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Abstract

The prediction quality of an artificial intelligence (AI) or machine learning (ML)
model is primarily determined by the data used to train it. The data must contain
relevant and non-redundant information that leads to a solution of the prediction
problem. Conversely, a model cannot represent information that it does not contain.
The research area of feature extraction or feature learning is concerned with finding
efficient mappings from raw data to (low-dimensional) representations that capture
information appropriate for the learning task. Information-theoretic entropies are
promising representations through an encoding that preserves information content.
Specifically, permutation entropy (PE) encodes information about the intrinsic “up
and down” movements, or more precisely ordinal patterns, in a time series as a rep-
resentation of the original time series. As many real-world applications deal with
multivariate time series, in this work we study the problem of learning ordinal pat-
tern representations for multivariate time series. We present three new multivariate
ordinal pattern representations that allow to consider ordinal neighbourhood depen-
dencies not only in time but also in space. We categorise the contributions of this
work into three parts: In the first part, we elaborate on existing research strategies
for determining multivariate permutation entropy (MPE) before we present three
new MPE representations and highlight their advantages. In the second part, we in-
vestigate MPE in the context of multivariate fractional Brownian motion (mfBm), a
time-dependent dynamical system that describes properties of long-range dependence
and self-similarity. We show that different MPE representations uncover different in-
formation of mfBm such as information about the self-similarity parameter, also called
Hurst parameterH, or cross-correlations of the spatial variables. In the third part, we
apply MPE to obtain good representations in the context of an unsupervised as well
as a supervised learning task. The experiments conducted are based on real-world
data sets that do not necessarily fulfil the properties of long-range dependence or self-
similarity. In the context of an unsupervised learning task, we introduce MOP4SA,
an approach to approximate symmetries between multivariate time series based on
multivariate ordinal pattern encodings and spectral clustering. Understanding so-
called symmetric behaviour has several advantages. For example, we use MOP4SA
to avoid model splits in dynamic probabilistic relational models and thus achieve
runtime advantages in lifted inference. In the context of various supervised classi-
fication tasks, we show that the newly introduced MPE representations outperform
the existing MPE representations. The experiments support that MPE represen-
tations considering interdependencies between spatial variables improve separability
and discriminability and thus have higher effectiveness.
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Kurzfassung

Die Vorhersagequalität eines Modells der künstlichen Intelligenz (KI) oder des maschi-
nellen Lernens (ML) wird weitgehend von den Daten bestimmt, die zum Trainieren
des Modells verwendet werden. Die Daten müssen relevante und nicht-redundante
Informationen enthalten, die zur Lösung des Vorhersageproblems führen. Umgekehrt
kann ein Modell keine Informationen darstellen, die es nicht hat. Das Forschungsge-
biet der Merkmalsextraktion oder des Merkmalslernens befasst sich damit, effiziente
Abbildungen von Rohdaten auf (niedrigdimensionale) Darstellungen zu finden, die
für die Lernaufgabe geeignete Informationen erfassen. Informationstheoretische En-
tropien sind vielversprechende Darstellungen durch eine Kodierung, die den Informa-
tionsgehalt bewahrt. Konkret kodiert die Permutationsentropie (PE) Informationen
über die intrinsischen Auf- und Abwärtsbewegungen oder genauer gesagt Ordinal-
muster in einer Zeitreihe als Darstellung der ursprünglichen Zeitreihe. Da viele reale
Anwendungen mit multivariaten Zeitreihen verbunden sind, untersuchen wir in dieser
Arbeit das Lernen von ordinalen Musterdarstellungen im Kontext von multivariaten
Zeitreihen. Wir stellen drei neue multivariate ordinale Musterdarstellungen vor, die
die Berücksichtigung von ordinalen Nachbarschaftsabhängigkeiten nicht nur in der
Zeit, sondern auch im Raum ermöglichen. Die Beiträge dieser Arbeit sind in drei
Teile gegliedert: Im ersten Teil werden verschiedene Strategien zur Bestimmung der
multivariaten Permutationsentropie (MPE) in der bestehenden Forschung erläutert,
bevor wir drei neue MPE-Darstellungen vorstellen und ihre Vorteile hervorheben. Im
zweiten Teil dieser Arbeit untersuchen wir MPE im Zusammenhang mit der multi-
variaten fraktionalen Brownschen Bewegung (mfBm), einem zeitabhängigen dynamis-
chen System, das Eigenschaften Langzeitkorrelation und Selbstähnlichkeit beschreibt.
Wir zeigen, dass verschiedene MPE-Darstellungen unterschiedliche Informationen von
mfBm aufdecken, wie etwa Informationen über den Selbstähnlichkeitsparameter, auch
Hurst-Parameter H genannt, oder Kreuzkorrelationen der räumlichen Variablen. Im
dritten Teil wenden wir MPE an, um gute Repräsentationen im Kontext einer un-
beaufsichtigten sowie einer überwachten Lernaufgabe zu erhalten. Die durchgeführten
Experimente stützen sich auf reale Datensätze, die nicht unbedingt Daten enthalten,
die einer Langzeitkorrelation oder Selbstähnlichkeit unterliegen. Im Kontext einer
unüberwachten Lernaufgabe stellen wir MOP4SA vor, ein Ansatz zur Approximation
von Symmetrien zwischen multivariaten Zeitreihen, der auf multivariaten ordinalen
Musterkodierungen und spektralem Clustering basiert. Das Verständnis von sym-
metrischem Verhalten hat mehrere Vorteile. Zum Beispiel verwenden wir MOP4SA,
umModellsplits in dynamischen probabilistischen relationalen Modellen zu vermeiden
und so Laufzeitvorteile bei der aufgehobenen Inferenz zu erzielen. Im Kontext ver-
schiedener überwachter Klassifikationsaufgaben zeigen wir, dass die neu eingeführten
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Kurzfassung

MPE-Repräsentationen die bestehenden MPE-Repräsentationen übertreffen. Die Ex-
perimente belegen, dass MPE-Darstellungen, die Interdependenzen zwischen räum-
lichen Variablen berücksichtigen, die Trennbarkeit und Diskriminierbarkeit verbessern
und somit eine höhere Effektivität aufweisen.
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Chapter 1

Introduction

Time series data is part of many real-world applications concerning space bodies and
planet Earth (weather records, temperature changes, wind or asteroids speed), health
evolution metrics (brain and heart activities, muscle tensions, data from wearables
like pulse, sleep, and stress indices), or economy and politics (stock prices, website
clicks, server metrics, industrial sensor data, political indicators) – just to name a few.
From a mathematical point of view, time series can be understood as a sequence of
observed (real-valued) random variables generated by a time-dependent system, also
called a dynamical system. Handling of time series or dynamical systems involves not
only modelling of random variables but at the same time also temporal relationships,
which naturally increases the complexity of the handling.
In order to model time series, e.g., to predict the future, numerous tools and

possibilities exist, which have grown even further through the efforts of recent years
in the field of artificial intelligence (AI) or machine learning (ML). However, the
choice of models and appropriate algorithms is not the most important thing when
deploying ML solutions in daily business – what matters the most is the data and
their representations. This is not only true for ML but also for everyday life. We
follow an intuitive example from Goodfellow et al. (2016) in which a person has the
task of dividing 210 by 6. With the help of the long division, the solution should be
easy for most people. However, if one is confronted with the same task in a different
representation, such as the Roman numeral representation, it becomes considerably
more difficult to solve the task, i.e., divide CCX by VI. Most people would first convert
the numbers into the Arabic number representation, which allows for the familiar long
division procedure. Thus, a good representation then simplifies a subsequent task.
More specifically, representations can be selections of raw data or (usually lower-

dimensional) values derived from raw data and should be non-redundant and informa-
tive. Based on new representations, models are used and algorithms are performed,
which leads to better predictions. This also means that the choice of appropriate
representations influences the quality of a model and its predictions. For example,
in classical mathematical modelling, various real-world phenomena are modelled by
complex dynamical systems that represent the global behaviour of variables over time
resulting from interactions. Such a dynamical system contains parameters that con-
trol, for example, long-term behaviour or periodicity of the system. When applying a
dynamical system to a real problem, these parameters have to be estimated from ob-
served realisations. For this purpose, certain representations of time series reflecting
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Chapter 1 Introduction

these properties of the parameter can be used. The approach of extracting infor-
mation from observed data and then using this information for modelling a general
dynamical system is also called inverse problem.
As another example, we consider supervised learning algorithms from classical ML

that learn functions or mappings between input and output to solve a selected task.
Unlike time-independent random variables, time series data does not have the right re-
current representation that such algorithms require, so informative scalar-valued rep-
resentations (or features) have to be extracted. Only then can models like k-nearest
neighbour, support vector machine (SVM) or random forest be used. Similarly, the
extraction of representations offers an interesting opportunity for unsupervised and
semi-supervised learning. Representations of unlabelled data can discover factors
that explain relationships or separate data allowing reuse in supervised learning tasks.
Summarising, good representations “help the learner to discover and disentangle some
of the underlying (and a priori unknown) factors of variation” (Bengio et al., 2013).
Ideally, a representation is chosen without domain knowledge of specialists and

yet contain as much information about the underlying dynamical process as pos-
sible. One approach for the automatic extraction of representations is using deep
neural networks, which as a side effect learn appropriate representations of time se-
ries in their hidden layers (Franceschi et al., 2019). However, deep learning is usually
computationally intensive, difficult to interpret, and requires many data samples for
model training, which are rarely available (Chollet, 2017). In symbolic time series
analysis, a non-parametric mapping into a sequence of symbols that uncovers the
underlying dynamics of the dynamical system is considered (Traversaro et al., 2018).
Ordinal pattern symbolisation introduced by Bandt and Pompe (2002) encodes the
“up and down” movements in a time series, i.e., the total order of neighbouring
time points. The distribution of this ordinal pattern symbolisation is then repre-
sented using information-theoretic entropies, specifically referred to as permutation
entropy (PE). The class of all representations based on ordinal pattern symbols
and entropies is denoted as ordinal pattern representations. The successful use of
ordinal pattern representations in learning tasks has been demonstrated in various
applications, from mammographic density estimation (Antonelli et al., 2019) to fault
diagnosis for rotating machinery (Li et al., 2020). As many real-world challenges deal
with multivariate time series, the problem this work focuses on is

finding intrinsic ordinal pattern representations
in the context of multivariate time series.

Multivariate time series have variables that are both time and space (i.e., on other
variables) dependent. Representations of multivariate time series are usually based
on univariate representations of the individual spatial variables. This means that a
representation is extracted in time-space for each spatial variable before all derived
representations are combined in a common measure. In contrast, this work aimes
to derive multivariate representations that include dependencies in a multivariate
time series in both time and space. This allows for co-movements of several spatial
variables over time to be considered, making this kind of representation more efficient.

2



1.1 Related Work

1.1 Related Work

In this section, we present related work in the field of time series representation based
on entropy and ordinal pattern symbolisation. Bandt and Pompe (2002) are the first
to combine both ideas in what is called PE, which is the fundamental basis of this
work. In general, PE quantifies the complexity of the time series through the distri-
bution of the ordinal patterns, i.e., the up and down movements, in a scalar-valued
representation. While the associated PE is low for a deterministic time series, it ap-
proaches its maximum value in case of randomness or high complexity. To distinguish
between randomness and complexity, Morabito et al. (2012) introduce multi-scale per-
mutation entropy (MSPE), an extension of PE that captures the complexity of time
series on different time scales. Another limitation of PE is the inability to distinguish
between different patterns of a given motif in amplitudes. Fadlallah et al. (2013)
introduce weighted permutation entropy (WPE), which takes into account patterns
that differ in amplitudes by assigning weights to each extracted pattern. WPE and
MSPE are based on PE but emphasise different aspects of the time series. Based on
these three basic representations, this work focuses on

a) the extension of PE to the multivariate context.

Based on these results, we investigate

b) the behaviour of different multivariate ordinal pattern representations on mul-
tivariate fractional Brownian motion, a special stochastic process, and

c) the use of multivariate ordinal pattern representations for time series from real-
world challenges to enable or simplify a subsequent learning task.

Multivariate Extensions of PE. To extend the concept of PE to multivariate
time series, Keller and Lauffer (2003) introduce pooled permutation entropy (PPE)
by pooling each univariate ordinal pattern of all spatial variables into a common mul-
tivariate representation. By analogy with MSPE and PPE, Morabito et al. (2012)
present multivariate multi-scale permutation entropy (MMSPE). To fill the gap, we
introduce multivariate weighted permutation entropy (MWPE) as a canonical exten-
sion based on WPE and PPE, allowing the consideration of amplitudes by including
weighted ordinal patterns in multivariate time series (Mohr et al., 2021b). While the
previous measures examine the ups and downs in time-space, He et al. (2016) present
multivariate permutation entropy (MvPE), which examines the ups and downs in
phase-space, i.e., ups and downs between spatial variables at a fixed time point. To
account for time and phase space simultaneously, we propose multivariate ordinal
pattern permutation entropy (MOPPE) by extending univariate ordinal pattern to
multivariate ordinal pattern (MOP). To reduce the complexity of combinatorial pos-
sibilities, Rayan et al. (2019) propose to first reduce the number of spatial variables
in a multivariate time series to one dimension by applying distance measures before
calculating univariate PE by default. To account for interdependencies or correlations
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Chapter 1 Introduction

between variables in both time and space, we propose multivariate permutation en-
tropy based on principle component analysis (MPE-PCA), using principal component
analysis (PCA) as a dimensionality reduction procedure (Mohr et al., 2020b).

PE and Fractional Brownian Motion. For many real-world applications, mod-
elling of time-dependent dynamical systems requires specific properties such as long-
range dependence or self-similarity, for which fractional Brownian motion (fBm) is
commonly used. The fundamentals of fBm are based on sound theory and have
successfully applied to many real-life challenges (Dietrich and Newsam, 1997; Ari-
anos and Carbone, 2009; Didier and Pipiras, 2011). Lavancier et al. (2009) introduce
multivariate fractional Brownian motion (mfBm) as a generalisation of fBm. Amblard
and Coeurjolly (2011) study the covariance structure and the spectral structure of
this multivariate stationary process and obtain a characterisation of mfBm through
its covariance function on which some of the results of this work are based. Moreover,
Bandt and Shiha (2007); Zunino et al. (2008); Sinn and Keller (2011); Dávalos et al.
(2018) investigate the distribution of ordinal patterns for the univariate case, i.e., in
fBm. The authors show that the self-similarity parameter, also known as Hurst pa-
rameter H, is directly related to the distribution of ordinal patterns, which nominates
PE as a candidate for solving an inverse problem, among others. We take up the prop-
erty of the distribution of univariate ordinal patterns and investigate the behaviour
of existing and newly introduced multivariate ordinal pattern representations in the
multivariate context, from which interesting applications and recommendations can
be derived (Mohr et al., 2020a, 2021b; Mohr and Möller, 2021b,a).

PE for Learning Tasks in Different Applications. For other real-world ap-
plications, it is of interest to detect similarities between time series, e.g., to perform
classification tasks or to obtain sparse (lifted) representations using symmetries in the
data, which reduce complexity and achieve good performance. Similarity detection
in time series is a vast area of research, with approaches to detecting similarities in
a set of time series generally are either value-based or symbol-based. By comparing
the values of each point in a time series with the values of each other point in a
different time series (warping), value-based approaches are able to take into account
shifts and frequencies, which makes them successful in application. Kramer (2020)
provides a detailed overview of popular algorithms such as dynamic time warping
(DTW) introduced by Kruskal and Liberman (1983), its multivariate extension de-
pendent multivariate dynamic time warping (DMDTW) by Petitjean et al. (2012) or
matrix profile by Yeh et al. (2016). Nevertheless, the flexibility of warping in value-
based approaches leads to a high computational effort. Even if, e.g., Salvador and
Chan (2004) or Silva and Batista (2016) achieve a runtime improvement by limiting
the warping path (FastDTW) or reducing the number of data points (PrunedDTW),
these approaches are difficult to apply in applications involving large amounts of data.
While value-based approaches are inefficient because they are usually performed on
raw data, symbol-based approaches encode the time series observations as sequences
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of symbolic abstractions that match the shape of the time series. The symbolic ab-
straction can be understood as (lower-dimensional) representation, based on which
classical similarity or learning algorithms are applied. Chiu et al. (2003) introduce
the probably best known and most used symbolic representation, namely Symbolic
Aggregate approXimation (SAX), where the data range is partitioned, and the par-
titions are assigned to the symbols. While the search for the optimal partitioning is
complex, the ordinal symbolisation approach by Bandt and Pompe (2002) dispenses
with partitioning and uses the order between successive neighbours. The use of neigh-
bourhood behaviour allows us to successfully apply (multivariate) ordinal patterns
in different learning tasks such as classification (Mohr et al., 2020b) or symmetry
approximation (Finke and Mohr, 2021; Finke et al., 2022).

1.2 Research Objectives and Scientific Contributions

In Section 1.1, we have presented important work in the domain of ordinal pattern
representations and its applications. In general, many efforts have been made in the
last decade to extract ordinal pattern representations from time series in a multivari-
ate context and to beneficially use these representations for analysis or prediction.
Compared to the research of the last decade, the aim of this work is to consider not
only temporal interdependencies but also interdependencies of spatial variables, i.e.,
the potentially simultaneous up and down movement of two or more variables. Since
the representation of a time series is related to the model used, we examine and dis-
cuss existing and especially the new representations in different contexts and selected
applications.
In this work, we make several contributions to multivariate ordinal pattern repre-

sentations. We summarise the contributions as follows.

1) New approaches in multivariate ordinal pattern representations: Since
this work focuses on multivariate ordinal pattern representations, we examine
existing multivariate extensions, point out their limitations and fill the gaps in
existing theory. In addition, we provide new definitions that address the major
drawback of existing extensions, namely the fact that existing extensions do not
consider mutual dependencies in both time and space.

a) Review of existing multivariate extensions for ordinal pattern rep-
resentations: After PE was introduced by Bandt and Pompe (2002) and
successfully applied in numerous real-world challenges, several authors have
proposed multivariate extensions of PE. We summarise these and categorise
them according to their approach to give an overview of the possible appli-
cations and facilitate the integration of the following contributions.

b) Introduction of MWPE: As PE is multivariate extended in a canonical
way by PPE, so is MSPE extended by MMSPE. We fill the gap and extend
WPE by multivariate weighted permutation entropy (MWPE).
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c) Introduction of MOPPE: While canonical multivariate extensions such as
PPE, MMSPE and MWPE are based on the spatial variable-by-variable use
of univariate ordinal patterns, we extend the definition of univariate ordinal
patterns to multivariate ordinal patterns (MOPs). Thus, we allow for the
consideration of interdependencies between variables in both time and space.
Based on the definition of MOP, we introduce multivariate ordinal pattern
permutation entropy (MOPPE) in analogy to univariate ordinal patterns and
PE.

d) Introduction of MPE-PCA: Since MOPPE has some weaknesses in ap-
plication due to exponential combinatorial possibilities of MOPs, we intro-
duce multivariate permutation entropy based on principle component anal-
ysis (MPE-PCA). By reducing the dimension of the phase-space via PCA,
the necessary information or interdependencies can be extracted from the
phase-space and then included in the PE calculation in the time-space.

