . . . , FwinExpm(JSmK)))

}
Regarding the following considerations on bounded-memory processing we

note two points: First, the output is controlled by the pulse. At each evolving



time point the whole set of elements with timestamps falling into the current
time interval of the window is considered for the calculation of the output. This
means that there may be more than one RDF tuple to be processed at each time
point. We assume that at each time point the set of RDF tuples to be processed is
bounded by a constant, otherwise the stream system could eventually fall behind
the pulse. (Of course, it may also fall behind the pulse without the assumption
on boundedness by a constant.) But even under this restrictive assumption,
bounded-memory computability is an issue due to the non-bounded number of
triples in the ever growing prefixes of the input streams. Hence a systematic
consideration is in order.

Further we note that the semantics is defined such that at every time point
the whole set of bindings that make the WHERE clause and the HAVING clause
true is returned, and not the delta of new bindings. That is, the semantics of
STARQL follows the idea of the RStream operator of the relational stream query
language CQL [4] and not that of the IStream operator.

2.4 Properties of STARQL

Non-reified approach A relevant question from the representational point of
view is how to represent events and, in particular, time in the query language. For
STARQL, the decision was to use a non-reified approach, where time is handled
as an annotation for sentences whose evaluation depends on the associated time.
As illustrated by the agent example above, the abox assertions (RDF triples in
SPARQL speak) are tagged with timestamps. This method is similar to adding
an extra time argument for concept and roles as in [5]. The non-reified approach
allows for representing time-dependent facts such as the fact that some sensor
showed some value at a given time point. This time point is relevant for the
window semantics in STARQL.

As the reified approach is more conservative and does not require to change
the semantics (the time attribute is treated as an ordinary attribute), a natural
question is why STARQL follows the non-reified strategy. The main reason is
that time requires a special treatment as it has specific constraints for reason-
ing. For example, in the measurement scenario one would like to express the
constraint that, at every time point, a sensor shows at most one value. This can
be done with a classical DL-Lite axiom by stating (func val) ∈ T . Note that
under such a constraint it is necessary that the window semantics preserves the
timestamps, as is indeed the case for the STARQL window semantics. Other-
wise two timestamped stream elements of the form val(tcc125, 92◦)〈3s〉 and of
the form val(tcc125, 95◦)〈5s〉 would lead to an inconsistency.

On the other hand, if one follows the reified approach such a time-dependent
constraint is not expressible in a DL: One would have to formulate that there are
no two measurements with the same associated sensor and same timestamp but
different values. As DLs are concept oriented, they are not suited to expressing
non-tree-shaped constraints with tbox axioms.



Homogeneous interface For the syntax and the semantics of STARQL queries
the exact resource of the input stream is not relevant: It may be a stream of
elements arriving in real-time via a TCP port, but equally it can be a simulated
stream of data produced by reading out a text file or a temporal database.
In the former case, one can speak of (genuine) stream querying, whereas in
the latter case we use the term history querying. So STARQL offers the same
interface to real-time queries (as required, for example, in monitoring scenarios)
and history queries (as required, e.g., for reactive diagnostics). And, indeed such
a homogenous interface to two different modes of querying has proved useful for
real industrial use cases, in particular, for the turbine-diagnostics use case of
SIEMENS in the context of the OPTIQUE project [20,17,19].

Separation between static and temporal conditions As illustrated in
the example above, STARQL allows to separate the conditions expressed in
an information need into conditions that concern only the static part of the
background knowledge (tbox T and static abox Ast) and into conditions which
require both, the static part and the streams. The former can be queried in
the WHERE clause, the latter in the HAVING clause. For the semantics of HAVING
clauses we also incorporated the tbox and the static abox (which is always added
to each abox in the sliding window). And indeed, this reference, at first sight,
is not eliminable. The reference to the tbox can be eliminated by just rewriting
the HAVING clause into a new HAVING clause using the standard perfect rewriting
technique. Still, the theoretical question remains whether it is possible to push
all references to the static abox (all occurrences of concept and role symbols that
appear in the static abox) into the WHERE clause, so that the HAVING clause can
be evaluated only on the streams and the bindings resulting from the evaluation
of the WHERE clause. In other terms, is the HAVING clause separable in a pure
static part and a part containing only role and concept symbols not part of the
static abox? This is an open problem.

