Dr. rer. nat. Tanya Braun
- Wissenschaftliche Mitarbeiterin -
Institut für Informationssysteme
Universität zu Lübeck
Ratzeburger Allee 160 ( Gebäude 64 - 2.OG )
D-23562 Lübeck
Telefon: +49 451 3101 5708
Fax : +49 451 3101 5704
email :E-Mail an Tanya Braun
Curriculum Vitae
- Februar 2020 - Promotion (Dissertationsschrift, Kolloquiumsfolien)
- Seit Dezember 2015 - wissenschaftliche Mitarbeiterin am Institut für Informationssysteme der Universität zu Lübeck
- September 2015 - M.Sc. in Computational Informatics, Technische Universität Hamburg-Harburg
- August 2009 - B.A. hons in Business Administration, University of Sunderland
Forschungsinteressen
Meine Forschungsinteressen liegen hauptsächlich in den genannten Themenbereichen:
- Statistisch-relationale KI (Statistical relational AI, StarAI), besonders probabilistische Inferenz in relationalen Domänen
- Textverständnis, besonders Annotationen und Kontextdarstellungen
- mensch-bewusste KI, besonders Online Entscheidungen durch mensch-bewusste Agenten
Meine Doktorarbeit gehört zum Bereich StarAI und hat den Lifted Junction Tree Algorithmus (LJT) als zentrales Thema. Nähere Informationen zu LJT finden Sie hier.
Lehre
Vorlesung
- Intelligente Agenten (MA, englisch, 4VL, 2Üb, WiSe2020/21, zusammen mit Ralf Möller); Teil der Vorlesung + Übung
- Advanced Topics Data Science and AI: Automated Planning and Acting (MA, englisch, 2VL, 1Üb, SoSe2020); Vorlesung + Übung
- MOBI-DBS-B: Datenbanksysteme, Lehrauftrag Otto-Friedrich-Universität Bamberg (BA, Sommer 2019)
Übungsleitung
- Algorithmen und Datenstrukturen (BA 2. Sem., Sommer, 4VL, 2Üb, 2016-2019)
- Einführung in Web und Data Science (BA 1. Sem., Winter, 2VL, 1Üb, 2016/17-2019/20)
- Non-standard Datenbanken und Data Mining (BA 5. Sem., Winter, 4VL, 2Üb, 2018/19-2019/20)
- Web Mining Agents (MA, englisch, Winter, 4VL, 2Üb, 2015/16-2017/18)
Wissenschaftliche Aktivitäten
Herausgeberschaft
- Handbuch der Künstlichen Intelligenz, 6. Auflage, in Zusammenarbeit mit Günther Görz und Ute Schmid, Verlag: De Gruyter, Link zur Verlagsseite
- Special Issue on Conceptual Structures 2020, Annals of Mathematics and Artificial Intelligence, in Zusammenarbeit mit Mehwish Alam, Dominik Endres und Bruno Yun, Verlag: Springer, Call for papers
Organisation
- 44th German Conference on Artificial Intelligence, September 27-October 1, 2021, Berlin, Germany (KI2021), Workshop & Tutorials Chair
- 26th International Conference on Conceptual Strucutres, September, Bolzano, Italy (ICCS 2021), General Chair
- 43rd German Conference on Artificial Intelligence, September 21–25, 2020, Bamberg, Germany (KI2020), Doctoral Consortium Chair (call)
- 25th International Conference on Conceptual Strucutres, September 18-21, Bolzano, Italy (ICCS 2020), Co-Program Chair (call)
Eingeladene Vorträge
- Vortrag beim Workshop "Data Linking for Humanities Research" mit dem Thema "To Extend or Not to Extend? Context-driven Corpus Enrichment", 21.10.2019, Hamburg, Folien hier
- Präsentation des Forschungsprojekts LJT am Institut für Medizinische Elektrotechnik, 16.1.2018, Lübeck, Folien hier
Tutorials
- StaRAI - Semantics and Symmetries in Exact Lifted Inference, auf der ECAI 2020, in Zusammenarbeit mit Marcel Gehrke, 29-30.08.2020
- StaRAI - Semantics and Inference auf der FLAIRS-33, in Zusammenarbeit mit Marcel Gehrke, Prof. Dr. Gabriele Kern-Isberner und Marco Wilhelm, 17.-20.05.2020 (FLAIRS-33 wurde abgesagt)
- Dynamic StarAI auf der KI 2019 in Zusammenarbeit mit Marcel Gehrke und Ralf Möller, 23.-26.09.2019
- Inference in Statistical Relational AI auf der ICCS 2019 in Zusammenarbeit mit Marcel Gehrke, 01.-04.07.2019
- StarAI or StarDB? auf der BTW 2019, 04.03.2019
- StarAI auf der KI-18 in Zusammenarbeit mit Kristian Kersting und Ralf Möller, 24.09.18 (Folien hier verfügbar)