2) Investigation of multivariate extensions of PE on mfBm: The univariate
behaviour, i.e., PE on fBm, is well known. This contribution comprises i) detailed
investigations of the behaviour of existing and newly introduced multivariate mea-
sures on mfBm in the variation of its self-similarity or Hurst parameter H, and
ii) a detailed comparison of all multivariate measures examined, as well as recom-
mendations for their use. The determined relationships are particularly suitable
for use in solving the inverse problem.

a) Investigation of PPE on mfBm: The distribution of ordinal patterns
of certain length, and thus also PPE, is monotonically related to the Hurst
parameter H, i.e., PPE decreases with increasing H. Thus, considering the
estimation of H of mfBm as an inverse problem, the PPE of an observed
multivariate time series can be used for its solution.

b) Investigation of MMSPE on mfBm: Since scaling does not change the
structure of mfBm, we show that the behaviour of MMSPE of any scale ε
is identical to that of PPE, and analyses with MMSPE do not provide any
additional insight than with PPE.

c) Investigation of MWPE on mfBm: In contrast to PPE, MWPE is sub-
stantially influenced by strictly ascending and descending ordinal patterns.
For this reason, MWPE decreases faster than PPE as H increases, provid-
ing more expressive representations that may promise better discriminability,
e.g., in classification tasks.

d) Investigation of MOPPE on mfBm: Since MOPs involve the dependence
of several spatial variables on mfBm, MOPPE is promising for estimating
the Hurst parameter H and correlations from one source, which the other
measures cannot.

e) Investigation of MPE-PCA on mfBm: We show that the entropies of
higher orders of the principal components again are monotonically dependent
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on the Hurst parameter H, i.e., entropy decreases as H increases. Thus,
MPE-PCA is appropriate for solving inverse problems, i.e., given an observed
realisation of mfBm, the calculation of MPE-PCA provides information about
the level of H and thus parameters of the generating mfBm. Moreover, we
show that, unlike PPE, MPE-PCA can uncover large cross-correlations of
variables at large Hurst parameter H.

3) Further applications of the introduced representations: According to
Goodfellow et al. (2016), we consider the introduced representations to be good if
they make a subsequent learning task easier. Therefore, we use the introduced ap-
proaches in selected real-world challenges and show their efficiency in the context
of machine learning.

a) Symmetry Approximation: We propose MOP4SA, an approach for ap-
proximating symmetries based on MOP and clustering. Exploiting symme-
tries in data is an important topic to obtain sparse (lifted) representations,
reduce complexity, and achieve good performance in a wide variety of different
challenges in ML or AI in general. In an experiment, we show that runtime
advantages in lifted inference can be obtained while accuracy remains good.

b) Supervised Learning: Classical ML models for regression or classification
such as multiple linear regression or k-nearest neighbour can’t process time
series directly. It is necessary to extract good representations (or features)
from time series before using these algorithms. In a regression task from
manufacturing, we show that the use of entropy features is useful due to their
low complexity and good performance compared to other prominent feature
classes. In several classification tasks, we evaluate which of the multivariate
ordinal pattern representations presented in this work can be used flexibly
and reliably and lead to good predictions on different real-world data sets. We
show that new representations introduced in this work outperform existing
ones.

1.3 Structure

After this introduction, Chapter 2 starts with three introductory examples that illus-
trate the potential of using ordinal pattern representations in mathematical modelling
or ML in general. The examples are followed by Chapter 3 on preliminaries, which
formalises the world of dynamical systems and time series, before (multivariate) frac-
tional Brownian motion as the special object of this work is presented. We then
formalise univariate ordinal pattern symbolisation and the corresponding concepts of
permutation entropy as analytical tools to study dynamical systems and time series
for qualitative properties. After the preliminaries, the main part of this work begins,
divided into three parts representing the contributions of this work.

7



Chapter 1 Introduction

In the first part, existing approaches are discussed, and new approaches in mul-
tivariate ordinal pattern representations are introduced as the main contribution. In
Chapter 4, we present a review of existing multivariate extensions of ordinal pat-
tern representations by categorising them according to their approach, while also
discussing limitations (Contribution 1a). In Chapter 5, we introduce three new
multivariate extensions of PE, namely MWPE, MOPPE and MPE-PCA (Contribu-
tion 1b-d). The contents of the first part were mainly published in the following
two conference papers, the first introducing MWPE and the second MPE-PCA and
MOPPE.

Marisa Mohr, Florian Wilhelm, and Ralf Möller. On the Behaviour of Weighted
Permutation Entropy on Fractional Brownian Motion in the Univariate and
Multivariate Setting. The International FLAIRS Conference Proceedings, 34,
2021

Marisa Mohr, Florian Wilhelm, Mattis Hartwig, Ralf Möller, and Karsten Keller.
New Approaches in Ordinal Pattern Representations for Multivariate Time Se-
ries. In Proceedings of the 33rd International Florida Artificial Intelligence
Research Society Conference (FLAIRS-33), pages 124–129, 2020

In the second part, we investigate existing and newly introduced multivariate
extensions of PE when applied to multivariate fractional Brownian motion (mfBm).
To this end, in Chapter 6 and Chapter 7 we present new studies on the behaviour
of the existing representations PPE and MMSPE, respectively (Contribution 2a and
2b). Thereafter, in Chapter 8, Chapter 9 and Chapter 10 we investigate the
behaviour of the newly introduced representations MWPE, MOPPE and MPE-PCA
(Contribution 2c-e). Each chapter contains a theoretical analysis, an empirical evalu-
ation as well as a short interim conclusion. Chapter 11 concludes with a comparison
of all representations and a discussion of possible applications in the context of mfBm.
The second part is based on the following four publications, the first examining the
behaviour of PPE and MMSPE, the second of MWPE, the third of MPE-PCA and
the fourth a summary of all studies with additional study of MOPPE.

Marisa Mohr, Nils Finke, and Ralf Möller. On the Behaviour of Permutation
Entropy on Fractional Brownian Motion in a Multivariate Setting. In Proceed-
ings of the Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference 2020 (APSIPA-ASC), pages 189–196, 2020

Marisa Mohr, Florian Wilhelm, and Ralf Möller. On the Behaviour of Weighted
Permutation Entropy on Fractional Brownian Motion in the Univariate and
Multivariate Setting. The International FLAIRS Conference Proceedings, 34,
2021

Marisa Mohr and Ralf Möller. Ordering Principal Components of Multivariate
Fractional Brownian Motion for Solving Inverse Problems. In Proceedings of
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the Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference 2021 (APSIPA-ASC), 2021

Marisa Mohr and Ralf Möller. A Summary of Canonical Multivariate Permutation
Entropies on Multivariate Fractional Brownian Motion. Advances in Science,
Technology and Engineering Systems Journal, 6(5):107–124, 2021

In the third part, we discuss the introduced multivariate representations in the
context of real-world applications. InChapter 12, we present MOP4SA, an approach
for symmetry approximation based on multivariate ordinal patterns, in a reference
formalism of dynamic probabilistic relational models (DPRMs) (Contribution 3a).
In Chapter 13, we present an empirical evaluation of multivariate permutation
entropies as representations or features in a classification task (Contribution 3b).
This third part was mainly published in the following three conference papers. The
first and second papers deal with MOP4SA in the univariate and multivariate cases
respectively, while the third paper deals with classification.

Nils Finke and Marisa Mohr. A Priori Approximation of Symmetries in Dynamic
Probabilistic Relational Models. In Stefan Edelkamp, Ralf Möller, and Elmar
Rueckert (Eds.), KI 2021: Advances in Artificial Intelligence, pages 309–323.
Springer, 2021

Nils Finke, Ralf Möller, and Marisa Mohr. Multivariate Ordinal Patterns for Sym-
metry Approximation in Dynamic Probabilistic Relational Models. In Guodong
Long, Xinghuo Yu, and Sen Wang (Eds.), AI 2021: Advances in Artificial In-
telligence, pages 543–555. Springer International Publishing, 2022

Marisa Mohr, Florian Wilhelm, Mattis Hartwig, Ralf Möller, and Karsten Keller.
New Approaches in Ordinal Pattern Representations for Multivariate Time Se-
ries. In Proceedings of the 33rd International Florida Artificial Intelligence
Research Society Conference (FLAIRS-33), pages 124–129, 2020

Chapter 14 concludes with a summary of contributions and ends with broad
future work for ordinal pattern representations in the context of multivariate time
series.
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Chapter 2

Learning from Ups and Downs by
Example

This work deals with a scalar-valued representation of time series, which is based on
ordinal pattern symbols that reflect the “up and down” movements within a time se-
ries. The distribution of ordinal pattern symbols is represented by using information-
theoretic entropies, in particular PE, as a measure of the complexity of the time
series. Before diving straight into the details of multivariate time series and multi-
variate ordinal pattern representations, we illustrate the potential of ordinal pattern
representations by examples.
In Section 2.1, we motivate the use of ordinal pattern symbols and PE to solve the

so-called inverse problem, i.e., retrieving causing parameters of a dynamical system
that generate the observed data. We elaborate the inverse problem in the context
of multivariate fractional Brownian motion and conclude in Part II with several
theorems and experimental results that are suitable for solving the inverse problem.
In Section 2.2, we motivate the use of ordinal patterns to determine symmetries in

time series data. Exploiting symmetries is an important topic to obtain sparse (lifted)
representations, reduce complexity and achieve good performance in ML in general.
The entire algorithm for learning symmetries as well as its benefits are discussed in
depth in the context of dynamic probabilistic relational models in Chapter 12.
In Section 2.3, we motivate the use of ordinal pattern symbols and PE as features

in a supervised learning task. Since a good prediction depends on both the choice of
features and the choice of a suitable model, we compare different features as well as
different supervised models for regression as well as classification in Chapter 13.

2.1 Using Ups and Downs for Solving Inverse Problems

In this first example, we motivate the use of univariate ordinal pattern representa-
tions for solving inverse problems. An inverse problem is a problem in which, based
on an observed effect of a system, the underlying cause of the effect is determined.
The opposite of an inverse problem is a direct problem (sometimes called a forward
problem), where starting from an underlying cause of a system, its effect is deter-
mined. The inverse problem is thus the inverse of the forward problem, in which the
model parameters leading to the recorded observed data need to be determined.
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In the following, we consider complex dynamical systems for modelling real phe-
nomena that represent the global behaviour of variables over time resulting from in-
teractions. Some real phenomena require specific properties such as long-term depen-
dence or self-similarity. For example, long-term memory is fundamental for financial
data (Elliott and van der Hoek, 2001). If the profit series on an financial investment,
i.e., the return series, exhibit long-term dependence, this indicates that returns over
time are not independent, which means that past returns can help to predict future
returns (Nath and Mousumi, 2012). In general, long-range dependence (also called
long-term memory or long-range persistence) means that the statistical dependence
between two points in time decreases less than exponentially with increasing time in-
terval or spatial distance between the points, typically as a power decay. Note that in
many publications, the terms “long-range dependence” and “self-similarity” are used
interchangeably even though they are not the same. Self-similar processes, simply
put processes with recurring patterns, are the simplest way to model far-reaching
dependent processes, as they can be described by only one (self-similarity) param-
eter – the so-called Hurst parameter. The Hurst parameter is thus a factor of the
dynamical system that causes the effect of long-range dependence. Here, 0 < H < 1
applies, whereby the closer H is to 1, the higher the degree of self-similarity as well
as the degree of long-range dependence. A value of 0.5 means that there is no long-
range dependence. As the opposite of long-range dependence, H < 0.5 corresponds
to antipersistence, which indicates a strong negative correlation, so that the pro-
cess fluctuates violently. Pipiras and Taqqu (2017) provide further details regarding
long-range dependence and self-similarity. Note that time-dependent phenomena that
depend on long-range dependence or self-similarity are usually described by fractional
Brownian motion (fBm), the stochastic process, which we focus on in Part II of this
work. To this end, definitions and details of dynamical systems or fBm are introduced
in Section 3.2.

Having discussed dynamical systems and their special properties, we come back to
the inverse problem. Assuming that the observed time series data are realisations of
a dynamical system like fBm, why is it of interest to solve the inverse problem? To
retrieve information about the Hurst parameter H the generating fBm provides in-
formation about the cause of the self-similarity. When knowing the Hurst parameter
H, the dynamical model can be used for general purposes such as simulations or pre-
dictions. For example, financial returns can be predicted and peaks exploited. The
problem of retrieving information from measurement data has already been studied
for a long time. Over the years, several graphical or analytical methods such as re-
scaled (R/S) range analysis (Li, 2003), detrended fluctuation analysis (DFA) (Setty
and Sharma, 2015) or classical statistical inversion methods (D’Ambrogi-Ola, 2009)
have been proposed for this purpose. More recent approaches from the field of ma-
chine learning are the application of PCA (Oezkurt and Akgül, 2005; Oezkurt et al.,
2006; Li, 2009), Bayesian estimation (Makarava, 2012), or wavelet filters (Hmood and
Hamza, 2021) for Hurst parameter estimation.
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Since the Hurst parameter reflects the self-similarity of a stochastic process, i.e.,
the recurrence of certain patterns with regard to scaling, it is promising to study the
distribution of (ordinal) symbol patterns within the process. Indeed, in Section 6.1
we formulate a direct relation between the distribution of ordinal patterns and the
Hurst parameter H in a closed formula. This property enables the Hurst parame-
ter H to be determined via the distribution of ordinal patterns. Furthermore, the
use of ordinal pattern representations to estimate the Hurst parameter promises an
additional advantage. While the measurement data is usually noisy and value-based
approaches have difficulty dealing with noise, shape-based approaches are robust to
noise.

The use of ordinal pattern representations to solve the inverse problem in the
context of fBm is elaborated in Part II of this work. In particular, we derive several
theorems and experimental results that are suitable for solving the inverse problem.

2.2 Using Ups and Downs for Exploiting Symmetries

In this second example, we motivate the use of ordinal pattern representations to
identify symmetries in time series data, i.e., time series encoding the same or approx-
imately the same behaviour of an object over time. As the German mathematician
Hermann Klaus Hugo Weyl (1885 – 1955) said, “symmetric means something like
well-proportioned, wellbalanced, and symmetry denotes that sort of concordance of
several parts by which they integrate into a whole. [...] Beauty is bound up with
symmetry” (Weyl, 1952). In everyday life, we usually easily recognise when shapes
exhibit symmetry. They are probably easiest to recognise in the three well-known
transformations mirroring, rotation and translation. Also the fractional Brownian
motion that we presented in the previous section contains symmetries, namely in the
form of self-similarity. Self-similar objects look the same when enlarged or reduced.
In a sense, they are composed of smaller copies of themselves. This property is often
referred to as scale symmetry or scale invariance. Self-similar objects, also called
fractals, are found both as theoretical mathematical constructions and in nature.
The former, such as the Mandelbrot set or Koch’s snowflake, usually exhibit exact
self-similarity. In contrast to mathematical fractals, naturally occurring fractals are
usually roughly or statistically self-similar, i.e., they look more or less the same at
different scales or have a similar distribution of elements when magnified. The nat-
ural phenomenon of self-similarity can be observed in clouds, coastlines, snowfields
or waterfalls, or even ferns, among other beautiful objects in life. The connection
between beauty and symmetry mentioned by Hermann Weyl is still cited again and
again in literature today. Why is this connection so significant in science, and what
role does symmetry play in the field of time series research in particular, or in AI and
ML in general?

In the age of Big Data, historical time series represent a large part of the data
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stored in computers. One example is historical share prices in finance with important
indicators such as opening, closing, high and low prices as well as trading volume. The
ability to retrieve time series of stock prices from a database with specific shapes is a
requirement that is essential in many applications. In financial analysis, for example,
it is interesting to examine all closing price series for so-called head-and-shoulders
patterns. A head-and-shoulders pattern consists of three peaks, with the two outer
peaks close together and the middle peak being the highest. In order to retrieve
time series with specific shapes, such as head-and-shoulders patterns, the shapes of
interest need to be determined. Agrawal et al. (1993) introduces a shape definition
language, also denoted as SDL. For example, a trend can be called an upward trend
even if there have been some downward transitions within time, as long as they
are limited to a certain number. The shape of the curve can be described by its
own alphabet, such as “rising” and “falling”, i.e., encodings of the total order of two
values as so-called ordinal patterns. A symbol of this alphabet describes a transition
between two successive values in the time series. The general framework of SDL
allows (i) searching for sub-sequences with a certain shape and their positions in a
time series (database), (ii) searching for unknown frequently occurring sub-sequences,
i.e., shapes or patterns, and their positions in a time series (database), as well as
(iii) identifying the most similar time series in a time series database based on their
shapes. Roughly speaking, all the tasks described involve identifying (parts of a)
time series that behave the same or approximately similar over time. In financial
analysis, certain recurring shapes have proven to be important indicators over time.
For example, the head-and-shoulders pattern is considered one of the most reliable
trend reversal patterns, predicting a trend reversal from bull to bear. While the
search for similar sequences or certain patterns, e.g. head and shoulder patterns, in
time series (databases) is mainly studied in the research area of knowledge discovery
in databases (KDD), it can also be assigned to the research area of symmetries.
Typically, important shapes emerge as a result of observations over a long period of
time. The forms which are observed frequently and repeatedly and are usually due
to a specific and relevant behaviour for an underlying behaviour or task. Therefore,
shapes are a form of symmetrical behaviour, i.e., symmetries that are due to their
recurrence over time.

Besides symmetry analysis as part of a knowledge discovery process, symmetries
can also be exploited to speed up inference of any probabilistic model, e.g., when per-
forming inference based on historical stock prices. Continuing with the example, a
temporal, or dynamical, probabilistic model can be set up to infer future share prices.
Let’s say we want to infer whether a share is a good investment or not in terms of its
political circumstances. To do this, we use the opening and closing prices as well as
the highs and lows. Share price changes can depend, for example, on the economic
situation, i.e., the industry, or on political factors of a country. This relational infor-
mation can be described in a dynamic probabilistic relational model (DPRM) that
uses multiple random variables to encode uncertainty while decomposing the model
into independent parts. Especially when many entities are represented in a model,
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e.g., different shares and their relations, the DPRM quickly grows in size. In order
to achieve a sparse representation, shares that show similar behaviour, e.g., in the
context of policy restrictions, can be treated in a group. This means that in the
DPRM, instead of using a random variable for each individual stock, only one (pa-
rameterised) random variable is used to describe the common symmetric behaviour
of all of them. This technique is also known as lifting and is not only applied in
the context of DPRMs but is widely used in the field of AI (Agostini and Celaya,
2009; Dieleman et al., 2016; Satorras et al., 2021). Lifting also speeds up inference,
as when answering queries, calculations only need to be performed for a group of
similarly behaving entities, rather than performing the same calculation for every
single random variable in the model. Kersting (2012) provides a detailed overview of
techniques from the field of lifted probabilistic inference that exploit symmetries in
graphical models to speed up inference by orders of magnitude.

While the detection of exact symmetric behaviour, i.e., two or more entities having
exactly the same behaviour, is not realistic, often approximately symmetric behaviour
with a bounded error is desired, i.e., the behaviour of several entities is approximately
the same over time. In this case, shape-based rather than value-based similarity
measures are of interest, i.e., measures such as ordinal patterns that focus on the
overarching behaviour as the general up and down movements in a time series. In
Chapter 12, we present an approach to approximate symmetries based on multivari-
ate ordinal patterns in DPRMs. We substantiate computational as well as other
advantages in an experimental setting.

2.3 Using Ups and Downs as Features in Supervised
Learning

Ordinal pattern representations play a role not only for solving the inverse problem,
or for identifying symmetries in time series data. As a third and final example, we
motivate the use of ordinal pattern representations in supervised learning tasks. Su-
pervised learning describes a particular type of ML. In supervised learning, a function
is learned that maps an input to an output, based on training pairs (observations or
samples). A training pair always consists of an input object (raw data or representa-
tions of the raw data, also called features, predictor, or independent variable) and a
desired output value (target, label or dependent variables). Depending on the type
of target variable that supervised ML algorithms predict, algorithms can be divided
into two groups: If the output variable is numerical (or continuous), it is called a re-
gression, while in classification the variable is categorical (or discrete). Classifications
are either right or wrong in a single prediction, while regressions have an error on a
continuous scale. In addition, some classification models are able to predict not only
the class but also the probability to belong to a class. This is particularly related to
the chosen error measure.
There are a variety of models and algorithms for supervised learning, such as
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multiple linear regression (MLR), support vector machine (SVM), linear discrimi-
nant analysis, decision trees, k-nearest neighbour algorithm, naive Bayes, or artificial
neural network (ANN), all of which have their strengths and weaknesses. Some mod-
els are suitable only for regression, some only for classification, and others for both.
The no free lunch theorem states that no single learning algorithm is best suited
for all supervised learning problems (Wolpert and Macready, 1997). The prediction
quality of any supervised learning algorithm depends on several factors as described
in the following (Hastie et al., 2009). The expected error of a learning algorithm
with respect to a given problem can be represented as the sum of three terms: The
bias, the variance and an irreducible error, where the irreducible error results from
the noise of the problem itself. Bias is an error that arises from faulty assumptions
in the learning algorithm. A high bias can cause an algorithm to fail to recognise the
relevant relationships between predictors and target (underfitting). Variance is the
error from sensitivity to small variations in the training data. A high variance can
cause that the noise in the training data is modelled instead of the intended output
(overfitting). A learning algorithm with low bias needs to be “flexible” so that it can
adapt well to the data. However, if the learning algorithm is too flexible, it adapts
differently to each training data set and therefore has a high variance. The choice of
learning algorithm should therefore be based on a trade-off between bias and variance.