Even if separability in the sense above holds, in terms of feasible implemen-
tation, the reference to a large static abox remains a challenging problem. As
far as we know, this problem has not been solved satisfactorily by any of the
current temporal and streamified OMQA systems.

OBDA rewritability STARQL queries with standard sequencing can be rewrit-
ten into queries over backend data stream management system. This is possible
because the two layers in STARQL, the semantics of the outer temporal FOL
template and the semantics of the embedded ECL queries, are separated. This
is similar to the temporal conjunctive queries (TCQs) of [9]. For the details of
rewritability and a comparison of STARQL with the query languages of TCQ
we refer the reader to [24].

An alternative operational semantics The window semantics defined above
is denotational and mimics the window operator definitions for CQL [4], which



is one of the first relational data stream query languages. From the implemen-
tation point of view, an operational semantics is more helpful—at least it gives
a different perspective on the intended semantics of windows. Furthermore, the
operational view also sheds light on why the window definition was chosen ex-
actly the way as stated above. For the details of the operational semantics we
refer the reader to [18].

3 A Criterion for Bounded-Memory Computability for
SQL Queries over Streams

We have seen that in STARQL, queries can refer to streams that may contain
infinitely many different RDF triples. Moreover, we saw that naive implemen-
tations of queries such as the linear-space, quadratic-time implementation of
monotonicity may lead to non-efficient query processing. Hence, finding good
criteria for bounded-memory processing of STARQL queries is a real issue. In
order to find such criteria, in the following, we consider criteria known to hold
for SQL queries over relational data streams.

The early work of Arasu and colleagues [3] gives syntactic criteria for bounded
memory computability of queries in the SPJ (select-project-join fragment) of
SQL and also for an extension of SPJ with aggregation operators. In each
case they consider both natural set semantics and multi-set (alias: bag) se-
mantics. Moreover they describe an algorithm that in case of bounded-memory
computability constructs a corresponding bounded-memory stream algorithm.
Though SQL, per se, does not provide stream specific operators as in specific
stream query languages (such as CQL [4]), the results are still fundamental
enough in order to be adaptable to genuine stream query languages.

The underlying computation model for the bounded-memory results is de-
scribed only informally in [4]. It is a register machine model extended to handle
infinite input streams. Such a computation model can be formally described by
streaming abstract state machines [16].

3.1 Query Language and the Query Model

We assume that the user is familiar with the SPJ-Fragment of SQL. We just
restate some SPJ queries from [3] in order to illustrate the memory-boundedness
criterion.

Assume that you have two homogeneous data streams, one containing tuples
of the form S(A,B,C) with a ternary relation S and a stream containing tuples of
the form T (D,E). All attributes (here A,B,C,D,E) are assumed to range over
the integers. The queries are constructed using a projection operator Π ∈ {π, π̇},
where π is the duplicate eliminating projection operator and π̇ is the duplicate-
preserving operator. The selection operator σ is restricted to conjunctions of
atoms of the form X = Y and X > Y , where X,Y are either attributes or
integer constants. The join is a full join with the cartesian product×. An example



query which is evaluated with multi-set semantics, i.e., Duplicate Preserving, is
the following query:

QDP3 = π̇A(σ(A=D∧A>10∧D<20)(S × T ))

The query asks for all values A (with duplicates) with 20 > A > 10 such that
there are tuples of the form S(A, ·, ·) and T (A, ·). In logical notation, this is the
conjunctive query

∃B,C,D,E.S(A,B,C) ∧ T (D,E) ∧A = D ∧A > 10 ∧D < 20

What is the process model for evaluating this query, when S and T do not stand
for static tables but streams?