Folien für Konferenz/Workshop-Papiere (für Papiere, bei denen ich den Vortrag gehalten habe; der Name des Links bezieht sich auf den Titel des Papiers)
- Restricting the Maximum Number of Actions for Decision Support under Uncertainty
- Lifting Queries for Lifted Inference (Highlight-Artikel auf der ECAI-2020 von einem IJCAI-2018-Artikel)
- Exploring Unknown Universes in Probabilistic Relational Models
- To Extend or not to Extend? Context-specific Corpus Enrichment
- Uncertain Evidence for Probabilistic Relational Models
- Adaptive Inference on Probabilistic Relational Models
- Fusing First-order Knowledge Compilation and the Lifted Junction Tree Algorithm
- Parameterised Queries and Lifted Query Answering
- Lifted Most Probable Explanation
- Preventing Groundings and Handling Evidence in the Lifted Junction Tree Algorithm
- Counting and Conjunctive Queries in the Lifted Junction Tree Algorithm
- Lifted Junction Tree Algorithm
Reviews
Studentische Projekte
- Moritz Hoffmann: Aufbereitung des Projektscodes für LJT und LDJT; siehe LJT Implementierung und LDJT Implementierung.
- Florian Marwitz: Kompaktifizierung von lokalen Verteilungen.
- Tristan Potten: Framework zum Benchmarken von Algorithmen zur Anfragebeantwortung in probabilistischen Modellen von der Generieren der Modelle bis zur Sammlung von Statistikwerten; siehe GitHub-Projekt und Veröffentlichung.
Publikationen
2021
- Felix Kuhr, Matthis Lichtenberger, Tanya Braun, Ralf Möller: Enhancing Relational Topic Models with Named Entity Induced Links
in: Proceedings of the 15th IEEE International Conference on Semantic Computing (ICSC-21), 2021 - Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Context-specific Adaptation of Subjective Content Descriptions
in: Proceedings of the 15th IEEE International Conference on Semantic Computing (ICSC-21), 2021 - Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller, Simon Schiff: Identifying Subjective Content Descriptions among Text
in: Proceedings of the 15th IEEE International Conference on Semantic Computing (ICSC-21), 2021
2020
- Günther Görz, Tanya Braun, Ute Schmid (Eds.): Handbuch der Künstlichen Intelligenz, 6. Auflage
De Gruyter, 2020 - Nils Finke, Marcel Gehrke, Tanya Braun, Tristan Potten, Ralf Möller: Investigating Matureness of Probabilistic Graphical Models for Dry-Bulk Shipping
in: Proceedings of Machine Learning Research, 2020 - Tristan Potten, Tanya Braun: Benchmarking Inference Algorithms for Probabilistic Relational Models
in: ICCS-20 Proceedings of the 25th International Conference on Conceptual Structures, 2020 - Marcel Gehrke, Tanya Braun, Simon Polovina: Restricting the Maximum Number of Actions for Decision Support under Uncertaitny
in: ICCS-20 Proceedings of the 25th International Conference on Conceptual Structures, 2020 - Mehwish Alam, Tanya Braun, Bruno Yun (Eds.),: ICCS-20 Proceedings of the 25th International Conference on Conceptual Structures,
Springer,, 2020, - Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Augmenting and Automating Corpus Enrichment
in: Int. J. Semantic Computing, 2020, Vol.14, (2), p.173-197 - Marcel Gehrke, Ralf Möller, Tanya Braun: Taming Reasoning in Temporal Probabilistic Relational Models
in: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), 2020 - Stefan Lüdtke, Marcel Gehrke, Tanya Braun, Ralf Möller, Thomas Kirste: Lifted Marginal Filtering for Asymmetric Models by Clustering-based Merging
in: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), 2020 - Tanya Braun, Ralf Möller: Lifting Queries for Lifted Inference
in: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), 2020 - Tanya Braun,: Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models,
University of Lübeck,, 2020,, PhD thesis - Tanya Braun, Ralf Möller: Exploring Unknown Universes in Probabilistic Relational Models