Furthermore, the flexibility or complexity of the learning algorithm depends on
the amount of training data available. If the underlying “true” model function is
simple, an “inflexible” learning algorithm with high bias and low variance can learn the
model function from a small amount of training data. However, if the true function is
complex, i.e., several predictor interactions need to be modelled, then only a “flexible”
learning algorithm with low bias and high variance can learn the model function from
a large amount of training data. Not only the number of training data is important
to build an accurate prediction model, but also the properties of the training data
set. A good training data set should be heterogen, but include no redundancies A
good training data set should contain heterogeneous data, as well as interactions
and nonlinearities, but no redundancies. Most importantly, the dimensionality of the
input space is crucial. As input, classical ML-algorithms usually expect numerical
random variables that are stochastically independent, while the individual values of a
time series are only independent under certain conditions (Duboue, 2020). Therefore,
it is necessary to extract scale-valued representations (features) from a time series
before a learning algorithm can be applied. In addition, the number of extracted
features plays an important role. If the vectors of the input features have a very
high dimension, while the true function depends only on a small number of these
features, poor prediction results may occur. This is because the additional dimensions
can lead to a high variance and the learning algorithm overfits. With appropriate
feature selection algorithms the optimal subset of suitable features can be determined.
However, such approaches only lead to a good predictive model with high accuracy
if the features contain information that contributes to the solution of the problem.

Ordinal pattern are interesting candidates as features in a supervised learning task
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because they encode intrinsic up and down movements in a time series that follows
a natural logic of its generating system. In combination with information-theoretic
entropies, ordinal patterns are promising because the encoding preserves the infor-
mation content and can therefore be used well for prediction, classification or further
learning tasks (Amigó, 2010). Although details of explicit values or original ampli-
tude information are lost in the ordinal pattern symbolisation approach, meaningful
quantifications of the underlying system dynamics are still possible. Roughly speak-
ing, ordinal pattern representations enable a reduction of complex systems to their
intrinsic basic structure, on the basis of which classifications or predictions are sup-
ported. In Chapter 13, we elaborate on the use of ordinal pattern representations in
supervised learning on the basis of various regression and classification tasks.

In conclusion, there is one major idea that links all three motivational examples in
this chapter. To solve a data-driven problem, whether it is estimating a parameter to
create a generalised system, identifying approximate symmetries for lifting models,
or usually classifying data, it is always a matter of finding a suitable characteristic,
representation or feature from which a learning algorithm can learn. And what could
be more intuitive than describing the up and down movements in a time series to
describe a temporal behaviour of an object, just as we would describe it to a friend?
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Chapter 3

Preliminaries

In this section, we introduce the world of dynamical systems and time series and
then present fractional Brownian motion (fBm) as a special case of it. To examine
dynamical systems and time series for qualitative properties, we introduce univariate
ordinal pattern representations and permutation entropy as an analytical tool. Fi-
nally, we recapitulate univariate results from the evaluation of ordinal patterns, i.e.,
up and down movements, in fBm and incorporate them into the overall contribution
of this work, namely multivariate investigations and extensions.
Basic work related to entropy or time series is first presented in the following blog

posts.

Marisa Mohr. The Mystery of Entropy: Measuring Unpredictability in Machine
Learning. inovex Blog, May 2019. https://www.inovex.de/blog/the-mystery-
of-entropy-how-to-measure-unpredictability-in-machine-learning/

Marisa Mohr. The Mystery of Time Series: Why Dealing with Time Series is Diffi-
cult. inovex Blog, July 2021. https://www.inovex.de/de/blog/the-mystery-
of-time-series/

3.1 From Dynamical Systems to Time Series

Time series data are part of many applications in practice, as enumerated at the
beginning of this work. More precisely, a time series is a temporal sequence of any
data, e.g., a series of measurements (with possibly continuous range). Handling of
time series requires a precise mathematical framework, which we introduce as follows.
Time series can be understood as a sequence of (real-valued) random variables of

a time-dependent system also called dynamical system (Ω,A, µ, T ).

• The set Ω, also called state space, includes all possible states of the system. As
with non-time-dependent variables, states include latent variables, i.e., variables
whose values are difficult or impossible to measure. For example, one’s income
is often dependent on one’s reputation, which is determined individually by the
recruiter and thus cannot be measured.

• Events are taken from a σ-algebra A on Ω. Then (Ω,A) is a measurable space.
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• We assume that all states follow a probability distribution µ on the measurable
space (Ω,A).

• The function T is a map describing the change or dynamics of the system at
times t ∈ N.

At time t the system is in state w, at time t + 1 the system is in state T (w) and
at time t+ s the system is in state T ◦s(w), where

T ◦s(ω) := T (. . . T (T (ω))) (3.1)

is the s-fold concatenation of T . Moreover, we assume that the function T : Ω → Ω
is µ-preserving, i.e., for all A ∈ A is µ(T −1(A)) = µ(A). This ensures an identical
distribution of the values of a variable over time, which means that each point in time
provides information about the same data-generating process. A sequence of random
variables or vectors, all defined on the same probability space (Ω,A, µ), is called a
stochastic process. In the case of real-valued random variables, a stochastic process
is a function

X : Ω× N → R (3.2)
X(ω, t) := Xt(ω). (3.3)

A stochastic process depends on both coincidence and time. Note that in the most
simple case, Ω matches with R and X with the identity map. Then the observations
are directly related to iterations of some ω, i.e., there is no latency, and the X itself
is redundant. Over time, the values of an individual variable Xt(ω) of this stochastic
process get observed values (expression of a characteristic or several characteristics,
observations), so-called realisations (x(t))t∈N. The sequence of realisations is called
time series. With the formalism from above, and fixing of some ω ∈ Ω, a time series
is given by

(X(ω), X(T (ω)), X(T ◦2(ω)), . . . ) = (x(t))t∈N. (3.4)

In many cases, the terms time series and stochastic process are used interchange-
ably. The subtle difference is shown in Table 3.1.

t fixed t variable

ω fixed Xt(ω) is a real-valued number
or vector denoted as x

Xt(ω) is a sequence of real-valued
numbers (path, time series) de-
noted as (x(t))t∈N

ω variable Xt(ω) is a random variable de-
noted as X

Xt(ω) is a stochastic process
denoted as (X(t))t∈N

Table 3.1: Difference between time series and stochastic processes.

20



3.2 Fractional Brownian Motion

Thus, for stochastic processes we use the capitalisation (X(t))t∈N, while for obser-
vations, i.e., paths or time series, we use the small notation (x(t))t∈N. In the case
X(t) ∈ R or x(t) ∈ R, the stochastic process or time series, is called univariate, while
in the case X(t) ∈ Rm or x(t) ∈ Rm it is called multivariate.

3.2 Fractional Brownian Motion

As motivated in Section 2.1, modelling time-dependent real-world phenomena by dy-
namical systems requires properties such as long-range dependence or self-similarity.
Such properties play an important role in different research fields such as physics, geo-
physics, hydrology, climatology, internet traffic, telecommunications, network engi-
neering, linguistics, finance or econometric (Beran et al., 2013). Fractional Brownian
motion, a special class of stochastic processes, describes the properties of long-range
dependence and self-similarity and is subject of this work, on which we focus in
Part II.

We believe that fBms provide useful models for a host of
natural time series and that their curious properties deserve
to be presented to scientists, engineers and statisticians.

Mandelbrot and Ness (1968)

3.2.1 Univariate Fractional Brownian Motion

A stochastic process or, more generally, a mathematical object that is similar to
itself at all scales is called a fractal. When you zoom in on a fractal, it resembles
or looks exactly like the original shape. The mathematical property to describe such
phenomena is called self-similarity and is expressed in honour of Harold Edwin Hurst
by the so-called Hurst exponent, Hurst index or Hurst parameter and denoted as H
(Mandelbrot and Wallis, 1968).

Definition 3.2.1 (Self-similar process). A stochastic process (X(t))t∈R is called self-
similar, if there exists H ∈ (0, 1) such that for any real a > 0 it holds that

X(at) ∼ aHX(t), (3.5)

where ∼ denotes the equality of probability distribution.

Intuitively, self-similarity describes the phenomenon that certain process properties
are preserved regardless of scaling in time or space. At the same time, long-range de-
pendence means that the behaviour of a time-dependent process exhibits statistically
significant correlations over large time scales. Self-similar processes are the simplest
way to model long-dependent processes.

An important class of stochastic processes that fulfil self-similarity and is used to
model corresponding phenomena is defined as follows.
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Figure 3.1: Four realisations of fBm with different Hurst parameters H.

Definition 3.2.2 (Fractional Brownian motion). A Gaussian process with Hurst
parameter H ∈ (0, 1) is called fractional Brownian motion (fBm) and denoted as
BH(t), t ∈ R if it holds

(i) BH(0) = 0

(ii) E(BH(t)) = 0, t ∈ R, and

(iii) Cov(BH(t), BH(s)) = 1
2(|s|2H + |t|2H − |t− s|2H), t, s ∈ R

As shown for example by Mishura and Mišura (2008), it follows that BH(t) is H-
self-similar. In case H = 1/2, fBm corresponds to the ordinary Brownian motion.
In case H > 1/2, the process has a persistence property and positively correlated
increments, i.e., an upward jump is more likely followed by another upward jump and
vice versa, and the process exhibits long-range dependence. For H → 1, the process
becomes smoother, less irregular and more trendy. In case H < 1/2, the process has
negatively correlated increments and an anti-persistence property. Figure 3.1 shows
three paths of fBms with different Hurst parameters.

In addition, it can be shown that fBm has stationary increments, i.e., BH(t) −
BH(s) ∼ BH(t − s), see also Mishura and Mišura (2008). Stationarity refers to the
fact that the distribution of the process doesn’t change in time, which has important
consequences. In particular, the BH(t) are identically distributed, i.e., the expecta-
tion values and variances of components do not depend on time t. Furthermore, the
joint distribution of (BH(t), BH(s)) depends only on t− s, so the correlations of the
components also depend only on t− s.
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3.2 Fractional Brownian Motion

3.2.2 Multivariate Fractional Brownian Motion

Multivariate generalisations of fBm are introduced by Lavancier et al. (2009) and Di-
dier and Pipiras (2011). While the definition from Didier and Pipiras (2011) concerns
a far-reaching generalisation of fBm, where self-similarity becomes a mathematical
operator for the multivariate case, Lavancier et al. (2009) restrict themselves to joint
self-similarity. For the sake of simplicity, we focus on the definition introduced by La-
vancier et al. (2009). Thus, in the following, we extend self-similarity to multivariate
processes first.

Definition 3.2.3 (Joint self-similarity (Lavancier et al., 2009)). An m-multivariate
stochastic process X(t) = ((Xi(t))mi=1)t∈R is called jointly self-similar, if for any real
a > 0 it holds that

X(at)
fidi
= aHX(t), (3.6)

where H = diag(H1, . . . ,Hm) with Hi ∈ (0, 1) for i = 1, ...,m and aH is intended
in the matrix sense. The notion fidi

= stands for equality of all the finite-dimensional
probability distributions.

Using the properties of fBm, i.e., self-similarity and stationary increments, multi-
variate fractional Brownian motion (mfBm) can be defined as in the following defi-
nition. Note that mfBm is not to be confused with multifractional Brownian motion
(mBm) or n-th-order fractional Brownian motion (n-fBm). The mBm is a natural
extension of fBm where the Hurst parameter H changes over time, i.e., it is parame-
terised by a function t 7→ H(t) (Benassi et al., 1997; Ayache and Véhel, 1999), while
n-fBm is an fBm whose increments of order n are stationary (Perrin et al., 2001).

Definition 3.2.4 (Multivariate fractional Brownian motion (Amblard and Coeur-
jolly, 2011)). Anm-multivariate stochastic process ((Xi(t))mi=1)t∈R is calledmultivari-
ate fractional Brownian motion (mfBm) with Hurst parameter H = (H1, . . . ,Hm),
where Hi ∈ (0, 1) for i = 1, ...,m, and denoted as Bm

H(t) , if it is

(i) zero-mean Gaussian distributed,

(ii) jointly self-similar with Hurst parameter H, and it has

(iii) stationary increments, i.e., Bm
H(t)−Bm

H(s) ∼ Bm
H(t− s).

As in the univariate case, the self-similarity property is associated with the co-
variance structure of mfBm. Moreover, joint self-similarity imposes many constraints
on the covariance structure of mfBm derived from Amblard and Coeurjolly (2011).
In the following, we first introduce corresponding parameters before repeating the
covariance function of mfBm. In general, the parameters σi > 0, ρij ∈ (−1, 1) and
ηij ∈ R for i, j = 1, ...,m allow for two variables i, j ∈ {1, . . . ,m} to be more or less
correlated and the process to be reversible in time or not.

• Scaling parameter σi > 0 is the standard deviation of the i-th variable at time 1.
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Figure 3.2: Four realisations of mfBm of length T = 5000 with different numbers of
variables m and Hurst parameters H.

• Parameter ρij = ρji is the correlation coefficient between the variables i and j
at time 1.

• Parameter ηij = −ηji is antisymmetric, and they are linked with the time-
reversibility of mfBm. Time reversibility in a deterministic process means that
the time-reversed process satisfies the same dynamic equations as the original
process. In other words, the equations are invariant or symmetric when the sign
of time changes. Furthermore, time reversibility for a stochastic process means
that the statistical properties of the process are the same as the statistical prop-
erties for time-reversed data of the same process. In general, the antisymmetry
parameters ηij = −ηji are unrestricted. If the process is reversible in time, they
are all zero. If the process allows for a causal (or anti-causal) representation,
they are a function of ρij , Hi and Hj , as exemplify in the simulation in Fig. 3.2
discussed later.

Multivariate fractional Brownian motion can be characterised by its covariances
and cross-covariances of its variables as follows.

Lemma 3.2.1 (Covariance Function of mfBm (Amblard and Coeurjolly, 2011)).
The mfBm Bm

H(t) is marginally an fBm, such that the covariance function of the i-th
variable Bi

Hi
of mBfm is as in the univariate case

Cov(Bi
Hi

(s), Bi
Hi

(t)) =
σ2
i

2
(|s|2Hi + |t|2Hi − |t− s|2Hi). (3.7)
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3.2 Fractional Brownian Motion

where σ2
i = Var(Bi

Hi
(1)). The cross-covariances of mfBm for all (i, j) ∈ {1, ...,m}2

and i 6= j are given by

Cov(Bi
Hi

(s), Bj
Hj

(t)) =
σiσj

2
(wij(−s) + wij(t)− wij(t− s)), (3.8)

where the function wij(h) is defined by

wij(h) =


(ρij − ηij sign(h))|h|Hi+Hj if Hi +Hj 6= 1,

ρij |h|+ ηijh log |h| if Hi +Hj = 1.

(3.9)

A setting of ρij = 1 and ηij = 0 in Eqs. (3.8) and (3.9) matches with the univariate
case in Definition 3.2.2 (iii). Note that in the literature the covariance between
the values of a stochastic process X(t) at different times t1 and t2 is also called
autocovariance function given by

γ(t1, t2) = Cov(X(t1), X(t2)) = E[(X(t1)− µ(t1))(X(t2)− µ(t2)], (3.10)

where µ(t) = E[X(t)] is the mean function of X(t) and γ(t1, t2) ∈ R. The autocorre-
lation function ρ of the stochastic process is defined as the normalised autocovariance
function, i.e.,

ρ (t1, t2) =
γ (t1, t2)

σ(t1)σ(t2)
, (3.11)

where σ(t) is the standard deviation of X(t) and −1 ≤ ρ(t1, t2) ≤ +1.

Although mfBm depends not only on a number of variables m ∈ N and a Hurst
parameter H ∈ Rm with Hi ∈ (0, 1), but also on a scaling parameter σ ∈ Rm, cor-
relation coefficient ρij ∈ Rm×m and time-reversibility parameter ηij ∈ Rm×m, for
simplicity we write Bm

H(t) for short. Actually, the 5-tuple (m,H, σ, ρ, η) is needed to
define an mfBm and to realise it, for example, using the properties described above.
As an example, Fig. 3.2 shows four realisations of mfBm of length T = 5000 with
different numbers of variables m, different Hurst parameters H, σi = 1, ρij = 0.3,
and ηi,j = 0.1/(1−Hi −Hj).

A popular task, as previously introduced in Section 2.1, is the estimation of an
mfBm or its descriptive parameters from observed values, also known as inverse prob-
lem. Other prediction tasks related to mfBm are classical tasks in the sense of time
series problems, such as predicting future values or classifying and clustering multiple
realisations. As described in Section 2.3 motivated, such learning tasks can be solved
e.g. with known algorithms of supervised, unsupervised or semi-supervised learning.
For all these learning tasks, it is necessary to identify intrinsic representations that

describe certain properties of mfBm. In the following, we consider the mapping of
mfBm in particular or of time series in general into the ordinal pattern space.
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3.3 Ordinal Pattern Representations

After an introduction to the concepts of dynamical systems, stochastic processes
and time series and a deep dive into fBm, a special class of stochastic processes, we
introduce ordinal pattern representations. Ordinal pattern representations are scalar-
valued representations for time series based on time series symbolisation and entropy
and are used to describe qualitative characteristics of a time series. While classical
time series analysis examines the values of the time series themselves, symbolic time
series analysis considers a non-parametric mapping or encoding into a sequence of
symbols. The origins of symbolisation are controversial, ranging from 1898, when
the French mathematician Jacques Salomon Hadamard (1898) studies geodesics on
surfaces with negative curvature, to a paper by Hedlund (1944), in which he intro-
duces the notion of an orbit for a discrete dynamical system, opening the door to
symbolic dynamics (Coven and Nitecki, 2008). Apart from that, the idea of time
series symbolisation is promising, especially in the case of dynamical systems such as
fBm. The overall dynamics of the generating system are revealed by analysing the
system’s realisations in terms of an inverse problem (Traversaro et al., 2018).

3.3.1 Time Series Symbolisation

In the mathematical theory of symbolic dynamics, a dynamical system is modelled
by a discrete space consisting of infinite (sequences of) abstract symbols, each of
which corresponds to a state of the system. These sequences of symbols are the
subject of advanced analytics and predictive models. As far as current research is
concerned, there are two general approaches to encode the sequence of real-valued
measurements into a sequence of symbols as visualised in Figure 3.3. On the one
hand, classical symbolisation partitions the data range according to specified mapping
rules to encode a numerical time series into a sequence of discrete symbols from a
predefined alphabet Σ. An example of the partitioning of the data range and can be
found in Fig. 3.3a, while the assignment of the symbols (encoding) to the time series
is visualised in Fig. 3.3b. A corresponding and well-known algorithm for determining
data range partitions is Symbolic Aggregate approXimation (SAX) introduced by
Chiu et al. (2003). On the other hand, ordinal pattern symbolisation is another
approach that, independent of the data range of the time series, encodes the total
order between two or more neighbours into symbols. This ordinal pattern approach
is based on an idea of Bandt and Pompe (2002) and visualised in Figs. 3.3c and 3.3d.
Since we use the ordinal symbolisation scheme in the remainder of this work, we
present its formalism and advantages in detail as follows.
Ordinal patterns describe the total order between two or more neighbours in a path

or time series encoded by permutations.