The query is answered over one inhomogeneous big stream of tuples. The
stream is inhomogeneous in the sense that tuples belonging to different rela-
tions may arrive (in case of the above query: tuples from S and tuples from
T .) This is usually the case in the area of complex event processing (see, e.g.,
[2]). The idea is that the big stream is the result of merging—or interleaving
as Arasu and colleagues call merging—many homogeneous streams (i.e. streams
where every tuple belongs to exactly to one relation, here: the two homoge-
neous streams associated with S and T ). Interleaving means that an arbitrary
sequence of tuples is fixed which consists of tuples from the referenced homo-
geneous stream.4 For example, if S = 〈S(1, 1, 1), S(2, 2, 2), S(3, 3, 3), . . . 〉 and
T = 〈T (1, 1), T (2, 2), T (3, 3), . . . 〉, the following big stream is a possible inter-
leaving

BS1 = 〈S(1, 1, 1), S(2, 2, 2), S(3, 3, 3), T (1, 1), T (2, 2), T (3, 3), . . . 〉

Another is

BS2 = 〈S(1, 1, 1), T (1, 1), S(2, 2, 2), T (2, 2), S(3, 3, 3), T (2, 2), . . . 〉

and so on. In many modern stream query languages following a pipeline archi-
tecture, these kinds of interleavings are not completely outsourced to a system
but are controlled with the query language using cascading of stream queries.
Such a control is given also in STARQL. The criteria of memory-boundedness
mentioned below are to be understood to hold for all (!) possible interleavings.

Now, how is a query such as QDP3 evaluated? Every time t a new tuple in
the big stream BS arrives it is stored in an ordinary SQL DB containing all
tuples arrived so far. The query is evaluated on the accumulated DB with the
last tuple. So, one has a notion of an output of a query Q at time t over the

big input stream BS, ans(Q, t,BS), which is defined as QDB(BS≤t) that is the
answer of the query Q on the accumulated DB from the t-prefix of the stream
BS. The output at every time t is a set (or multi-set). This definition of the
output stream corresponds to the IStream semantics of CQL [4].

4 We note that there is no fairness assumption for the interleavings in [3].



Now one could associate with a query and a big stream BS the stream of
answers (ans(Q, t,BS)t∈N). But actually, the authors of [3] associate an output
stream with a query over the input big stream in a different way as they want to
have a stream of tuples again. So they consider a stream of elements produced
so far and consider the multi-set-union over this prefix as the intended answer of
the query. As the authors consider only monotonic queries they assume that the
answer stream can be given by reference to the answers produced so far multi-
unioned with the answer produced at the current time stamp. To formalize this,
let us assume that a query Q maps an input stream BSin into an output stream
Q(BSin) = BSout. Then, one demands that for every arrival time point t one has

ans(Q,BS≤tin ) = dBS≤tout, where d is defined for a sequence of elements (si)i≤t
as the multi-set of elements by multi-union of all the {si}.

3.2 Criterion for SPJ Queries

The following table gives some example queries and states which of them are
bounded-memory computable. Duplicate preserving queries have a DP super-
script, duplicate eliminating ones have a DE superscript. As before, we assume
two homogenous streams, with elements of the form S(A,B,C) and the other
with elements of the form T (D,E).

Acronym Query Memory-Bounded?
QDP1 = π̇A(σ(A>10)(S)) yes
QDE1 = πA(σ(A>10)(S)) no
QDP3 = π̇A(σ(A=D∧A>10∧D<20)(S × T )) yes
QDE3 = πA(σ(A=D∧A>10∧D<20)(S × T )) yes
QDP4 = π̇A(σ(B<D∧A=10)(S × T )) no
QDE4 = πA(σ(B<D∧A=10)(S × T )) yes

The first query QDP1 is memory bounded as it acts as a simple filter: there
is no join condition and the query answering system does not have to eliminate
duplicates. This is different for the query QDE1 which is the same as the first
except for using duplicate elimination: As A is not bounded from above, the
system would have to store any A > 10 arrived in S so far in order not to output
them a second time.