in: 9th International Workshop on Statistical Relational AI at the 34th AAAI Conference on Artificial Intelligence, 2020 - Marcel Gehrke, Tanya Braun, Ralf Möller: Taming Reasoning in Temporal Probabilistic Relational Models
in: 9th International Workshop on Statistical Relational AI at the 34th AAAI Conference on Artificial Intelligence, 2020 - Felix Kuhr, Tanya Braun, Ralf Möller: Augmenting and Automating Corpus Enrichment
in: Proceedings of the 14th IEEE International Conference on Semantic Computing (ICSC-20), 2020, Best Student Paper Award - Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Maintaining Topic Models for Growing Corpora
in: Proceedings of the 14th IEEE International Conference on Semantic Computing (ICSC-20), 2020
2019
- Marcel Gehrke, Tanya Braun, Ralf Möller: Efficient Multiple Query Answering in Switched Probabilistic Relational Models
in: Proceedings of AI 2019: Advances in Artificial Intelligence, 2019, Springer, p.104-116 - Tanya Braun, Ralf Möller: Exploring Unknown Universes in Probabilistic Relational Models
in: Proceedings of AI 2019: Advances in Artificial Intelligence, 2019, Springer, p.91-103 - Felix Kuhr, Tanya Braun, Magnus Bender, Ralf Möller: To Extend or not to Extend? Context-specific Corpus Enrichment
in: Proceedings of AI 2019: Advances in Artificial Intelligence, 2019, Springer, p.357-368 - Marcel Gehrke, Simon Schiff, Tanya Braun, Ralf Möller: Which Patient to Treat Next? Probabilistic Stream-based Reasoning for Decision Support and Monitoring
in: Proceedings of the ICBK 2019, 2019, IEEE, p.73-80 - Marcel Gehrke, Tanya Braun, Ralf Möller: Lifted Temporal Most Probable Explanation
in: Proceedings of the International Conference on Conceptual Structures 2019, 2019, Springer, p.72-85 - Tanya Braun, Marcel Gehrke: Inference in Statistical Relational AI
in: Proceedings of the International Conference on Conceptual Structures 2019, 2019, Springer, p.xvii-xix - Marcel Gehrke, Tanya Braun, Ralf Möller: Lifted Temporal Maximum Expected Utility
in: Proceedings of the 32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019, 2019, Springer, p.380-386 - Marcel Gehrke, Tanya Braun, Ralf Möller: Uncertain Evidence for Probabilistic Relational Models
in: Proceedings of the 32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019, 2019, Springer, p.80-93 - Marcel Gehrke, Tanya Braun, Ralf Möller: Relational Forward Backward Algorithm for Multiple Queries
in: Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference (FLAIRS-19), 2019, AAAI Press, p.464-469 - Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, Jost Steinhäuser: Lifted Maximum Expected Utility
in: Artificial Intelligence in Health, 2019, Springer International Publishing, p.131-141 - Tanya Braun: StaRAI or StaRDB? - A Tutorial on Statistical Relational AI
in: BTW-19 Proceedings Datenbanksysteme für Business, Technologie und Web - Workshopband, 2019, Gesellschaft für Informatik, p.263-266
2018
- Marcel Gehrke, Tanya Braun, Ralf Möller: Answering Multiple Conjunctive Queries with the Lifted Dynamic Junction Tree Algorithm
in: Proceedings of the AI 2018: Advances in Artificial Intelligence, 2018, Springer, p.543-555 - Marcel Gehrke, Tanya Braun, Ralf Möller: Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm
in: Proceedings of the AI 2018: Advances in Artificial Intelligence, 2018, Springer, p.556-562 - Tanya Braun, Ralf Möller: Adaptive Inference on Probabilistic Relational Models
in: AI 2018: Advances in Artificial Intelligence, 2018, Springer, p.487-500 - Tanya Braun, Ralf Möller: Fusing First-order Knowledge Compilation and the Lifted Junction Tree Algorithm