Definition 3.3.1 (Univariate Ordinal Pattern). A vector (x1, . . . , xd) ∈ Rd has or-
dinal pattern (r1, . . . , rd) ∈ Nd of order d ∈ N if xr1 ≥ · · · ≥ xrd and rl−1 > rl in the
case xrl−1

= xrl .

26



3.3 Ordinal Pattern Representations
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(d) Ordinal pattern determination of order d = 3 and time
delay τ = 1 at any time point t ∈ [dτ − τ + 1, T ].

Figure 3.3: Two approaches for symbolising a univariate time series: (a) and (b)
classical symbolisation and (c) and (d) ordinal pattern symbolisation. Best viewed
in colour.

Figure 3.3c shows all possible ordinal patterns of order d = 3 of a vector (x1, x2, x3).
To symbolise a time series (x1, x2, ..., xT ) ∈ RT each point in time t ∈ {d, ..., T} is
assigned its ordinal pattern of order d. The order d is chosen to be much smaller than
the total length T of the time series to look at smaller sub-sequences, i.e., ordinal
pattern windows of order d, within the series and the distributions of respective
“up and down” movements. To assess the overarching trend, delayed behaviour is of
interest. The time delay τ ∈ N is the delay between successive values in the tine series.
Different delays show different details of the structure of a time series. Figure 3.3d
visualises the ordinal pattern determination of order d = 3 and time delay τ = 1
of three different time points in a univariate time series marked in blue, orange and
magenta. Note that ordinal patterns are usually determined at an arbitrary point in
time, as illustrated below the graph in form of vectors.
The ordinal approach has notable advantages in its practical application. First of

all, the method is conceptually simple as it reflects man’s natural thought of up and
down movements and is therefore open to interpretation. Second, prior knowledge of
the data range or the type of time series is not necessary. The concept can be applied
to any time series as long as the range of values is ordered, e.g., xt ∈ R. Third, the
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Figure 3.4: Encoding of symbols with bits.

ordinal approach supports robust and fast implementations (Keller et al., 2017; Piek
et al., 2019). Fourth, it allows for an easier estimation of a good symbolisation scheme
compared to the classical symbolisation approaches, as no data range partitioning is
necessary (Keller et al., 2015; Stolz and Keller, 2017).

3.3.2 Symbol Distributions as a Measure of (Dis)order

By symbolising the time series, the sequence of values, usually xt ∈ R, is encoded
into a sequence containing low-dimensional representations or symbols xt 7→ z ∈ N.
Often it is not the symbols or ordinal patterns themselves, but their distributions in
different parts of a time series (xt)

T
t=1 that are of interest. To assess the (dis)order

of the identified symbols in the system or in the time series, we use a dispersion
measure from the field of statistics, namely entropy. The statistical interpretation of
entropy corresponds to Shannon’s information entropy used in information theory or
computer science.

Shannon’s Information Entropy

Let’s start with an information-theoretical view. Knowing that a computer computes
with bits, we can ask “How many bits does the computer need to display or transmit
an information, e.g., a string of characters?” If the computer needs few bits, the
information is less complex. If the computer needs many bits, the information has
a high complexity. If one wants to encode n = 8 symbols from the Latin alphabet
X = {a, b, c, e, f, g, h} in bits, for example, to display them on the screen, then
sequences of length 3 bits are needed, i.e., a = 000, b = 001, c = 010 etc., to uniquely
encode all n = 8 symbols. Figure 3.4 shows the corresponding encoding tree in
which each individual symbol is encoded by a unique sequence of bits. The display
of a symbol can be interpreted as a statistical event occurring, e.g., with the same
probability p = 1/n. The minimum number of bits needed to represent a symbol
can therefore also be formulated as the height of the coding tree or its statistical
significance given by

log2(n) = log2

(1

p

)
= log2(1)− log2(p) = − log2(p). (3.12)

The base 2 for the logarithm corresponds to the unit of bits (binary digits).
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Since for all positive real numbers m,n > 1, there exists some real number k, so
that for all positive real numbers x

logm(x) = k · logn(x) (3.13)

applies, the choice of the logarithm does not matter. For reasons of simplicity, we
choose the natural logarithm in the following.
Furthermore, symbols or events do not always have to be uniformly distributed,

i.e., p 6= 1/n. For example, in every language, characters, such as e or a, occur more
frequently than others. For non-uniformly distributed characters, we are interested
in the expected number of bits to represent a message, which can be determined by

I((p1, p2, . . . , pn)) = E(− ln(pi)) = −
n∑
i=1

pi · ln pi (3.14)

and is called (Shannon’s information) entropy, where pi is the frequency of symbol i.
The greater the disorder in the symbols, the closer they are uniformly distributed,
the higher the entropy.
Depending on the area of research, entropy is a measure for quantifying inhomo-

geneity, impurity, complexity and uncertainty or unpredictability. The information-
theoretical (left-hand side of Eq. (3.12)) and statistical (right-hand side of Eq. (3.12))
coherence becomes particularly clear in Eq. (3.12) and thus also what the words in-
homogeneity or impurity have in common with uncertainty or unpredictability. For
more details related to entropy, we refer to basic work published by Mohr (2019).

Permutation Entropy

Applying the well-known formula of (Shannon) entropy from Eq. (3.14) to the dis-
tribution of ordinal patterns leads directly to the definition of permutation entropy.
For this purpose, each pattern is previously identified with exactly one of the ordinal
pattern symbols j = 1, 2, ..., d!.

Definition 3.3.2 (PE (Bandt and Pompe, 2002)). The permutation entropy (PE) of
order d ∈ N and delay τ ∈ N of a time series x = (xt)

T
t=1, T ∈ N is defined as

PEd,τ (x) = −
d!∑
j=1

pd,τj ln pd,τj , (3.15)

where

pd,τj =

∑
t≤T [(xt−τ(d−1), . . . , xt−τ , xt) has pattern j]

T − τ(d− 1)
(3.16)

is the frequency of ordinal pattern j in the time series, where [x] = 1 if x is true, 0
otherwise.
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In time series with maximally random ordinal pattern symbols, the ordinal patterns
tend to be equally distributed so that PE is ln(d!). For a time series with a regular
pattern, e.g., in the case of strict monotony, PE is equal to zero (Amigó, 2010). The
search for an optimal order d and time delay τ is a challenging problem in research,
which we leave to hyperparameter optimisation in this work, see also Riedl et al.
(2013); Myers and Khasawneh (2020). As a guideline, d = 2, . . . , 7 is recommended.

Multi-Scale-Permutation Entropy

While the associated entropy is low for a deterministic time series, it approaches its
maximum value in case of complete randomness or high complexity. To distinguish
between randomness and complexity, an additional measure is necessary. As a com-
plement, Costa et al. (2002) introduce multi-scale entropy (MSE), an approach that
captures the complexity of time series on different time scales. On higher time scales,
random noise tends to cancel out, resulting in a low entropy measurement, where
complex signals retain a high entropy. In this manner, it is possible to gain a deeper
insight into the randomness and complexity of a system. Morabito et al. (2012) ex-
tend the concept of MSE to univariate ordinal patterns and introduce MSPE.

For the consideration of different scales of the time series and an associated def-
inition, a coarse-grained procedure is used: From the original time series, several
consecutive time data points are averaged within a non-overlapping time window of
scaling length ε, also called scaling factor. Each element of the coarse-grained time
series y = (y

(ε)
l )

T/ε
l=1 is calculated as

y
(ε)
l =

1

ε

lε∑
t=(l−1)ε+1

xt (3.17)

for 1 ≤ l ≤ T
ε . Note that if the scaling factor ε is 1, the coarse-grained time series

is equal to the original time series. After coarse-grained processing, the original
algorithm of PE from Eq. (3.15) is applied to the new sequence with length T/ε,
which leads to the following definition.

Definition 3.3.3 (MSPE (Morabito et al., 2012)). The multi-scale permutation en-
tropy (MSPE) of order d ∈ N and delay τ ∈ N of a univariate time series x = (xt)

T
t=1,

T ∈ N is defined as PE of its coarse-grained time series y = (y
(ε)
l )

T/ε
l=1, that is

MSPEd,τ,ε(x) = PEd,τ (y). (3.18)

For purposes of analysis, MSPE is plotted as a function of scale factor ε. For
example, Liu et al. (2017) analyse the MSPE of electrocardiogram (ECG) signals from
people suffering from congestive heart failure (CHF) and healthy young and elderly
people, using MSPE with a scaling factor from 2 to 100. When the scaling factor is
between 10 and 32, the complexities of CHF patients, elderly and young people are in
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3.3 Ordinal Pattern Representations

Figure 3.5: Same ordinal pattern of order d = 3 (left) for three different motifs (right).

ascending order, and therefore allow discriminations consistent with normal human
characteristics and diagnoses. As another example, Guo et al. (2021) successfully
use MSPE as a measure of the effects of sleep medication on the brain dynamics
of patients with insomnia. In addition, Su et al. (2016) provide a comparison and
detailed discussion of MSPE to five other related ordinal pattern representations in
the context of an anaesthesia depth monitoring application to quantify anaesthesia
effect on real-time electroencephalography (EEG) recordings.

Weighted Permutation Entropy

Another shortcoming in the above Definition 3.3.2 of PE is that no other informa-
tion is preserved during the extraction of the ordinal patterns except for the order
structure. Information about the amplitude in a time series, i.e., different motifs
as visualised in Fig. 3.5, is lost. However, ordinal patterns with large differences in
amplitude should contribute in different ways to the calculation of PE. Weighted
permutation entropy introduced by Fadlallah et al. (2013) allows for the weighting
of ordinal patterns by exploiting amplitude information resulting from small fluctu-
ations in the time series due to the effect of noise to be weighted less than ordinal
patterns with large amplitudes.

Definition 3.3.4 (WPE (Fadlallah et al., 2013)). The weighted permutation entropy
(WPE) of an univariate time series x = (xt)

T
t=1, T ∈ N, with order d ∈ N and delay

τ ∈ N is defined as

WPEd,τ (x) = −
d!∑
j

pd,τwj ln pd,τwj
(3.19)

with

pd,τwj
=

∑
t≤T wt · [(xt−(d−1)τ , ..., xt−τ , xt) has pattern j]∑

t≤T wt
(3.20)

where

wt =
1

d

d∑
k=1

(xt−(k−1)τ − xd,τt )2 (3.21)

is the empirical variance of the sub-sequence and xd,τt denotes the arithmetic mean
that is xd,τt = 1

d

∑d
k=1 xt−(k−1)τ and [x] = 1 if x is true, 0 otherwise.
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Fadlallah et al. (2013) perform various analyses on synthetic data and also human
EEG recordings using WPE in the context of epilepsy detection. The EEG record-
ings were previously narrow-band filtered to account for the variance of the patterns
mentioned above. When examining two separate EEG signals on different regions of
the brain, WPE proved consistent in distinguishing different regimes and assigning
similar complexities to analogue portions. Note that WPE is suited for signals that
contain significant amplitude information. Otherwise, PE might be the better choice.
Furthermore, Yin and Shang (2014) introduce weighted multi-scale permutation

entropy (WMPE) by combining WPE and MSPE to analyse financial time series of
the US and Chinese stock markets. Since the calculation of MSPE consists of two
separate steps, namely a coarse-grained procedure followed by an ordinary entropy
calculation, it is reasonable to combine both approaches, i.e., WPE and MSPE into
WMPE. Through the coarse-grained procedure and the subsequent weighting intro-
duced in Eqs. (3.20) and (3.21), both potentials, that of scaling and that of amplitude
information, can be exploited. Xia et al. (2016), for example, successfully use WMPE
to investigate the complexity of different traffic congestion indices series collected ev-
ery 15 minutes by the Beijing Transportation Research Center. In particular, WMPE
uncovers the differences between weekday and weekend time series.
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Chapter 4

Review of Multivariate Extensions for
Permutation Entropy

In real-world applications, one often is faced with multivariate time series, e.g., with
medical measurements, which are stored as ECG data that is usually not determined
from a single electrode but from multiple electrodes. Since ordinal pattern represen-
tations are designed for univariate time series, the concept has to be extended to the
multivariate case in order to apply it for multivariate time series as well. Numerous
studies introduce multivariate extensions of PE under the generic name “Multivariate
Permutation Entropy”, each claiming to be the most general approach. Nevertheless
there are several differences between them, resulting in different strengths and weak-
nesses. In this work, by multivariate permutation entropy (MPE) we denote the class
of all multivariate extensions of PE. We divide them into four strategies. The first
three are based on the concept of univariate ordinal patterns, while the fourth strat-
egy is based on a new concept of multivariate ordinal patterns. In this chapter we
elaborate on the different characteristics of the strategies, before introducing and for-
malising multivariate ordinal patterns for MPE as a contribution of this work in the
next chapter. The categorisation of MPE strategies was first presented or elaborated
in the following conference paper or journal article, respectively.

Marisa Mohr, Florian Wilhelm, Mattis Hartwig, Ralf Möller, and Karsten Keller.
New Approaches in Ordinal Pattern Representations for Multivariate Time Se-
ries. In Proceedings of the 33rd International Florida Artificial Intelligence
Research Society Conference (FLAIRS-33), pages 124–129, 2020

Marisa Mohr and Ralf Möller. A Summary of Canonical Multivariate Permutation
Entropies on Multivariate Fractional Brownian Motion. Advances in Science,
Technology and Engineering Systems Journal, 6(5):107–124, 2021

4.1 Multivariate Extensions for Permutation Entropy

A multivariate time series ((xit)
m
i=1)Tt=1 has more than one time-dependent variable.

Each variable xi for i = 1, ...,m not only depends on its past values but also has
dependencies on the values of other variables at the same time point, which we call
spatial variables. Considering two time points (xit)

m
i=1 and (xit+1)mi=1 with m spatial
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(a) Univariate ordinal pattern in time.
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(b) Univariate ordinal pattern in phase space.
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(c) Dimensionality reduction.
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(d) Multivariate ordinal pattern.

Figure 4.1: Four strategies of MPE determination.

variables, simply put two vectors, it is not possible to establish a total order between
them. A total order is only possible if xit > xit+1 or xit < xit+1 for all i ∈ 1, ...,m.
Therefore, there is no trivial generalisation of the PE algorithm to the multivariate
case. Nevertheless, there are several strategies in research to extend PE to the
multivariate case. A multivariate time series is

a) projected into univariate ordinal space by determining univariate ordinal pat-
terns between neighbouring values in time space (orange row in Fig. 4.1a) in each
single variable i, and then pooled over all m variables for multidimensionality,
or

b) projected into univariate ordinal space by determining univariate ordinal pat-
terns between values of all m variables (orange column in Fig. 4.1b) for each
single time point t, and then pooled over all T time points for multidimension-
ality, or

c) projected onto a single-dimensional reduction (bottom in Fig. 4.1c), and then
transformed into ordinal space by determining univariate ordinal patterns, or

d) projected into multivariate ordinal space by determining the multivariate ordi-
nal pattern between d vectors of variable dimension m (green box in Fig. 4.1d)
for d = 2).

36



4.1 Multivariate Extensions for Permutation Entropy

In the following, we provide definitions and algorithms to establish MPE in detail.
Note that strategy d) is presented as contribution 1c) of this work in the next chapter
and serves only as an outlook at this point. Similarly, strategies a) and c) are adapted
in the next chapter.

4.1.1 Canonical Extensions

Procedure a), presented in Figure 4.1a, is a canonical extension of PE to the multi-
variate case, i.e., univariate ordinal patterns are determined for each spatial variable
of the multivariate time series before each pattern is pooled over all variables. This
idea is introduced by Keller and Lauffer (2003) and referred to as pooled permutation
entropy (PPE). By analogy with MSPE, Morabito et al. (2012) introduce multivari-
ate multi-scale permutation entropy (MMSPE), where based on PPE different scales
are studied.

Pooled Permutation Entropy

The idea of PPE is to use marginal frequencies of d! ordinal patterns regarding all m
spatial variables as input for entropy computation. To determine marginal frequen-
cies, an auxiliary matrix is created first:

1. For each variable i = 1, ..,m and for each ordinal pattern j = 1, ..., d!, count all
time steps s ∈ [τ(d − 1) + 1, T ], for which the variable-time pair (i, s) has the
ordinal pattern j.

2. Divide the counts by m · δ, where δ := T − τ(d− 1) is the total count of ordinal
patterns each variable has.

3. Store the results, i.e., frequencies pd,τij in a so-called pooling matrix P ∈ (0, 1)m×d!,
which reflects the distribution of ordinal patterns in the multivariate time series
across its m variables.

It holds
∑m

i=1

∑d!
j=1 p

d,τ
ij = 1. For computational reasons, the marginal frequencies

pd,τ.j =
∑m

i=1 p
d,τ
ij must not vanish for j = 1, ..., d!. If they vanish, set respective values

close to zero.

Definition 4.1.1 (PPE (Keller and Lauffer, 2003)). The pooled permutation entropy
(PPE) of a multivariate time series X = ((xit)

m
i=1)Tt=1 is defined as PE of the marginal

frequencies pd,τ.j =
∑m

i=1 p
d,τ
ij for j = 1, ..., d! describing the distribution of the ordinal

pattern and is calculated by

PPEd,τ (X) = −
d!∑
j

pd,τ.j ln pd,τ.j . (4.1)

Algorithm 1 provides pseudocode for computing PPE.

37



Chapter 4 Review of Multivariate Extensions for Permutation Entropy

Algorithm 1: Computation of PPE
Input: Multivariate Time Series Xm×T , Order d, Delay τ
Function pooling(X,d,τ):

Pm×d! ← pooling matrix initialised with zeros
for every time series variable i = 1, . . . ,m in X do

for each ordinal pattern j = 1, . . . , d! do
c← number of time steps s ∈ [τ(d− 1) + 1, T ] with pattern j
Pij ← divide c by the number of total time steps δ ·m in X

return P

Function marginalisation(P):
p1×d! ← vector of marginalisation initialised with zeros
for every column j = 1, . . . , d! in Pm×d! do

pj ← sum up pij
return p

PPE← PE(marginalisation(pooling(X,d,τ))) // for PE see
Eq. (3.15)

A major advantage of PPE is that Alg. 1 not only allows for a multivariate cal-
culation, but by a simple intermediate step, it can still return the univariate PEs
of each spatial variable. For this purpose, the calculation of PE from Eq. (3.15) is
applied to each row of the pooling matrix P . Considering univariate and multivariate
representations together can support the analysis in applications.
For example, PE and PPE are successfully used to analyse EEG signals by extract-

ing individual as well as cross-channel regularities between spatially distant variables,
i.e., on different hemispheres and/or in different areas (Keller and Lauffer, 2003). Fur-
thermore, Keller et al. (2017) apply PPE to study the 19-channel scalp EEG reflecting
changes in brain dynamics of a boy with lesions predominantly in the left temporal
lobe caused by connatal toxoplasmosis. Nicolaou and Georgiou (2011) use PPE to
characterise sleep EEG signals from more than 80 hours of nocturnal sleep recordings
and classify sleep stages. They find that each sleep stage is characterised by statis-
tically different PPE values and that the observed pattern of PPE is consistent with
the physiological properties of the EEG in each sleep stage. Note that limitations of
PPE are discussed in Section 4.2 in the context of further MPEs.