Both queriesQDP3 , QDE3 are memory-bounded. The algorithm in the duplicate-
preserving case has synopses for S and T , resp. Both synopses consist of registers
for all integer values v in the range [11, 19]. A register for value v in the S-synopsis
stores the number of S-tuples having A = v. Similarly the register for value v in
the T -synopsis counts all T -tuples arrived so far with value D = v. Now, assume
for example that the next element in the big stream is an S-tuple with A = v. If
v is not in the interval [11, 19], it is ignored. Otherwise one considers the number
of T -tuples in the v-register of the T -synopsis. This number of v tuples is put
onto the output stream. The duplicate-eliminating case is similar but one stores
just boolean values in the registers instead of number counts.



In case of the pair of queries QDP4 , QDE4 the duplicate-preserving one is not
bounded-memory computable, whereas the duplicate eliminating query is. Re-
garding the latter one constructs a synopsis for S where the minimum value of
attribute B among all tuples of S with A = 10 having arrived so far are stored,
and one has a T -synopsis, in which the maximum value of attribute D among
all tuples of T so far is stored. For the duplicate-preserving query QDP4 it is not
enough to know whether a stream joins with a past stream but one has to count
the number—and these numbers are not bounded.

We state the syntactic criterion for the duplicate-eliminating case only as
we are going to consider the set-semantics for STARQL only. The syntactic
criterion is formulated for SPJ-queries that have a special form. These queries
are called locally totally ordered queries, for short, LTO queries. As every query
is equivalent to a union of LTO queries, a query is memory-bounded iff all its
LTOs are (Theorem 5.3 in [3]). An LTO query Q is a query in which for every
stream S referenced in Q the union of attributes in S and all constants occurring
in Q are totally ordered.

Let P be a selection predicate, i.e., a conjunction of atoms of the form X >
Y, orX = Y . Let P+ denote the set of all atoms entailed by P that contain only
symbols of P .

An attribute A is called lower-bounded (resp. upper-bounded) if there exists
an atom A > k ∈ P+ (resp. A < k ∈ P+), or an atom A = k ∈ P+ for some
constant k. A is bounded if it is both upper-bounded and lower-bounded. Two
elements e and d (variables or constants) are called equivalent w.r.t. a set of
predicates iff e = d ∈ P+. Then | E |eq denotes the number of equivalence
classes into which a set of elements E is partitioned according to the equivalence
relation above.

Now consider a stream Si referenced in a query Q. MaxRef(Si) is defined as
the set of all lower bounded but not upper-bounded attributes A of Si such that
A appears in a non-redundant inequality join (Sj .B < Si.A), i 6= j, in P+. The
definition of MinRef(Si) is the dual of the definition of MaxRef(Si). With this
definition the following characterization can be proved.

Theorem 1 ([3], Thm 5.10). Let Q = πL(σP (S1×· · ·×Sn)) be an LTO query.
Q is bounded-memory computable iff:

C1: Every attribute in the list L of projected attributes is bounded.
C2: For every equality join predicate (Si.A = Sj .B), i 6= j, Si.A and Sj .B are

bounded.
C3: |MaxRef(Si) |eq + |MinRef(Si) |eq≤ 1 for i ∈ {1, . . . , n}.

4 Lifting the Criteria of Bounded-Memory Criteria
Bounded-Memory Computability to OMQA

As STARQL can be used with unbounded windows, in STARQL, we face prob-
lems similar to the ones for the model of SQL stream processing described in the
previous section. Even if one were to consider finite windows, considerations on



bounded-memory stream processing could give insights into optimization means.
In the previous section the relational tuples were defined over the integers, a dis-
crete, infinite domain. If one considers also dense domains, then one has a similar
if not a more difficult problem of ensuring bounded-memory computability. But
even here one can sometimes guarantee bounded-memory computability as the
following monotonicity example (a variant of the example from the beginning)
suggests.

Consider the simple monotonicity query in Fig. 3, asking every second whether
the temperature in sensor s0 increased monotonically up to the current time
point.