in: Proceedings of KI 2018: Advances in Artificial Intelligence, 2018, Springer, p.24-37 - Marcel Gehrke, Tanya Braun, Ralf Möller: Towards Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm
in: Proceedings of KI 2018: Advances in Artificial Intelligence, 2018, Springer, p.38-45 - Tanya Braun, Ralf Möller: Parameterised Queries and Lifted Query Answering
in: IJCAI-18 Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, International Joint Conferences on Artificial Intelligence Organization, p.4980-4986 - Tanya Braun, Ralf Möller: Fusing First-order Knowledge Compilation and the Lifted Junction Tree Algorithm
in: 8th International Workshop on Statistical Relational AI at the 27th International Joint Conference on Artificial Intelligence, 2018 - Marcel Gehrke, Tanya Braun, Ralf Möller: Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm
in: 8th International Workshop on Statistical Relational AI at the 27th International Joint Conference on Artificial Intelligence, 2018 - Marcel Gehrke, Tanya Braun, Ralf Möller: Answering Hindsight Queries with Lifted Dynamic Junction Trees
in: 8th International Workshop on Statistical Relational AI at the 27th International Joint Conference on Artificial Intelligence, 2018:
@inproceedings{GehBrMo18b, author = {Marcel Gehrke and Tanya Braun and Ralf M\"oller}, title = {{Answering Hindsight Queries with Lifted Dynamic Junction Trees}}, booktitle = {8th International Workshop on Statistical Relational AI at the 27th International Joint Conference on Artificial Intelligence}, year = {2018}, url = {https://arxiv.org/abs/1807.01586} }
- Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, Jost Steinhäuser: Towards Lifted Maximum Expected Utility
in: Proceedings of the First Joint Workshop on Artificial Intelligence in Health in Conjunction with the 27th IJCAI, the 23rd ECAI, the 17th AAMAS, and the 35th ICML, 2018, CEUR-WS.org, CEUR Workshop Proceedings, Vol.2142, p.93-96 - Marcel Gehrke, Tanya Braun, Ralf Möller: Lifted Dynamic Junction Tree Algorithm
in: Proceedings of the International Conference on Conceptual Structures, 2018, Springer, p.55-69 - Tanya Braun, Ralf Möller: Lifted Most Probable Explanation
in: Proceedings of the International Conference on Conceptual Structures, 2018, Springer, p.39-54, - Tanya Braun, Ralf Möller: Counting and Conjunctive Queries in the Lifted Junction Tree Algorithm - Extended Version
in: Postproceedings of the 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning, 2018, Springer, p.54-72,
2017
- Tanya Braun, Felix Kuhr, Ralf Möller: Unsupervised Text Annotations
in: Proceedings of the 6th Workshop on Dynamics of Knowledge and Belief (DKB-2017) and the 5th Workshop KI & Kognition (KIK-2017) co-located with 40th German Conference on Artificial Intelligence (KI 2017), 2017, 25.-29.09., CEUR-WS.org, CEUR Workshop Proceedings, Vol.1928, p.23-30 - Tanya Braun, Ralf Möller: Preventing Groundings and Handling Evidence in the Lifted Junction Tree Algorithm
in: KI 2017: Advances in Artificial Intelligence. KI 2017 - 40th Annual German Conference on AI, Dortmund, Germany, September 25-29, 2017, 2017, Springer, LNCS, Vol.10505, p.85-98 - Tanya Braun, Ralf Möller: Counting and Conjunctive Queries in the Lifted Junction Tree Algorithm
in: Graph Structures for Knowledge Representation and Reasoning - 5th International Workshop (GKR 2017), Melbourne, Australia, 2017, 21. August
2016
- Tanya Braun, Ralf Möller: Lifted Junction Tree Algorithm
in: KI 2016: Advances in Artificial Intelligence - 39th Annual German Conference on AI, Klagenfurt, Austria, September 26-30, 2016, 2016, Gerhard Friedrich, Malte Helmert, Franz Wotawa (Ed.), Springer, Lecture Notes in Computer Science, Vol.9904, p.30-42 - Tanya Braun, Ralf Möller: Lifted Junction Tree Algorithm
IFIS, Universität zu Lübeck, 2016, Long version of the KI 2016 conference paper