Multivariate Multi-Scale Permutation Entropy

With the introduction of MSPE in Definition 3.3.3, an extension of PE was introduced
to investigate different time scales of a univariate time series. While in classical PE
maximum randomness and high complexity both have a high entropy value, MSPE
enables their distinction. Random noise tends to cancel out on high time scales, re-
sulting in a low entropy value, while high complexity results in a high entropy value.
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Algorithm 2: Computation of MMSPE
Input: Multivariate Time Series Xm×T , Order d, Delay τ , Scale Factor ε

Y m×(T/ε) ← coarse-grained multivariate time series initialized with zeros
for every time series variable i = 1, . . . ,m in X do

yi ← calculate coarse-grained univariate time series // see Eq.(4.2)

MMSPE← PPE(Y, d, τ) // see Algorithm 1

As with MSPE, the multivariate analogue, i.e., multivariate multi-scale permuta-
tion entropy (MMSPE), is calculated on different time scales of the multivariate time
series by processing a coarse-grained multivariate time series depending on the scale
factor ε. Per variable i in a multivariate time series, several consecutive time data
points are averaged within a non-overlapping time window of the scaling length ε.
Each element of the coarse-grained time series Y = ((y

(ε)
i,l )

T/ε
l=1)mi=1 is calculated as

y
(ε)
i,l =

1

ε

lε∑
t=(l−1)ε+1

xi,t (4.2)

for all i = 1, ...,m and 1 ≤ l ≤ T
ε .

Definition 4.1.2 (MMSPE (Morabito et al., 2012)). The multivariate multi-scale
permutation entropy (MMSPE) of order d ∈ N and delay τ ∈ N of a multivariate time
series X is defined as PPE of its coarse-grained time series Y, that is

MMSPEd,τ,ε(X) = PPEd,τ (Y). (4.3)

Algorithm 2 provides pseudocode for computing MMSPE. Note that the definition
does not include variation across different scales. Nevertheless, the simultaneous
utilisation of a multi-scale approach and the consideration of multiple spatial variables
of the time series facilitates assessing the complexity of the underlying dynamical
system. For example, Morabito et al. (2012) compare the discriminability of 3-channel
EEG data for three different categories of individuals: HC (Healthy elderly Control),
MCI (Mild Cognitively Impaired patients) and AD (Alzheimer Disease patient). They
highlight the potential utility of the MMSPE as a complementary approach to the
assessment of ageing processes in Alzheimer Disease.
Note that Morel and Humeau-Heurtier (2021) propose the bidimensional multi-

scale permutation entropy, MPE2D for short. Since this approach is specifically
designed for 2D image data and texture evaluations, we refrain from considering it in
general discussion.
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4.1.2 Extensions via Spatial Dependencies

The previous approach uses univariate ordinal patterns in time, while the interactions
of different spatial variables at a fixed time point are not considered. While canonical
approaches measure the complexity of each univariate spatial variable in time space,
procedure b), that is visualised in Figure 4.1b, analyses the complexity of the spatial
dependencies. A variant of this procedure is introduced by He et al. (2016) as mul-
tivariate permutation entropy (MvPE). To ensure the uniqueness of this measure in
relation to the general class of multivariate permutation entropy (MPE), we always
use the abbreviation MvPE in the following when referring to this representation.

Let X = ((xit)
m
i=1)Tt=1 be a multivariate time series. As the data range of each

spatial variable in X may be different, each variable i has to be normalised first.
Thus, the min-max scaling is applied, i.e.,

x̃it =
xit −min((xit)

T
t=1)

max((xit)
T
t=1)−min((xit)

T
t=1)

(4.4)

where max(·) is the maximum function and min(·) is the minimum function. By
doing so, all values of the time series are transformed into the range [0, 1].
Based on the normalised multivariate time series, MvPE is defined as follows.

Definition 4.1.3 (MvPE (He et al., 2016)). The MvPE of order d ∈ N of a multi-
variate time series X = ((xit)

m
i=1)Tt=1 is defined as

MvPEd(X) = −
d!∑
j=1

pdj ln pdj , (4.5)

where

pdj =

∑
t≤T [(x̃1

t , ..., x̃
m
t ) has pattern j]

T − (d− 1)
(4.6)

with [x] = 1 if true, and 0 otherwise, is the frequency of univariate ordinal patterns
established over spatial variables.

As discussed in Section 3.3.2 by introducing WPE, changes in time series cannot
always be detected by using ordinal patterns due to different amplitudes in the motifs.
To get more details from the time series, He et al. (2016) propose the use of sub-
patterns. As shown in Fig. 4.2, the original ordinal patterns from Fig. 3.3c are
subdivided into 18 possible (sub)motifs by means of thresholds, i.e., by the definition
of {

Bott = 2
3 min((x̃it)

m
i=1) + 1

3 max((x̃it)
m
i=1)

Topt = 1
3 min((x̃it)

m
i=1) + 2

3 max((x̃it)
m
i=1)

. (4.7)
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Figure 4.2: Ordinal patterns for a multivariate time series with i = 3 variables with
18 sub-patterns by MvPE.

To the best of our knowledge, the effectiveness of MvPE has only been demon-
strated on synthetic data, i.e., in the context of the hyperchaotic Henon map or the
simplified fractional-order Lorenz system, but not on real-world data. Since we dis-
cuss MvPE in this work only as a theoretical concept, and do not investigate it in
any experimental setting, we refrain from presenting a corresponding algorithm.

4.1.3 Extensions via Dimensionality Reduction

In the previously presented approach, the extension via spatial dependencies, neigh-
bourhood relations of the spatial variables are preserved. However, the neighbourhood
relations in time – an advantage of the ordinal approach that makes its application
so successful – are discarded by using the approach. The procedure c) presented in
Figure 4.1c follows the idea of first reducing the number of spatial variables m to a
single dimension by applying an arbitrary dimensionality reduction method to then
encode the spatial neighbourhood relations in a single dimension. More specifically,

f : Rm×T → R1×T (4.8)
x11 x12 . . . x1T

...
...

. . .
...

xm1 xm2 . . . xmT

 7→
(
x̃11 x̃12 . . . x̃1T

)
. (4.9)

Consequently, Definition 3.3.2 can be used for PE calculation directly. Note that the
length T of each spatial variable of the multivariate time series must be the same to
perform dimensionality reduction.
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Rayan et al. (2019) proposes several approaches to reduce the dimensionality of the
multivariate time series to a one-dimensional projection, transforming the problem
of multivariate PE calculation into a one-dimensional evaluation. In particular, they
propose to apply three different distance metrics specified by a reference point q,
namely

1. Euclidean distance with reference point q = (xi1)mi=1, i.e.,

x̃t =
√

(x1
t − x1

1)2 + (x2
t − x2

1)2 + · · ·+ (xmt − xm1 )2 (4.10)

2. Manhattan distance with reference point q = (xi1)mi=1, i.e.,

x̃t = |x1
t − x1

1|+ |x2
t − x2

1|+ · · ·+ |xmt − xm1 | (4.11)

3. Euclidean distance with reference point q = 0, i.e.,

x̃t =
√

(x1
t − 0)2 + (x2

t − 0)2 + · · ·+ (xmt − 0)2 (4.12)

at each time point t. After applying a distance measure to the original multivariate
time series, the well-known univariate PE algorithm from Eq. (3.15) can be applied
to the resulting single-dimensional time series (x̃t)

T
t=1. We refer to three different

possibilities of MPE in the following as

• multivariate permutation entropy based on Euclidian distance (MPE-EUCL),

• multivariate permutation entropy based on Manhattan distance (MPE-MANH),
and

• multivariate permutation entropy based on normalisation (MPE-NORM).

For the evaluation of the proposed approaches, Rayan et al. (2019) use measure-
ment data from body-worn motion sensors, each with 12 3D accelerometers and 4 3D
localisation information recorded for human activity detection. Thus, these sensors
provide a 36-dimensional time series that is used for motif discovery, i.e., the discov-
ery of approximately recurring short patterns in long time-series. The localisation
modes, consisting of four classes (standing = 1, walking = 2, sitting = 3, lying = 4),
define four different motifs that are repeated in the time series, but in slightly dif-
ferent ways, corresponding to the definition of approximately recurring motifs. The
authors show that all three proposed MPE variants outperform the classification ac-
curacy using e.g. MMSPE. Moreover, the proposed MPE-variants tend to be twice
as fast as MMSPE.
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4.2 Limitations

In the previous section we introduced three procedures, in total six algorithms, of
existing multivariate extensions of PE each with its representatives, namely

a) canonical: PPE, and MMSPE,

b) via spatial dependencies: MvPE,

c) via dimensionality reduction: MPE-EUCL, MPE-MANH, and MPE-NORM.

First of all, the field of canonical multivariate extensions has gaps in current re-
search. In the same way that PE is extended by PPE and MSPE by MMSPE in an
analogous way, we fill the gap and extend WPE by introducing multivariate weighted
permutation entropy (MWPE) in the next chapter. As in the univariate case, ampli-
tude information can be uncovered using MWPE, resulting in advantages in subse-
quent analyses.

All representations are based on the idea of univariate ordinal patterns. This means
that univariate ordinal patterns are established either in time (procedure a)) or in
space (procedure b)), so that only either neighbourhood relations in time (procedure
a)) or in space (procedure b)) are taken into account. Neighbourhood relations of
the respective second dimension (information from space or time) are given up ac-
cordingly in the entropy calculation, which is a major limitation. The (simultaneous)
co-movement pattern of several variables over time is important information that
should be encoded in a mathematical representation, however. For example, each
ECG and arterial blood pressure (ABP) signal contains information about cardiac
status, which can be used for the diagnosis of diseases. Depolarisation of ventricles
and contraction of the large ventricular muscles of the human heart (so-called QRS
complex) can be observed during an ECG signal by the highest rash, the most visually
striking part of the upper recording II in Fig. 4.3. Shortly after the electrical activity,
the blood pressure rises, as shown in the second signal in Fig. 4.3. Both movements
of the spatial variables depend on each other and should not be considered separately
in an analysis, but in co-existence (red boxes in Fig. 4.3).

Procedure c) allows both spatial and temporal information to be taken into account
by first encoding the spatial information of all m variables in a single dimension and
then taking the temporal neighbourhood relationship into account in the univariate
entropy calculation. MPE-EUCL, MPE-MANH and MPE-NORM consider spatial
information in the form of spatial distances, but do not consider that the spatial vari-
ables may be correlated. Therefore, we propose to perform dimensionality reduction
using principal component analysis (PCA), a well-known method converting a set of
observations of possibly correlated variables into a set of values of linearly uncorre-
lated variables by an orthogonal transformation, in the next chapter.
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Figure 4.3: Medical multivariate time series from a patient of the MIMIC III waveform
database with identification id 3900006_0029 published by Johnson et al. (2016).

Although possible correlations of the spatial variables are involved in procedure c),
the ordering properties of neighbouring spatial variables still do not play a role.
To ensure this, univariate ordinal patterns must be generalised to the multivariate
case as already motivated with procedure d). In the next chapter, we introduce a
corresponding generalisation.
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Chapter 5

New Approaches in Multivariate Ordinal
Pattern Representations

In this chapter, we introduce new approaches to multivariate variants of permutation
entropy. In Section 5.1 we fill the gap in the field of canonical extensions by intro-
ducing multivariate weighted permutation entropy. The idea is first presented in the
following conference paper.

Marisa Mohr, Florian Wilhelm, and Ralf Möller. On the Behaviour of Weighted
Permutation Entropy on Fractional Brownian Motion in the Univariate and
Multivariate Setting. The International FLAIRS Conference Proceedings, 34,
2021

The canonical variants investigate various aspects such as the influence of scales or
amplitudes, but no correlations of spatial variables. Thus, in Section 5.2 we present
a new approach that allows for decorrelation of spatial variables before computing
MPE. In Section 5.3 we introduce another approach by naturally extending the def-
inition of univariate ordinal patterns to the multivariate domain to account for both
variable and temporal dependencies. Both approaches allow for the consideration of
interdependencies between spatial variables in different ways and are presented for
the first time in the following conference paper.

Marisa Mohr, Florian Wilhelm, Mattis Hartwig, Ralf Möller, and Karsten Keller.
New Approaches in Ordinal Pattern Representations for Multivariate Time Se-
ries. In Proceedings of the 33rd International Florida Artificial Intelligence
Research Society Conference (FLAIRS-33), pages 124–129, 2020

Note that the approach to be introduced in Section 5.2 is furthermore deepened
and generalised in the following article.

Marisa Mohr and Ralf Möller. Ordering Principal Components of Multivariate
Fractional Brownian Motion for Solving Inverse Problems. In Proceedings of
the Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference 2021 (APSIPA-ASC), 2021
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Algorithm 3: Computation of MWPE
Input: Multivariate Time Series Xm×T , Order d, Delay τ
Function weightedPooling(X,d,τ):

Pm×d! ← weighted pooling matrix initialised with zeros
for every time series variable i = 1, . . . ,m in X do

for each ordinal pattern j = 1, . . . , d! do
wij ← add up weights wt // see Equation (3.21)
pij ← divide wij by the total sum of all m · δ weights

return P

MWPE← PE (marginalisation(weightedPooling(X,d,τ))) // see
Alg. 1

5.1 Multivariate Weighted Permutation Entropy
(MWPE)

In analogy of PE and PPE or MSPE and MMSPE, we provide a canonical definition
of multivariate weighted permutation entropy (MWPE) based on WPE. Again, an
auxiliary matrix has to be established first for the determination of MWPE, but this
time using weights:

1. For each variable i = 1, ..,m and for each ordinal pattern j = 1, ..., d!, select
all time steps s ∈ [τ(d − 1) + 1, T ], for which the variable-time pair (i, s) has
univariate ordinal pattern j.

2. Add up the weights wt, i.e., wij =
∑T

t=dτ−τ+1wt for all selected ordinal pattern
vectors j and for each variable i = 1, ...,m. Note that the total count of weights
wit for each variable i is δ := T − (dτ − τ).

3. Divide the weighted sum wij by the total sum of all m · δ weights to obtain the
weighted frequencies for every ordinal pattern j.

4. Store the results, i.e., weighted frequencies pd,τwij in a so-called weighted pool-
ing matrix P d,τw ∈ Rm×d!, which reflects the weighted distribution of ordinal
patterns in the multivariate time series across its m variables.

Based on the weighted pooling matrix P d,τw , MWPE is defined as follows.

Definition 5.1.1 (MWPE). Multivariate weighted permutation entropy (MWPE) of
a multivariate time series X = ((xit)

m
i=1)Tt=1 is defined as PE of the marginal weighted

frequencies pd,τw·j =
∑m

i=1 p
d,τ
wij for j = 1, ..., d! and is defined by

MWPEd,τ (X) = −
d!∑
j

pd,τw·j ln pd,τw·j , (5.1)
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where pd,τwij is the weighted frequency of ordinal pattern j in variable i.

Algorithm 3 provides pseudocode for computing MWPE.

5.2 Multivariate Permutation Entropy Based on
Principal Components (MPE-PCA)

As introduced in Section 4.1.3, one way to realise MPE is to first transform a multi-
variate time series ((xit)

m
i=1)Tt=1 into a univariate time series (x′t)

T
t=1 and then calculate

the PE from Definition 3.3.2 on the reduced time series as usual. To account for pos-
sible correlations between spatial variables, we propose a decorrelation by principal
component analysis and use the (first) principal component to calculate PE.

5.2.1 Principal Component Analysis

Principal component analysis (PCA) converts a set of observations of possibly corre-
lated variables into a set of values of linearly uncorrelated variables by an orthogonal
transformation. For m-dimensional data X, there are basically m basis vectors that
are orthogonal. The variance of data points along each basis vector is the total vari-
ance of the data. In particular, applying PCA to centred data X ∈ Rm×T means
finding a linear mapping V ∈ Rm×m onto a new decorrelated representation

Z = V TX ∈ Rm×T , (5.2)

such that the variance of the projected data

Var(Z) =
1

n− 1

∑
i

‖V Txi‖2 (5.3)

is maximal. Then, to find the direction v1 of maximum variance, we need to solve

max
v1

1

n− 1
‖vT1 X‖2 s.t. vT1 v1 = 1. (5.4)

Rewriting the objective, we have

1

n− 1
‖vT1 X‖2 =

1

n− 1
vT1 XX

T v1 = vT1 Σv1, (5.5)

where Σ is the covariance matrix of X. Maximisation under constraint vT1 v1 = 1
means solving the Lagrangian

f(v1) = vT1 Σv1 − λ1(vT1 v1 − 1) (5.6)

with its derivative
df(v1) = 2(vT1 Σ− λ1v

T
1 )dv1. (5.7)
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Setting the derivative to zero implies

Σv1 = λ1v1. (5.8)

From Equation (5.8) we see that v1 must be an eigenvector of Σ for the largest
eigenvalue. In general, PCA is thus based on eigenvalue analysis, i.e., an eigenvector
of the covariance matrix Cov(X) = Σ corresponds to a basis vector. Further details
can be found in several statistical textbooks, e.g., by Hastie et al. (2009).

5.2.2 Dimensionality Reduction

After performing PCA, the full representation Z ∈ Rm×T contains m eigenvectors,
also called principal components (PCs), which are decorrelated, with the first PC cap-
turing most of the variance in the data. Depending on the application, it is helpful
to map the m-dimensional data into low-dimensional data without losing too much
information, as this may facilitate a classification or regression problem. For example,
data compression can reduce processing time and storage space. Moreover, dimen-
sionality reduction can improve the performance of ML models in terms of avoiding
the curse of dimensionality or enable visualisation (2D or 3D data is easier to visu-
alise and interpret). Based on PCA, dimension reduction ignores the dimensions that
capture low variance in the data (and thus represent a kind of noise). It is assumed
that if the first r < m basis vectors cover a sufficiently large proportion of the total
variance, the new r basis vectors are sufficient for the information content of the
data. Keeping only the first r PCs of the data X gives the truncated transformation
Z1...r = V T

r X, where V ∈ Rm×r is a matrix of weights whose columns are the eigen-
vectors of Σ sorted in descending order of the r highest corresponding eigenvalues
and is used for dimensionality reduction.
Analogous to procedure c) introduced in Section 4.1.3, a single-dimensional rep-

resentation is now used in the context of the entropy calculation, as this allows the
original univariate Definition 3.3.2 of PE to be used. Since the first PC captures
the greatest variance and thus the greatest information in the data, r = 1 is cho-
sen. Depending on the application, however, other individual PCs Zi ∈ R1×T with
i ∈ {1, . . . ,m} or combinations of PCs Z1...r ∈ Rr×T with r ≤ m may be of interest
for the analysis. Note that Zi is a vector, while Z1...r is a matrix.

5.2.3 Calculation of MPE

Multivariate permutation entropy based on principle component analysis (MPE-PCA)
can intuitively be understood as a two-step approach, firstly using PCA to transform
the data into a decorrelated (lower) dimensional representation, before secondly ap-
plying well-known methods such as PE or PPE.
In the case of an individual PC Zi ∈ R1×T , MPE-PCA is defined as follows. Note

that i = 1 is most reasonable.
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Algorithm 4: Computation of MPE-PCA/PPE-PCA
Input: Multivariate Time Series Xm×T , where X is centred, i.e., mean

zero, Order d, Delay τ , Principal Component (i, r) with i ≤ r

Function PCA(X):
Σm×m ← compute covariance matrix of X
V ΛV −1 ← compute eigendecomposition of Σ with V = (v1, . . . , vm) and
λ1 ≤ λm
Zm×T ← compute orthogonal transformation // see Eq. (5.2)
return Z

Zm×T ← PCA(X)
if r == i then

return PE(Zi) // see Definition 3.3.2
return PPE(Z1...r) // see Alg. 1

Definition 5.2.1 (MPE-PCA). The multivariate permutation entropy based on prin-
ciple component analysis (MPE-PCA) of order d ∈ N and delay τ ∈ N of a multivari-
ate time series ((xit)

m
i=1)Tt=1, T ∈ N is defined as

MPE-PCAd,τ,i(Z
i) = −

d!∑
j=1

pd,τj ln pd,τj , (5.9)

where pd,τj is the frequency of ordinal pattern j in the i-th principal component
Zi ∈ R1×T .