1 ...

2 {FROM SMsmt [0, NOW]->1s }

3 ...

4 {HAVING FORALL i < j IN SEQ1 ,?x,?y:

5 IF {s0 val ?x}<i> AND {s0 val ?y}<j>

6 THEN ?x <= ?y }

Fig. 3: Simple Monotonicity Query

A straight-forward implementation of this query is to construct from scratch
sequences of [0, NOW]-windows and test on these the monotonicity condition
by iterating trough all possible state-pairs (i, j). But this results in a test of
quadratic order (w.r.t. time). It is not hard to see that first one can find a
complete and correct algorithm that is not quadratic in time and uses constant
space only (w.r.t. the uniform cost measure in register machines): it just stores
the maximal temperature value for the last time point and compares it with the
values arriving at the current time point. Of course, this optimization is possible
only if it can be guaranteed that the input streams are not out of sync, i.e., if
tuples with earlier time stamps than the current time point are excluded. In such
an asynchronous case one would have to store all possible measurement values.

The results of [3] can be adapted to formulate criteria for bounded-memory
computability on STARQL queries. For this we consider the following variant
of STARQL, which, syntactically, is a simple fragment, called CQ-fragment of
STARQL and denoted STARQLCQ, but which, semantically, differs in applying
the IStream semantics and not the RStream semantics.

Definition 1. Syntactically STARQLCQ is defined as that fragment of STARQL
adhering to the following constraints:

1. The FROM clause refers only to streams that are streams of abox axioms (or
RDF tuples).



2. All sliding windows are unbounded windows (with the same slide which is
identical to the pulse).

3. The WHERE clause is allowed to be any reasonable query language allowing a
certain answer semantics.

4. The sequencing strategy is that of standard sequencing.
5. The HAVING fragment is restricted to consist of conjunctive queries of the

form

EXISTS y1, y2, . . . , ynA(x1, . . . , xm, y1, . . . , yn)

where the xi are non-state variables which may occur as free variables in the
WHERE clause or the xi are state variables, and the yi are state variables or
non-state variables bounded by the EXISTS quantifier. The expression after
the quantifiers A(x1, . . . , xm, y1, . . . , yn) is a conjunction of atoms in which
only variables x1, . . . , xn, y1, . . . , yn may occur and which have one of the
following forms.

– GRAPH i r(x, y) where
r is a role symbol, x is a constant or a variable in {x1, . . . , xm, y1, . . . , yn}

– GRAPH i C(x) where
C is an atomic concept symbol, x is a constant or a variable in the set
{x1, . . . , xm, y1, . . . , yn}

– x op y where
op ∈ {<,>,=} and x is a constant or variable in {x1, . . . , xm, y1, . . . , yn}

Semantically, STARQLCQ uses the IStream semantics.

Please note that in the first item of the definition we exclude the reference to
streams that are constructed with other STARQL queries. Otherwise we would
have to consider criteria for composed queries. We do not exclude that this is
possible, but the adaptation would be rather awkward.

Now we get the following adapted version of the syntactic criterion.

Proposition 1. Let Q be an LTO query in the STARQLCQ fragment. We make
the following assumptions

1. The streams are interleaved in a synchronized way, i.e., the time points of
tuples adheres to the arrival ordering.

2. At every time point only a finite number of elements bounded by some con-
stant can arrive.

3. The tbox is empty. (But see Corollary 1 where this assumption is dropped.)

Then, Q is memory-bounded iff it fulfills the following constraints.
C1: Every variable appearing in the HAVING clause is either bounded by EXISTS

or is a-bounded or occurs free in the WHERE clause.
C2: For every non-state variable that occurs in two atoms or in an identity atom:
if it is not a state-variable, then it is bounded or occurs free in the WHERE clause.

C3 : |MaxRef(Si) |eq + |MinRef(Si) |eq≤ 1 for i ∈ {1, . . . , n}.