Depending on the application, the first or a single PC may not describe “enough”
variance of the data, such that the first r ∈ {2, . . . ,m} PCs Z1...r ∈ Rr×T are consid-
ered for calculation. For this case, we define a pooled version for MPE calculation as
follows.

Definition 5.2.2 (PPE-PCA). The pooled permutation entropy based on principal
component analysis (PPE-PCA) of a multivariate time series X = ((xit)

m
i=1)Tt=1 is

defined as PE of the marginal frequencies pd,τ.j =
∑m

i=1 p
d,τ
ij for j = 1, ..., d! of the first

r ≤ m principal components Z1...r ∈ Rr×T and given by

PPE-PCAd,τ (Z1...r) = −
d!∑
j

pd,τ.j ln pd,τ.j . (5.10)

Algorithm 4 provides pseudocode for computing MPE-PCA or PPE-PCA.
Ma et al. (2021) recently already applied MPE-PCA to the complexity analysis of

EEG data. The authors show that a person has higher complexity during a mental
arithmetic task as measured by MPE-PCA than before carrying out the task. In
addition, they also confirm the necessity of dimensionality reduction via PCA.
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( 2 1 0
2 1 0 ) ( 2 1 0

0 1 2 ) ( 2 1 0
1 2 0 ) ( 2 1 0

0 2 1 ) ( 2 1 0
2 0 1 ) ( 2 1 0

1 0 2 )

( 0 1 2
2 1 0 ) ( 0 1 2

0 1 2 ) ( 0 1 2
1 2 0 ) ( 0 1 2

0 2 1 ) ( 0 1 2
2 0 1 ) ( 0 1 2

1 0 2 )

( 1 2 0
2 1 0 ) ( 1 2 0

0 1 2 ) ( 1 2 0
1 2 0 ) ( 1 2 0

0 2 1 ) ( 1 2 0
2 0 1 ) ( 1 2 0

1 0 2 )

...
...

...
...

...
...

( 1 0 2
2 1 0 ) ( 1 0 2

0 1 2 ) ( 1 0 2
1 2 0 ) ( 1 0 2

0 2 1 ) ( 1 0 2
2 0 1 ) ( 1 0 2

1 0 2 )

Figure 5.1: All (d!)m = 36 possible MOPs of order d = 3 with m = 2 variables.

5.3 Multivariate Ordinal Pattern Permutation Entropy
(MOPPE)

Previous approaches are not able to encode the joint movement of several spatial
variables over one or more points in time. The intuitive idea of the following approach
is to store the univariate ordinal patterns of all spatial variables at a fixed time point t
together into one multivariate pattern. Thus, an extension of univariate ordinal
pattern to multidimensionality is given. Note that some theoretical basis for this is
set by Keller (2012) and Antoniouk et al. (2014).

Definition 5.3.1 (MOP). A matrix (x1, ..., xd) ∈ Rm×d is associated with multivari-
ate ordinal pattern (MOP) 

r11 · · · r1d

...
. . .

...

rm1 · · · rmd

 ∈ Nm×d (5.11)

of order d ∈ N if xri1 ≥ ... ≥ xrid for all i = 1, ...,m and ril−1 > ril in the case
xril−1

= xril .

Figure 5.1 shows all possible MOPs of order d = 3 and number of variables m = 2.
With the natural extension of Definition 3.3.1 to the multivariate case, it is possible
to apply the PE algorithm from Definition 3.3.2 in its original form to multivariate
time series.

Definition 5.3.2 (MOPPE). The multivariate ordinal pattern permutation entropy
(MOPPE) of order d ∈ N and delay τ ∈ N of a multivariate time series X =
((xit)

m
i=1)Tt=1 is defined by

MOPPEd,τ (X) = −
d!∑
j=1

pd,τj ln pd,τj , (5.12)

where pd,τj is the frequency of MOP j in the multivariate time series X.
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Algorithm 5: Computation of MOPPE
Input: Multivariate Time Series Xm×T , Order d, Delay τ

p1×d! ← frequencies initialised with zeros
for every time step t in X do

for each ordinal pattern j = 1, . . . , d! do
c← count all time points t with MOP j of order d and delay τ
// see Definition 5.3.1
pj ← divide c by the number of total time steps T − τ(d− 1) in X

MOPPE← PE(p) // see Definition 3.3.2

Algorithm 5 provides pseudocode for computing MOPPE. Note that all corre-
sponding algorithms for computing MWPE, MPE-PCA, PPE-PCA, and MOPPE
can be found on Github1 and Python Package Index (PyPI)2.

The number of the possible MOPs increases exponentially with the number of
variables m, i.e., (d!)m. Therefore, if d and m are too large, depending on the ap-
plication, each pattern occurs only rarely or some not at all, resulting in a uniform
distribution of ordinal patterns. This has the consequence that subsequent learning
procedures may fail in prediction because the representation does not discriminate
correctly. Nevertheless, for small order d and sufficiently large length T of the time
series, the use of multivariate ordinal patterns can lead to higher accuracy in learning
tasks as we show in Chapters 12 and 13 as the representation encode information of
interdepencies of several spatial variables. In addition, the challenge of combinatorial
possibilities of MOPs can be overcome by reducing the dimensionality of the mul-
tivariate time series beforehand, e.g., by PCA. Thus, the advantages of MPE-PCA
and MOPPE can be used simultaneously.

1https://github.com/marisamohr/mpePy
2https://pypi.org/project/mpePy
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Part II

Multivariate Permutation Entropy
Applied to Multivariate Fractional

Brownian Motion





Time-dependent real-world applications involving long-range dependence or self-
similarity are usually modelled by multivariate fractional Brownian motion (mfBm).
Examples of mfBm can be found in genetic sequences (Arianos and Carbone, 2009), fi-
nancial time series (Fleming et al., 2001; Gil-Alana, 2003; Davidson and Hashimzade,
2008; Alvarez, 2021), or functional magnetic resonance imaging of several brain re-
gions (Achard et al., 2008; Rabiei et al., 2021). When modelling, analysing or pre-
dicting in relation to mfBm, the study of the qualitative behaviour of its observations
in terms of specific characteristics, representations, or parameters is an important
topic. For example, as motivated in Section 2.1, by estimating a model parameter
from a few observations, the inverse problem can be solved, i.e., (information about)
the generating dynamical system that produces the observations can be derived. In
the specific case of mfBm, the solution of the inverse problem involves the estimation
of the self-similarity or Hurst parameter H.

In this second part, the qualitative behaviour of mfBm is investigated by analysing
numerous MPE-variants in variation of the Hurst parameter H. Several theoretical
relationships between MPE and the Hurst parameter H of mfBm are derived and
constitute contributions 2a-e of this dissertation. The theoretical results can be used,
for example, to solve the inverse problem. A summary of all contributions (except
for contribution 2d, i.e., the study on MPE-PCA) is first published in the following
journal article.

Marisa Mohr and Ralf Möller. A Summary of Canonical Multivariate Permutation
Entropies on Multivariate Fractional Brownian Motion. Advances in Science,
Technology and Engineering Systems Journal, 6(5):107–124, 2021

We start with individual investigations of the behaviour of the existing canonical
approaches PPE, MMSPE and the newly introduced approaches MWPE, MPE-PCA
and MOPPE when applied to mfBm in the following Chapters 6 to 10. We then
compare all representations and discuss differences as well as possible applications in
Chapter 11.
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Chapter 6

Pooled Permutation Entropy Applied to
Multivariate Fractional Brownian Motion

This chapter investigates the qualitative behaviour of PPE on mfBm in variation of
its Hurst parameter H and additional parameters. We first presented this idea in the
following conference paper.

Marisa Mohr, Nils Finke, and Ralf Möller. On the Behaviour of Permutation
Entropy on Fractional Brownian Motion in a Multivariate Setting. In Proceed-
ings of the Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference 2020 (APSIPA-ASC), pages 189–196, 2020

We begin with presenting related work in the univariate context needed for the
work to be self-consistent. The remainder of this chapter provides contribution 2a)
of this work. For this, we provide a theoretical analysis of the behaviour of PPE on
mfBm in variation of its Hurst parameter H, before underpinning the results in an
experimental setting. We end with an interim conclusion.

6.1 The Univariate Case: PE of fBm

To study the behaviour of PPE on mfBm, we first recapitulate univariate results of
Bandt and Shiha (2007), who studied univariate ordinal patterns in the context of
Gaussian and autoregressive moving-average processes. Corresponding proofs can be
looked up in the original work.

6.1.1 Distribution of Ordinal Pattern Symbols in fBm

We summarise the distribution of univariate ordinal patterns in fBms according to
its orders d = 2, . . . , 5.

Order d = 2. The ordinal patterns of order d = 2 in fBms are equally distributed,
more specifically

pτ12 = pτ21 = 1/2 (6.1)

for all τ ∈ N.
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Order d = 3. The distribution of ordinal patterns of order d = 3 in fBms is given
by

pτ123 =
1

π
· arcsin 2H−1 =: u (6.2)

for all τ ∈ N. In particular, the distribution of ordinal patterns is monotonically
dependent on the Hurst parameter H. In addition, for all τ ∈ N it holds that

pτj =


u if j = (123), (321),

(1− 2u)/4 otherwise.
(6.3)

Note that Eq. (6.3) applies to arbitrary Gaussian processes with stationary incre-
ments.

Order d = 4. The distribution of ordinal patterns of order d = 4 and all delays
τ ∈ N can also be expressed, albeit in a more complex formula

pτj =
1

8
+

1

4π
· vj , (6.4)

where vj =

arcsinα1 + 2 arcsinα2 if j = (1234), (4321),

arcsinα4 − 2 arcsinα5 if j = (4231), (1324),

2 arcsinα6 + arcsinα1 if j = (2143), (3412),

arcsinα7 − arcsinα1 − arcsinα5 if j = (1243), (2134), (3421), (4312),

arcsinα7 − arcsinα4 − arcsinα5 if j = (1423), (4132), (3241), (2314),

arcsinα3 + arcsinα8 − arcsinα5 if j = (3124), (1342), (4213), (2431),

arcsinα6 − arcsinα8 + arcsinα2 if j = (1432), (4123), (2341), (3214),

(6.5)

with

α1 =
1 + 32H − 22H+1

2
, α2 =22H−1 − 1, α3 =

1− 32H − 22H

2 · 6H ,

α4 =
32H − 1

22H+1
, α5 =22H−1, α6 =

−1− 32H + 22H

2 · 3H , (6.6)

α7 =
32H − 22H − 1

22H+1
, and α8 =

22H−1

3H
.

Order d ≥ 5. For the distribution of patterns of order d = 5 or greater, no closed
formulas exist.
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6.1.2 PE of fBm

The distribution of ordinal patterns of different orders d in fBms results in the fol-
lowing behaviour of PE when applied to fBm.

Theorem 6.1.1. For order d = 2 and H ∈ (0, 1), it holds

PE2,τ (BH(t)) = − ln(1/2) (6.7)

for all delays τ ∈ N.

Proof. Follows directly by inserting Eq. (6.1) into Definition 3.3.2 of PE.

Theorem 6.1.2. For orders d = 3 and d = 4, PEd,τ (BH(t)) is independent of delays
τ ∈ N but monotonically dependent on the Hurst parameter H ∈ (0, 1), i.e.,

PE3,τ (BH(t)) = −(2 · u · ln(u) + (1− 2u) · ln((1− 2u)/4) (6.8)

PE4,τ (BH(t)) = −
d!∑
j=1

1

8
+

1

4π
· vj · ln

(1

8
+

1

4π
· vj
)

(6.9)

with u from Eq. (6.2) and vj from Eq. (6.5) for all delays τ ∈ N.

Proof. Follows directly by inserting Eqs. (6.2) and (6.3) or Eqs. (6.4) and (6.5) into
Definition 3.3.2 of PE. The monotonic dependence on the Hurst parameter H of the
individual distributions of the ordinal patterns transfers to the PE calculation, since
addition or multiplication with scalars does not change monotonicity.

6.2 The Multivariate Case: Theoretical Analysis

Based on the existing work of the last section, we derive in the following contribution
2a) of this work. The univariate case, i.e., the distribution of univariate ordinal pat-
terns in fBm and hence the behaviour of PE of fBm, is well understood and provided
in detail the previous section. Since the idea of PPE is to pool the distribution of
univariate ordinal patterns of each spatial variable into a multivariate measure, the
results of Section 6.1 can be applied to the multivariate case as follows.
In analogy to the univariate case, PPE of order d = 2 is constant for all delays τ

and Hurst parameters H ∈ (0, 1) of mfBm. In addition, it is independent of all
numbers of variables m of mfBm.

Theorem 6.2.1. For order d = 2 , it holds

PPE2,τ (Bm
H(t)) = − ln(1/2) (6.10)

for all delays τ ∈ N, Hurst parameters H ∈ (0, 1)m, and number of variables m ∈ N
of mfBm.
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Proof. To determine the frequencies of ordinal patterns in the pooling matrix P ,
univariate ordinal patterns per variable i = 1, . . . ,m are used. Since mfBm Bm

H(t)
is marginally an fBm, with Eq. (6.1) the distribution of univariate ordinal patterns
of order d = 2 is equally distributed. For length T → ∞ the distribution of ordinal
patterns is independent of T and delay τ , such that the frequencies of the pooling
matrix P are still equally distributed, i.e.,

p2,τ
ij = p2,τ

ij =
1

2m
(6.11)

for all i = 1, ..,m and j = (0, 1), (1, 0). When calculating the marginal frequencies of
the pooling matrix P , the number of variables m is reduced again, that is

p2,τ
.j =

1

2
(6.12)

for j = (0, 1), (1, 0). Hence the claim follows by inserting in Eq. (4.1).

Theorem 6.2.2. For orders d = 3, 4, PPEd,τ (Bm
H(t)) is independent of all delays

τ ∈ N, but monotonically dependent on the number of variables m ∈ N and on the
Hurst parameter H ∈ (0, 1)m of mfBm.

Corollary 6.2.1. If Hi = Hj for all i, j, then PPEd,τ (Bm
H(t)) is independent of the

number of variables m ∈ N of mfBm.

We prove Thm. 6.2.2 and Cor. 6.2.1 together.

Proof. Since mfBm Bm
H(t) is marginally an fBm, by analogy with the case of order

d = 2, with Eqs. (6.2) and (6.3) the frequencies of ordinal patterns of order d = 3 in
each variable i = 1, ...,m in the pooling matrix P are given by

p3,τ
ij =


1
mπ arcsin 2Hi−1 if j = (123), (321)

1
4m(1− 2

π arcsin 2Hi−1) otherwise
(6.13)

for all delays τ .
With the same argumentation as above but with Eq. (6.4), the frequencies of ordinal

patterns of order d = 4 in each variable i = 1, ...,m in the pooling matrix P are given
by

pτ,4ij =
1

m

(
1

8
+

1

4π
· vj
)

(6.14)

with vj as in Eq. (6.5), while

α1 =
1 + 32Hi − 22Hi+1

2
, α2 =22Hi−1 − 1, α3 =

1− 32Hi − 22Hi

2 · 6Hi
,

α4 =
32Hi − 1

22Hi+1
, α5 =22Hi−1, α6 =

−1− 32Hi + 22Hi

2 · 3Hi
, (6.15)

α7 =
32Hi − 22Hi − 1

22Hi+1
, and α8 =

22Hi−1

3Hi

60



6.2 The Multivariate Case: Theoretical Analysis

for all delays τ . In particular, PPEd,τ (Bm
H(t)) stays independent of all delays τ ∈ N.

For the calculation of marginal frequencies, we distinguish two cases:

I) If Hi 6= Hl for all variables i = l, the marginal frequencies are given by

p3,τ
.j =


∑m

i=1
1
mπ arcsin 2Hi−1 if j = (0, 1, 2), (2, 1, 0)∑m

i=1
1

4m(1− 2
π arcsin 2Hi−1) otherwise

(6.16)

or

pτ,4.j =
m∑
i=1

1

m

(
1

8
+

1

4π
· vj
)
, (6.17)

where vj is as in Eq. (6.5) and α1, . . . , α8 as in Eq. (6.15) for all delays τ .

II) If Hi = Hl := H for all variables i and l, the number of variables m is reduced
again and the marginal frequencies are the same as the frequencies of univariate
ordinal pattern in Eqs. (6.2) to (6.4), i.e.,

p3,τ
·j =


1
π arcsin 2H−1 if j = (0, 1, 2), (2, 1, 0)

1
4(1− 2

π arcsin 2H−1) otherwise
(6.18)

or

pτ,4·j =

(
1

8
+

1

4π
· vj
)
, (6.19)

where vj as in Eq. (6.5) and α1, . . . , α8 as in Eq. (6.6) for all delays τ . In
particular, they are independent of all numbers of variables m of mfBm.

Monotonic dependence of PPE on the Hurst parameter Hi is also preserved since
the transformations carried out, i.e., additions or multiplication with scalars, do not
change the monotonicity.

For orders d ≥ 5, no closed formulas for the distribution of ordinal patterns in mfBm
exist (Bandt and Shiha, 2007). Nevertheless, similar behaviour can be observed in
this case, which we evaluate in an experimental setting in the next section.
The consistency concerning the univariate case, i.e., constant PPE for d = 2 and

monotonic dependence for d ≥ 3, is not surprising but is related to the computational
logic of PPE. PPE can be understood as a canonical extension of the univariate
ordinal patterns into a multivariate variant, all univariate ordinal patterns of all
variables combined into one measure. Simply put, the variables are more or less
appended one after the other and considered as a univariate time series.
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However, this simple approach has major advantages. The monotonic dependence
of PPE on the Hurst parameter H can be exploited for its estimation. Thus, if one
calculates the value of PPE from mfBm, this provides information about the level
of the Hurst parameter H via the direct dependency, e.g. in Eqs. (6.16) to (6.19).
Furthermore, based on the pooled matrix P and with a small extension of the PPE
algorithm (see Section 4.1.1), the univariate PE of the individual variables can also
be determined, which provide information about Hurst parameters Hi of the indi-
vidual variables i = 1, . . . ,m. Further advantages and disadvantages, especially in
comparison with other representations, are discussed in Chapter 11.

6.3 Experimental Evaluation

In this experimental evaluation, we investigate the behaviour of PPE on mfBm in
variation of its Hurst parameter H, the number of variables m and the delay τ
underpinning the theoretical results derived in the previous section. Even though
fBm and mfBm are continuous processes, only sampled data can be used in practical
applications. This sampling leads to a discrete-time version of fBm and mfBm with
a sample path of length T →∞, which we do not refer to separately.

We first introduce the experimental setup before discussing the results.

6.3.1 Experimental Setup

All experimental computations are based on simulations of mfBms using an algorithm
according to Lemma 3.2.1 implemented by Amblard et al. (2013)1. For the simulation
of mfBms, the correlation coefficient ρij are all set to 0.0 (if not explicitly mentioned
otherwise), resulting in a correlation matrix



1 0.0 . . . 0.0

0.0 1 . . .
...

...
...

. . . 0.0

0.0 . . . 0.0 1


∈ Rm×m. (6.20)

1Thanks to Jean-François Coeurjolly for providing corresponding code.
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Figure 6.1: Exemplary Simulation of mfBm.

Time-reversibility parameters ηij are set to 0.1/(1−Hi −Hj), resulting in a matrix

0 0.1
1−Hi−Hj

. . . 0.1
1−Hi−Hj

−0.1
1−Hi−Hj

0
...

...
...

...
. . . 0.1

1−Hi−Hj

−0.1
1−Hi−Hj

. . . −0.1
1−Hi−Hj

0


∈ Rm×m. (6.21)

Note that the setting of the time-reversibility parameters ηij corresponds to the
case where mfBm is well-balanced. Since we do not go into detail about the effects
of the time-reversibility parameter in this work, for further information we refer to
the works of Stoev and Taqqu (2006); Coeurjolly et al. (2010). Furthermore, the
length T = 10, 000 of mfBms is assumed to be large. An example of a simulation
of mfBm with m = 5 variables, Hurst parameters Hi = 0.6 for i = 1, . . . , 5, and
correlation coefficients ρij and time-reversibility parameter ηij as set above is shown
in Figure 6.1. In the following experiment, we mainly consider different parameters
Hi and m.