Please note that we have the following differences w.r.t. the criterion of [3]:
First of all, there is a WHERE clause. Evaluating the variables occurring in a
WHERE clause does not pose a problem regarding bounded-memory computability
as these variables refer to the static database (which is finite). So all variables
bounded by the WHERE clause can be considered to be bounded in the sense of
Arasu.

The STARQL query language allows composing queries, i.e., a STARQL
query may refer to streams produced by other STARQL queries. This compo-
sition leads to constraints regarding interleaving which are not captured by the
criteria of Arasu (hence we considered only non-cascaded queries).

In the case of STARQL and STARQLCQ the time flow is not restricted to
a discrete domain. In the case of non-discrete time domains it is important to
know that the streams are synchronized. Otherwise, as we mentioned above in
the monotonicity example, one would have to store measurement values for all
time points of tuples having arrived so far as one cannot exclude the case that
values for time points in between may arrive.

As the proposition shows, the impossibility of bounded-memory processing
may also be due to non-bounded memory computability w.r.t. the output. This
was one reason why, in the original definition of STARQL, we decided to use the
RStream semantics for STARQL. The other reason was that for non-monotonic
queries and aggregation queries one cannot rely on IStream semantics. On the
other hand, the use of an RStream semantics means that due to the possibility
of unbounded sets of answers at every time point, the system may fall behind
the pulse requirements. So, we have here a classical opposition of time and space
constraints.

In the proposition we assume that the tbox is empty. In the STARQL frame-
work the tbox is assumed to be atemporal. But even then one cannot exclude
that a tbox axiom may lead to the loss of bounded-memory computability, al-
though the query w.r.t. the empty tbox is bounded-memory computable. For
example, a simple role inclusion axiom may lead to a self join in the query,
which is handled via other syntactic criteria. It is an interesting open question
to find criteria on the tbox that preserve the correctness and completeness of
the syntactical criteria for bounded-memory computability

On the other hand, if we consider OBDA, which allows for perfect rewriting
of queries, then we can apply the criterion of Proposition 1 to each completion
of each conjunctive query in the rewritten query (which is a union of CQs, for
short a UCQ).

Corollary 1. Let Q be a query in the STARQLCQ fragment w.r.t. some DL
allowing for perfect rewritability. Let Qrew be the rewritten UCQ. We assume
that each prefix of the abox stream is consistent with the ontology.

If each of the LTO queries to each CQ in Qrew fulfills the conditions men-
tioned in Proposition 1, then and only then, Q is bounded-memory computable.

Note that we assume consistency of the abox-stream prefixes with the tbox.
Otherwise one would have to test for inconsistency. This test can be reduced



to first-order logic queries but the resulting queries are not bounded-memory
computable. Consider, e.g., a negative inclusion A v ¬B which would lead to
an unbounded query ∃A(x) ∧ B(x). Similar considerations follow for functional
constraints.

On the other hand, when considering such axioms to hold only on the exten-
sional part of the ontology, i.e., if we consider integrity constraints on the abox
streams, then it is possible to gain bounded-memory computability. In the the
monotonicity example above, we already discussed a similar form of integrity
constraint, though it was not formulated as a DL axiom. A systematic study of
the consequences of integrity constraints for bounded memory computability is
left for future work.

5 Conclusion

The study of bounded-memory computability of OMQA queries can profit
from corresponding results on bounded-memory processing over relational data
streams. The adaptations are not trivial in the presence of tboxes—for languages
in which the tbox cannot be compiled away. We presented a syntactical crite-
rion for the information processing paradigm of OBDA in which the test of
bounded-memory processing w.r.t. a non-empty tbox could be reduced to a test
with an empty tbox. The question of how the syntactical criterion of [3] can be
adapted to the general OMQA case, in particular for tboxes in which temporal
constructors are allowed [5], is an open problem. We guess that due to the syn-
tacticality of the criterion, the adaptation is not going to be obvious. Hence, as
a further future research topic we think of an equivalent semantic criterion for
bounded-memory processing using the framework of dynamic complexity [25].
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