6.3.2 Experimental Results

In this experiment we compute PPE of different orders d and different delays τ
for simulations of mfBm with different numbers of variables m and different Hurst
parameters Hi for i = 1, . . . ,m. The results of the computations of PPE of orders
d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red) are visualised in
Figure 6.2 and underpin the theorems derived in Section 6.2. In particular, we show
the two following aspects:

i) independence from the delay τ (Figs. 6.2a and 6.2b),

ii) (in)dependence from the number of variables m (Figs. 6.2c and 6.2d).

In general, all sub-figures of Fig. 6.2 show a constant PPE for order d = 2, namely
− ln(1/2), while for orders d > 2 there is a monotonic dependence on the Hurst
parameter H, i.e., for increasing Hurst parameter H the entropy decreases. In Fig-
ures 6.2a and 6.2b we show the independence of PPE on mfBm from the delay τ .
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Chapter 6 PPE Applied to mfBm

(a) τ ∈ {1, 2, 25, 100}, m = 3, Hi = Hj . (b) τ ∈ {1, 2, 25, 100}, m = 3, Hi 6= Hj .

(c) τ = 1, m ∈ {2, 3, 4, 5}, Hi = Hj . (d) τ = 1, m ∈ {2, 3, 4, 5}, Hi 6= Hj .

Figure 6.2: Experimental computations of PPE of orders d = 2 (green), d = 3 (or-
ange), d = 4 (blue), and d = 5 (red) on mfBm in variation of its Hurst parame-
ter H ∈ (0, 1)m.

Here, the number of variables is set to m = 3. Again, all green lines in Figs. 6.2a
and 6.2b, i.e., for d = 2, are constant for each τ , confirming the independence of
delay τ in Eq. (6.10). All other lines, i.e., for d > 2, are also the same for any τ , but
monotonically dependent on the Hurst parameter H, as given in Thm. 6.2.2. With a
sharp eye it can be seen that the lines in Fig. 6.2a fall more sharply than in Fig. 6.2b.
This is because in Fig. 6.2a the Hurst parameters Hi are the same, i.e. Hi = Hj

for all spatial variables i, j, and in Fig. 6.2b the Hurst parameters Hi are different,
i.e. H1 = 0.6 and H2 = H3. The proportion of variable i = 1 with Hurst parameter
H1 = 0.6 keeps the curve of PPE upwards.
In Figs. 6.2c and 6.2d we show the dependence of PPE, when applied to mfBm, on

the number of variables m and the independence in the case Hi = Hj for all variables
i, j. For this, the delay is fixed to τ = 1. Again, the left figure (Fig. 6.2c) considers
the special case where all components of the Hurst parameter Hi are equal. Again,
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6.4 Interim Conclusion: PPE

all green lines, i.e., for d = 2, are constant − ln(1/2) for each m, confirming the
independence of numbers of variables m in Thm. 6.2.1. All other lines, i.e., for d > 2,
are also the same for any m, but monotonically dependent on the Hurst parameter
H, as given in Cor. 6.2.1. The right figure (Fig. 6.2d) shows the general case where
the components of the Hurst parameter Hi are not equal. Specifically, Hi = Hj for
i, j 6= 1 is variable, while H1 = 0.6 is fixed. We have rotated the view of the figure so
that we can see that the lines for d > 2 fall more sharply as the number of variables
m increases, confirming the dependence on the number of variables m in Thm. 6.2.2.
All in all, the experiments underpin our theoretical results from the previous section.
Note that in Fig. 6.2, especially for increasing H, some deviations (jittering) in

the data from a theoretically monotonic line are visible. In particular, this is related
to the experimental length constraints of T < ∞, because the distributions given in
Section 6.2 can only be expected to be exact if T → ∞. Thus, the estimates of the
values of PPE of mfBm for a small length T differ from the true values based on a
hypothetical mfBm of infinite length. Visually, this phenomenon is underpinned by
the following three aspects:

i) In general, the distribution of ordinal patterns in mfBm becomes more determin-
istic or predictable as H increases, i.e., lower entropy applies. In all sub-figures
of Figure 6.2, the deviations in the distributions due to the length restriction
T < ∞ have a stronger effect on the value of PPE in the case H → 1 than in
the case H → 0, where an approximately equal distribution holds.

ii) In Figure 6.2a, the deviations become larger as the delay τ increases, because
the number of time points to which an ordinal pattern is assigned decreases to
T − (dτ − τ). That is, the length of the time series on which PPE is technically
based decreases further, increasing the number and strength of the deviations in
the distributions.

iii) In Figure 6.2c, the deviations increase as the number of spatial variables m
increases, because the number of time points to which an ordinal pattern is
assigned increases to m · (T − (dτ − τ)). This means that the length of the time
series on which PPE is based becomes greater, which reduces the number and
strength of the deviations in the distributions.

Dávalos et al. (2018) provide a detailed discussion of the implications of fBm’s exper-
imental length constraints on the distribution of ordinal patterns.

6.4 Interim Conclusion: PPE

In this chapter, we have investigated the behaviour of PPE of different orders d and
delays τ on mfBm of different numbers of variables m in variation of its Hurst param-
eter H ∈ (0, 1)m. For order d = 2, PPE is constant, namely − ln(1/2), independent
of the number of variables, the Hurst parameter or the delay. However, for orders
d > 2, the use of PPE provide interesting insights and possible applications. The
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Chapter 6 PPE Applied to mfBm

distribution of ordinal patterns of orders d > 2, and thus also PPE, are directly
related to the Hurst parameter H and can be expressed in formulae. For example,
considering the estimation of H as an inverse problem, PPE can be used to solve it,
since PPE depends monotonically on H, i.e., the entropy decreases as H increases.
In Chapter 11 we discuss PPE in comparison to further representations.
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Chapter 7

Multivariate Multi-Scale Permutation
Entropy Applied to Multivariate
Fractional Brownian Motion

After investigating the behaviour of PPE on mfBm, this chapter investigates the
behaviour of MMSPE on mfBm in a theoretical as well as experimental setting. We
first presented this idea in the following conference paper.

Marisa Mohr, Nils Finke, and Ralf Möller. On the Behaviour of Permutation
Entropy on Fractional Brownian Motion in a Multivariate Setting. In Proceed-
ings of the Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference 2020 (APSIPA-ASC), pages 189–196, 2020

This chapter provides contribution 2b) of this work. The computations of MSPE
and MMSPE are based on a coarse-grained process. Thus, we start with correspond-
ing related work of the coarse-grained process on fBm by Delignières (2015); Dávalos
et al. (2018) and adapt the results to the multivariate case of mfBm. This is followed
by a theoretical analysis and an experimental evaluation of the behaviour of MMSPE
on mfBm. We end with an interim conclusion.

7.1 Coarse-Grained Fractional Brownian Motion

As introduced in Section 4.1.1 and Algorithm 2, MMSPE includes the additional
step of coarse-gaining or scaling before PPE is performed in its origin. To investigate
the behaviour of MMSPE on mfBm, coarse-grained multivariate fractional Brownian
motion (cmfBm) has to be derived and analysed first. To calculate the elements of
the multivariate coarse-grained time series, we apply Eq. (4.2) to mfBm. That is,
cmfBm is defined by

B
i,(ε)
Hi

(l) =
1

ε

ε∑
j=1

Bi
Hi

((l − 1)ε+ j) (7.1)

for l = 1, ..., T/ε and all i = 1, ...,m. By definition, the coarse-graining procedure is
a linear combination of the elements in the scale ε, where each variable i marginally
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Chapter 7 MMSPE Applied to mfBm

is an fBm. As fBm refers to the incremental process of correlated Gaussian variables,
we consider in the following

BH(t) =
t∑
i=0

GH(i), (7.2)

GH(t) = BH(t)−BH(t− 1), (7.3)

where the fractional Gaussian noise (fGn) GH(t) refers to the individual step. As
Gaussian processes, fGn is completely characterised by the expected value and the
autocovariance function (Delignières, 2015), given by

E
(
GH(t)

)
= 0, (7.4)

Cov
(
GH(t), GH(t+ s)

)
=

σ2

2
(|t+ 1|2H + |t− 1|2H − 2|t|2H), (7.5)

ρG(k) =
1

2
(|t+ 1|2H + |t− 1|2H − 2|t|2H), (7.6)

where σ2 is the variance of any individual Gaussian step GH(t).
We follow the arguments of Dávalos et al. (2018), who characterise the coarse-

grained fractional Gaussian noise (cfGn) defined as

GεH(l) =
1

ε

∑
GH((l − 1)ε+ j) =

1

ε
(BH(εl)−BH(ε(l − 1))) (7.7)

by its expected value and its autocovariance function. As the expected value of a sum
of independent random variables is the sum of the expected value of each variable,
it holds E(GεH(l)) = 0. Using Definition 3.2.2 (iii), Dávalos et al. (2018) derive the
variance and covariance of cfGn as

Var(GεH(l)) =
1

ε2
E
(

(BH(εl)−BH(ε(l − 1)))2
)

(7.8)

= σ2
i ε

2(H−1) (7.9)

and

Cov(GεH(l), GεH(m)) = σ2ε2(H−1)ρG(k). (7.10)

The structure of the autocorrelation function is the same as the original fGn, but
with additional information of the scale factor ε, i.e., it holds that

ρG,ε(k) =
σ2ε2(H−1)ρG(k)

σ2ε2(H−1)
= ρG(k). (7.11)

It follows that the autocovariance function of the original fGn is invariant to the
coarse-graining procedure. Transferring the properties of fGn to fBm and mfBm,
whose spatial variables are marginally fBms, also results in invariance for these with
respect to the coarse-graining procedure. In the following we use the definition of
cmfBm and its properties to investigate the behaviour of MMSPE on mfBm.
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7.2 Theoretical Analysis

7.2 Theoretical Analysis

With previous insights, the transfer of results from PPE to MMSPE is straightfor-
ward. In analogy to PPE, MMSPE of order d = 2 is constant for all delays τ and
Hurst parameters H of mfBm. In addition, it is independent of all numbers of vari-
ables m of mfBm.

Theorem 7.2.1. For order d = 2, it is

MMSPEd,τ,ε(B
m
H(t)) = − ln(1/2) (7.12)

for all delays τ ∈ N, scales ε ∈ N, Hurst parameters H ∈ (0, 1)m, and number of
variables m ∈ N of mfBm.

Proof. For mfBm, each variable i = 1, . . . ,m at the margin is a fBm. Since MSPE
and MMSPE are based on PE and PPE, respectively, and the underlying distribu-
tions in the coarse-grained procedure of cmfBm follow those of the original fBm, the
distribution of ordinal patterns of orders d = 2 of cmfBm are the same as in Eq. (6.1).
In particular, they are scale-invariant. Hence the claim follows with Thm. 6.2.1.

For orders d = 3 and d = 4 there exist a dependence on the number of variables m
and on the Hurst parameter H of mfBm.

Theorem 7.2.2. For orders d = 3, 4, MMSPEd,τ (Bm
H(t)) is independent of all delays

τ ∈ N and scale factors ε ∈ N but monotonically dependent on the number of variables
m ∈ N and on the Hurst parameter H ∈ (0, 1)m of mfBm.

Corollary 7.2.1. If Hi = Hj for all i, j, then MMSPEd,τ (Bm
H(t)) is independent of

the number of variables m ∈ N of mfBm.

We prove Thm. 7.2.2 and Cor. 7.2.1 in one.

Proof. For mfBm, each variable i = 1, . . . ,m is marginally an fBm. Since the co-
variance function of fBm is invariant to the coarse-grained procedure in Eq. (7.1),
the independence of scales ε follows. Then Thm. 6.2.2 is directly applicable, which
implies independence from the delay τ , the number of variables m (in the case of
Hi = Hj) and monotonic dependence on the Hurst parameter H.

For orders d ≥ 5, no closed formulas for the distribution of ordinal patterns in
mfBm exist (see Section 6.1). Nevertheless, analogous behaviour can be observed in
this case as well, which we evaluate in an experimental setting in the next section.
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Chapter 7 MMSPE Applied to mfBm

7.3 Experimental Evaluation

In this experiment we compute MMSPE of different orders d, different delays τ and
different scale factors ε for simulations of mfBm with different numbers of variables m
and different Hurst parameters Hi for i = 1, . . . ,m. The results of the computations
of MMSPE of orders d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red)
are visualised in Fig. 7.1 and underpin the theorems derived in Section 7.2. The
experimental computations are based on same simulations of mfBms as described in
Section 6.3. In particular, in the experiments we underpin the following three aspects

i) independence from the delay τ ,

ii) independence from the scale factor ε,

iii) (in)dependence from the number of variables m.

In general, all sub-figures of Fig. 7.1 show a constant MMSPE for order d = 2,
namely − ln(1/2), while for orders d > 2 there is a monotonic dependence on the
Hurst parameter H, i.e., for increasing Hurst parameter H the entropy decreases.
The deviations with increasing Hurst parameter H occur for the same reason as in
the last experiment in Section 6.3, namely because of experimental length constraints.
In Figures 7.1a and 7.1b, we show the independence of MMSPE on mfBm from the
delay τ in the same way as in Figs. 6.2a and 6.2b with the difference that the scale
factor ε is set to 2. The results are the same as in Figs. 6.2a and 6.2b, i.e., in the
case of PPE, which is a first indication that the scaling of mfBm has no influence on
MMSPE. Rather, however, Figs. 7.1a and 7.1b show the independence of MMSPE
of orders d = 2, . . . , 5 from the delay τ as all line are the same for each scale factor ε.
Moreover, in Figs. 7.1c and 7.1d, we underpin the independence of MMSPE on

mfBm from the scale factor ε. For this, the number of variables is fixed to m = 3
and the delay to τ = 1. Again, all green lines, i.e., for d = 2, are constant with
value − ln(1/2) for each ε ∈ {1, 2, 5, 10}, confirming the independence of the scale
factor ε in Thm. 7.2.1. All other lines, i.e., for d > 2, are also the same for any
scale ε ∈ {1, 2, 5, 10}, but monotonically dependent on the Hurst parameter H, in
particular confirming Thm. 7.2.2. Finally, scaling has no influence on the behaviour
of MMSPE on mfBm.
In the end, Figs. 7.1e and 7.1f show the independence of MMSPE, when applied to

mfBm, from the number of variables m in the special case Hi = Hj for all variables
i, j (left) and the dependence in the general case (right). The delay is set to τ = 1
and the scale factor to ε = 2. Again, all green lines, i.e., for d = 2, are constant with
value − ln(1/2) for each m, confirming the independence of numbers of variables m
in Thm. 7.2.1. All other lines in Fig. 7.1f, i.e., for d > 2, are also the same for any m,
but monotonically dependent on the Hurst parameter H, as stated in Cor. 7.2.1. On
the other hand, in Fig. 7.1e, this time without rotating the view, but with a sharp
eye, it can still be seen how the lines for d > 2 decrease more rapidly with increasing
number of variables m, again confirming the dependence on the number of variables
m in Thm. 7.2.2.
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7.3 Experimental Evaluation

(a) τ ∈ {1, 2, 25, 100}, ε = 2,m = 3,Hi = Hj . (b) τ ∈ {1, 2, 25, 100}, ε = 2, m = 3, Hi 6= Hj .

(c) τ = 1, ε ∈ {1, 2, 5, 10}, m = 3, Hi 6= Hj . (d) τ = 1, ε ∈ {1, 2, 5, 10}, m = 3, Hi = Hj .

(e) τ = 1, ε = 2, m ∈ {2, 3, 4, 5}, Hi 6= Hj . (f) τ = 1, ε = 2, m ∈ {2, 3, 4, 5}, Hi = Hj .

Figure 7.1: Experimental computations of MMSPE of orders d = 2 (green), d = 3
(orange), d = 4 (blue), and d = 5 (red) on mfBm in variation of its Hurst parame-
ter H.
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Chapter 7 MMSPE Applied to mfBm

All in all, the experiments underpin our theoretical results from the previous Sec-
tion 7.2. Since MMSPE is based on PPE and scaling has no influence on mfBm, the
behaviour of MMSPE on mfBm in Fig. 7.1 is to be expected the same as that of
PPE in Fig. 6.2. A direct comparison between PPE and MMSPE, as well as other
representations and their possible applications, is discussed in Chapter 11.

7.4 Interim Conclusion: MMSPE

In this chapter, we have investigated the behaviour of MMSPE of different orders d
and delays τ on mfBm of different numbers of variables m in variation of its Hurst
parameter H ∈ (0, 1)m. For order d = 2, MMSPE is constant, namely − ln(1/2),
independent of the number of variables, the Hurst parameter or the delay. In the
case of order d > 3, the behaviour of MMSPE on mfBm is monotonically dependent
on the Hurst parameter H ∈ (0, 1)m, i.e., the entropy decreases with increasing H –
as does PPE.
In general, scaling the elements of mfBm by a coarse gained procedure does not

reveal relevant structures on mfBm with infinite length, although the long and short
memory correlations of mfBm generate a very complex behaviour. The reason for
this is that the process is scale invariant. This is particularly related to or reflects
the fractal property, because when a fractal is zoomed in or scaled, it resembles
the original shape. Since scaling does not change the structure of mfBm, MMSPE
of any scale ε is equal to PPE and analysis with MMSPE of higher orders d > 2
does not provide any additional insight compared to PPE. Further representations
are necessary to inspect the qualitative behaviour of mfBm, as follows in the next
chapters.
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Chapter 8

Multivariate Weighted Permutation
Entropy Applied to Multivariate
Fractional Brownian Motion

After examining the existing approaches, PPE and MMSPE, this chapter explores
the behaviour of the newly introduced multivariate weighted permutation entropy
(MWPE) on mfBm in both a theoretical and experimental framework. We first
presented this idea in the following conference paper.

Marisa Mohr, Florian Wilhelm, and Ralf Möller. On the Behaviour of Weighted
Permutation Entropy on Fractional Brownian Motion in the Univariate and
Multivariate Setting. The International FLAIRS Conference Proceedings, 34,
2021

The univariate case, i.e., the behaviour of WPE on fBm, has not yet been studied
in research, which is why we start with it. The remainder of this chapter contains
contribution 2c) of this work. A theoretical analysis and an experimental evaluation of
the behaviour of MWPE on mfBm follows. Again, we end with an interim conclusion.

8.1 The Univariate Case: WPE on fBm

We first consider the behaviour of WPE of order d = 2 on fBm.

Theorem 8.1.1. For order d = 2 and H ∈ (0, 1), it holds that

WPE2,τ (BH(t)) = − ln(1/2) (8.1)

for all delays τ ∈ N

Proof. WPE differs from PE in that the ordinal patterns are weighted depending on
their position t according to Eq. (3.20). For a weight wt of order d = 2, i.e., of two
time steps xt−1 and xt, we have

wt =
1

2

2∑
k=1

(xt−(k−1)τ − x2,τ
t )2 (8.2)

=
1

2
(xt − xt−τ )2. (8.3)
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Chapter 8 MWPE Applied to mfBm

Figure 8.1: Comparison of PE and WPE.

Since xt ∼ BH(t), from Definition 3.2.4, property (3), i.e., fBm has stationary incre-
ments, we conclude that

1

2
(BH(t)−BH(t− τ))2 ∼ 1

2
(BH(τ))2 (8.4)

with Var(BH(τ)) = σ2τ2H and σ2 = Var(BH(1)) = s2H as in Definition 3.2.2 (iii).
Consequently, the weights wt are independently distributed from t, i.e.,

wt ∼ N (0,
1

2
(sτ)2H). (8.5)

Considering the distribution of all possible realisations of fBm, we see from the use
of the weights wt from Eq. (3.20) in the calculation of WPE that it cancels out for a
constant delay τ ∈ N. With Eq. (6.1) follows the assertion, i.e.,

WPE(BH(t)) = − ln(1/2). (8.6)

.

Figure 8.1 (left) confirms the match of PE and WPE of order d = 2 applied to
fBm, i.e., weighting has no influence in this case. All experimental calculations are
based on a simulation of fBm using the fBm package available on PyPI. Note that in
the case of d ≥ 3, however, the weighting has influence due to the lack of symmetry.
The weight of order d = 3 is given by

wt =
2

9
(x2
t − xt(xt−τ − xt−2τ ) + x2

t−τ + x2
t−2τ − xt−τxt−2τ )). (8.7)

In particular, the above arguments cannot be applied. To confirm this, Fig. 8.1
(right) shows that WPE of order d = 3 applied to fBm decreases more sharply with
increasing Hurst parameter H than PE. Thus, for order d = 3, the weighting must
affect the distribution of ordinal patterns.
Table 8.1 shows exemplary the frequencies of (weighted) ordinal patterns (wpj) pj

of order d = 3 and delay τ = 1 applied to a simulated fBm of length T = 30, 000
with Hurst parameter H = 0.8. While for PE it is wt = 1 for every pattern j, we
see that the weights wt of ordinal patterns (0, 1, 2) and (2, 1, 0) are on average larger
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8.2 The Multivariate Case: Theoretical Analysis

j counts wt wpj pj

(0, 1, 2) 10539 0.76 0.48 0.35

(0, 2, 1) 2470 0.19 0.03 0.08

(1, 0, 2) 2482 0.19 0.03 0.08

(1, 2, 0) 2457 0.19 0.03 0.08

(2, 0, 1) 2462 0.19 0.03 0.08

(2, 1, 0) 9588 0.72 0.40 0.33

Table 8.1: Frequencies of (weighted) ordinal patterns (wpj) pj of order d = 3.

than those of the other four ordinal patterns. Consequently, the frequencies of these
ordinal patterns are also higher than in the unweighted case of PE. With Eq. (6.3),
WPE decreases more sharply than PE. For H > 0.5, fBm is positively correlated,
i.e., after an upward jump a further upward jump is more likely to follow and vice
versa, which increases the effect. For ordinal patterns with order d > 3, a similar
behaviour is to be expected. For example, the weight of order d = 4 is given by

wt =
1

16
(3x2

t − 2xt(xt−τ + xt−2τ + xt−3τ ) + 3x2
t−τ

−2xt−τ (xt−2τ + xt−3τ ) + 3x2
t−2τ − 2xt−2τxt−3τ + 3x2

t−3τ ). (8.8)

In particular, WPE of orders d > 2 are dependent on the delay τ .

8.2 The Multivariate Case: Theoretical Analysis

In this section, we transfer the idea from the previous section to the multivariate
case. We first consider the behaviour of MWPE of order d = 2 applied to mfBm.
Again, MWPE of order d = 2 is constant for all delays τ , number of variables m and
corresponding Hurst parameters Hi with i = 1, . . . ,m of mfBm.

Theorem 8.2.1. For order d = 2 , it holds

MWPE2,τ (Bm
H(t)) = − ln(1/2) (8.9)

for all delays τ ∈ N, Hurst parameters H ∈ (0, 1)m, and number of variables m ∈ N
of mfBm.

Proof. First, the distribution of ordinal patterns of order d = 2 in fBm for calculating
MWPE remains the same as in Equation (6.1), e.g., it is equally distributed for all
Hurst parameters H ∈ (0, 1) and delays τ ∈ N. Second, the weighting of ordinal
patterns of order d = 2 is the same for (0, 1) as for (1, 0), because the distribution
and variance at time t+ 1 is the same (for more details see Thm. 8.1.1).
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Chapter 8 MWPE Applied to mfBm

Using these facts, the frequencies of the ordinal patterns in weighted the pooling
matrix P τ dw ∈ Rm×d! are again equally distributed, i.e.,

P τ,2wi,(1,0)
= P τ,2wi,(0,1)

=
1

2m
(8.10)

for all i = 1, ..,m. When calculating the marginal weighted frequencies, the number
of variables m is reduced again, that is

P τ,2w·j =
1

2
(8.11)

for all j = 1, .., d!. Overall, MWPE of order d = 2 applied to mfBm is neither
dependent on delay τ , Hurst parameter H or on the number of variables m nor
weighting has an effect on the calculation.

Theorem 8.2.2. For orders d = 3, 4, MWPEd,τ (Bm
H(t)) monotonically dependent on

the delay τ ∈ N, number of variables m ∈ N and on the Hurst parameter H ∈ (0, 1)m

of mfBm.

Corollary 8.2.1. If Hi = Hj for all i, j, then MWPEd,τ (Bm
H(t)) is independent of

the delay τ ∈ N and number of variables m ∈ N of mfBm.

The proofs of Thm. 8.2.2 and Cor. 8.2.1 follow from Thm. 6.2.2 and Cor. 6.2.1 by
adding factors from Section 8.1.

8.3 Experimental Evaluation

In this experiment we compute MWPE of different orders d and different delays τ
for simulations of mfBm with different numbers of variables m and different Hurst
parameters Hi for i = 1, . . . ,m. The results of the computations of MWPE of orders
d = 2 (green), d = 3 (orange), d = 4 (blue), and d = 5 (red) are visualised in
Fig. 8.2 and underpin the theorems derived in Sections 8.1 and 8.2. The experimental
computations are based on same simulations of mfBms as described in Section 6.3.
In particular, in the experiments we underpin the following two aspects

i) (in)dependence from the delay τ , and

ii) (in)dependence from the number of variables m.

Overall, all sub-figures of Fig. 8.2 show a constant MWPE for order d = 2 with
value − ln(1/2) confirming Thm. 8.2.1. For orders d > 2 there is a monotonic depen-
dence on the Hurst parameter H, i.e., for increasing Hurst parameter H the entropy
decreases, which underpins a part of Thm. 8.2.2. The deviations with increasing
Hurst parameter H occur for the same reason as in the last experiments, namely
because of experimental length constraints.
Figures 8.2a and 8.2b illustrate the (in)dependence of MWPE on mfBm from the

from the delay τ in the special case Hi = Hj for all variables i, j (left) and the
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8.3 Experimental Evaluation

(a) τ ∈ {1, 2, 25, 100}, m = 3, Hi = Hj . (b) τ ∈ {1, 2, 25, 100}, m = 3, Hi 6= Hj .

(c) τ = 1, m ∈ {2, 3, 4, 5}, Hi = Hj . (d) τ = 1, m ∈ {2, 3, 4, 5}, Hi 6= Hj .

Figure 8.2: Experimental computations of MWPE of orders d = 2 (green), d = 3 (or-
ange), d = 4 (blue), and d = 5 (red) on mfBm in variation of its Hurst parameter H.

dependence in the general case (right). For this, the number of variables is fixed to
m = 3. In Fig. 8.2b, all lines for d > 2 are the same for any delay τ confirming the
independence in Cor. 8.2.1. In Fig. 8.2a, all lines for d > 2 decrease for increasing
delay τ confirming the dependence in Thm. 8.2.2.

Figures 8.2c and 8.2d illustrate the (in)dependence of MWPE on mfBm from the
number of variables m. For this, the delay is fixed to τ = 1. All lines in Fig. 8.2c for
d > 2, are the same for any m but monotonically dependent on the Hurst parameter
H, as stated in Cor. 8.2.1. On the other hand, in Fig. 8.2d, the lines for d > 2
increase with increasing number of variables m, again confirming the dependence on
the number of variables m in Thm. 8.2.2.

In summary, the experiments support our theoretical results from Sections 8.1
and 8.2.
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Chapter 8 MWPE Applied to mfBm

8.4 Interim Conclusion: MWPE

In Section 5.1, we have proposed a well-defined definition of MWPE, that is consistent
to other canonical multivariate extensions of PE. In this chapter, we have discussed
the influence of weighting ordinal patterns of different orders d = 2, . . . , 5 on fBm or
mfBm. In case of order d = 2, we show that WPE and MWPE match with PE and
PPE, respectively. There is no effect of weighting. For orders d > 2 we derive that
certain ordinal patterns (strictly ascending and strictly descending) must have higher
weights than others when calculating WPE and MWPE. Consequently, WPE and
MWPE of order d = 3 decrease more strongly with increasing Hurst parameter H
than PE and PPE. A direct comparison between PPE and MWPE, as well as other
representations and their possible applications, is discussed in Chapter 11.
Unfortunately, the canonical definition of MWPE, as well as MWPE and PPE,

does not take into account the interaction of different Hurst parameters Hi in the
form of cross-correlations from Eq. (3.8), i.e., variables that influence each other at a
fixed point in time and resulting possible simultaneous movements. Therefore, in the
following we examine further multivariate extensions such as MPE-PCA or MOPPE,
which are designed to consider cross-correlations.
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Chapter 9

Multivariate Permutation Entropy Based
on Principal Component Analysis
Applied to Multivariate Fractional
Brownian Motion

In the following, we investigate the behaviour of multivariate permutation entropy
based on principle component analysis (MPE-PCA) on mfBm. We first presented
this idea in the following conference paper.

Marisa Mohr and Ralf Möller. Ordering Principal Components of Multivariate
Fractional Brownian Motion for Solving Inverse Problems. In Proceedings of
the Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference 2021 (APSIPA-ASC), 2021

As shown in the previous chapters, the canonical multivariate extensions of PE,
specifically PPE, MMSPE and MWPE of orders d > 2, are suitable for studying
self-similarity, i.e., the Hurst parameter H. However, with this representations, as
we discuss in this chapter, it is not possible to distinguish mfBms with the same
Hurst parameters but different cross-correlations between variables. Figure 9.1 shows
six realisations of mfBm of length T = 2000, different numbers of variables and
different Hurst parameters with low correlation coefficients ρij = 0.1 (left) such as
high correlation coefficients ρij = 0.65 (right). In the case of high cross-correlation
between two variables i and j, the variables adjust their behaviour to each other. For
example, the 5-th variable in Fig. 9.1(e) follows a steep downward trend caused by
its high Hurst parameter H = 0.75. As the cross-correlation increases from 0.0 (left)
to 0.65 (visualised in Fig. 3.2(f)), the steep downward trend adapts to the behaviour
of the other variables with lower Hurst parameters Hi ∈ [0.35, 0.5] for i = 1, . . . , 4.
A slight upward trend of the 5-th variable is noticeable. Moreover, the total range of
values of all mfBms in all sub-figures of Fig. 3.2 decreases from the left to the right
side, which underpins the adjustment of variables with higher cross-correlations.
Note that the cross-correlations of mfBm given in Equations (3.8) and (3.9) depend

on both the correlation parameter ρij ∈ (−1, 1) and the time-reversibility ηij ∈ R of
mfBm. For simplicity, we focus on the correlation parameter ρij and leave the time-
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Chapter 9 MPE-PCA Applied to mfBm

Figure 9.1: Six realisations of mfBm with different correlation coefficients ρij = 0.1
(left) and ρij = 0.65 (right).

reversibility parameter fixed at ηij = 0.1/(1 −Hi −Hj) as in all other experiments.
If the correlation parameter increases, the cross-correlation also increases.
To distinguish between mfBm with the same Hurst parameters but different cross-

correlations, MPE-PCA is an interesting approach as it is designed to handle cor-
relations. We start with an application of PCA to mfBm. The remainder of this
chapter contains contribution 2d) of this thesis, i.e., a theoretical analysis and an
experimental evaluation of the behaviour of MPE-PCA when applied to mfBm. We
end with an interim conclusion.

9.1 PCA Applied to mfBm

Given a sample of mfBm with number of variables m, i.e., X = ((xit)
m
i=1)Tt=1 ∈ Rm×T ,

where each row i = 1, . . . ,m marginally is an fBm by Lem. 3.2.1. As discussed in
Section 5.2, PCA converts a set of observations of possibly correlated variables into a
linear combination of uncorrelated variables. That is, a decomposition is found such
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9.2 Ordinal Pattern Distributions of Principal Components

that the matrix-vector multiplication X→ Z = VTX gives the equations

Z1 = v11X
1 + · · ·+ vm1X

m

Z2 = v12X
1 + · · ·+ vm2X

m

... =
...

Zm = v1mX
1 + · · ·+ vmmX

m

, (9.1)

where Xi is a single fBm of length T . The variance of Z1 is Var(Z1) = λ1.
van Zanten (2007) shows that the local almost sure behaviour of a linear combina-

tion of independent fBms is equivalent to a multiple of a single fBm.

Corollary 9.1.1 (van Zanten (2007)). Let X =
∑m

i akX
k, where X1, . . . , Xm are

independent fBms with Hurst parameters H1 < · · · < Hm and a1, . . . , am ∈ R\{0}.

(i) If X is equivalent to a multiple of an fBm on [0, T ] for some T > 0, then X is
equivalent to a1X

1 and H2 −H1 > 1/4.

(ii) If H2 −H1 > 1/4 then X and a1X
1 are locally equivalent.

Note that if H2 −H1 < 1/4, the local almost sure behaviour X of is not the same
as that of any fBm. Thus, if all marginal fBms Xi of mfBm are independent, and
for the Hurst parameters H2 − H1 > 1/4 holds, then Zi and v1iX

1 from Eq. (9.1)
are locally equivalent. If there are cross-correlations between the variables of mfBm,
PCA identifies eigenvectors that decorrelate the data and decorate the behaviour of
fBm with a multiple. This results in different representations or principal components
for mfBm with the same Hurst parameter H and different cross-correlations ρij .

9.2 Ordinal Pattern Distributions of Principal
Components

In general, (permutation) entropy increases with the degree of disorder and is maxi-
mum for absolutely random states. A time series with Hurst parameter H = 1/2 is
called a random walk, while for Hurst parameter H < 1/2 or H > 1/2 the increments
of (m)fBm are negatively or positively correlated, respectively. Thus, if the Hurst pa-
rameter varies, the entropy of (m)fBm also varies, i.e., if the Hurst parameter H < 1
increases, the information content of (m)fBm increases due to strong positive corre-
lations. In case of high cross-correlation between the variables, the variables adjust
their behaviour to each other as can be seen in Figure 3.2 (low cross-correlation at
the top, high cross-correlation at the bottom). For example, as the cross-correlation
increases, the steep downward trend of the 5-th variable in Figure 3.2(c), dominated
by the high self-similarity or Hurst parameter H = 0.75, changes to a slightly upward
trend in Figure 3.2(f), adjusted by the remaining variables with Hurst parameters
Hi ∈ [0.35, 0.5] for i = 1, . . . , 4.
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Chapter 9 MPE-PCA Applied to mfBm

Hereafter we restrict ourselves to the case H2 −H1 > 1/4. Since in this paper we
study the detection of cross-correlations using MPE-PCA, we consider two cases:

• ρij = 0: Since performing PCA or decorrelation has no effect, the distributions
of ordinal patterns and the behaviour of MPE-PCA and PPE-PCA on the
principal components of mfBm are the same as in Section 6.1.

• ρij 6= 0: Since the i-th principal component Zi and v1iX
1 are locally equivalent

and each element vij ∈ V represents a loading, namely the correlation between
the original variable and the principal component, Zi behaves like an fBm dec-
orated by its loading. As the behaviour of fBm is directly related to the Hurst
parameter H, but the distribution of ordinal patterns of order d = 2 does not
depend on the Hurst parameter H of an fBm, neither do MPE-PCA2,τ,i for all
τ, i and PPE-PCA2,τ . It is MPE-PCA2,τ,i = − ln(1/2) = PPE-PCA2,τ (see Sec-
tion 6.1). In contrast, PE and PPE of orders d = 3 and d = 4 are monotonically
dependent on the Hurst parameter H and Thm. 6.2.2), i.e., the decorrelation
and the loadings, respectively, influence MPE-PCA and PPE-PCA. Although
there are no closed formulas for d > 4, analogous behaviour is to be expected
as in the chapters.

In contrast to MPE-PCAi and PPE-PCA, the computations of PEi on the i-th
variable and PPE are independent of the Hurst parameter H as well as on cross-
correlations, such that these measures are not able to detect cross-correlations.

9.3 Experimental Evaluation

In this experiment we compute MPE-PCA and PPE-PCA of different orders d and
different delays τ for simulations of mfBm with different numbers of variables m and
different Hurst parameters Hi for i = 1, . . . ,m. The experimental computations are
based on same simulations of mfBms as described in Section 6.3 but with different
correlation coefficients ρij = {0.0, 0.8} for all i, j. In order for Corollary 9.1.1 to
be satisfied, the relationship H2 = H1 − 0.26 or H2,3 = H1 − 0.26 is chosen for
m = 2 or m = 3 variables, respectively. PEi and MPE-PCAi are calculated on
the single-dimensional i-th variable and i-th principal component of mfBm with i =
1, . . . ,m, respectively. The visualised values correspond to the mean of 20 simulated
experiments. The deviations with increasing Hurst parameter H occur for the same
reason as in the last experiment in Section 6.3, namely because of experimental length
constraints. In particular, with the experiments we support the following two aspects:

i) under certain conditions PCs of fBm behave like their origin , i.e., as H increases,
MPE-PCA decreases, but

ii) unlike PPE, MPE-PCA detects when large cross-correlations at high Hurst pa-
rameter value H cause the behaviour of all variables to converge.
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Figure 9.2: Comparison of PPE and MPE-PCA of order d = 2 on mfBm.

In Figure 9.2 we compare PPE (top) and MPE-PCA (middle) of order d = 2
and delay τ = 1 on mfBms with m = 2 variables and different cross-correlations
ρij = 0.0 (left) and ρij = 0.8 (right). Figure 9.2(a) shows a constant entropy of
− ln(1/2) for all variables i, the pooled version PPE, and Hurst parameters H, again
confirming Theorem 6.2.1. As PE and PPE of order d = 2 are independent of the
Hurst parameterH as well as the cross-correlation, Figure 9.2(b), (c) and (d) are equal
to Figure 9.2(a). Figure 9.2(e) and (f) confirm that neither PPE nor MPE-PCA of
order d = 2 are able to detect cross-correlations of the variables.

In Fig. 9.3 we compare of PPE (top) and MPE-PCA (middle) of order d = 3
and delay τ = 1 on mfBms with m = 2 variables and different cross-correlations
ρij = {0.0, 0.8}. Figure 9.3(a)–(d) confirm that PE, PPE, MPE-PCA and PPE-PCA
depend monotonically on the Hurst parameterH, i.e., entropy decreases for increasing
H. With Cor. 9.1.1, the principal components are locally equivalent to an fBm deco-
rated by its loadings. Figure 9.2(e) and (f) confirm that unlike PPE and PPE-PCA of
order d = 2, PPE-PCA of orders d = 3 and d = 4 are able to detect cross-correlation
of variables, since decorrelation of variables using PCA decorates the behaviour of
mfBm. In App. B.1 the same results can be found for order d = 4.
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Figure 9.3: Comparison of PPE and MPE-PCA of order d = 3 applied to mfBm.

9.4 Interim Conclusion: MPE-PCA

In this chapter, we have investigated the behaviour of MPE-PCA and PPE-PCA of
different orders d applied to mfBm in variation of its Hurst parameter H ∈ (0, 1)m

with different correlations parameters ρij = {0.0, 0.8}. For order d = 2, MPE-PCA
and PPE-PCA are constant with − ln(1/2). We show that the entropies of the princi-
pal components of orders d > 2 are monotonically dependent on the Hurst parameter
H, i.e., entropy decreases as H increases. Thus, MPE-PCA and PPE-PCA are ap-
propriate for solving inverse problems, i.e., given an observed realisation of mfBm
the calculation of MPE-PCA or PPE-PCA provide information about the level of
H and thus parameters of the generating mfBm. Moreover, we show that unlike
PPE, MPE-PCA or PPE-PCA of order d > 2 can uncover large cross-correlations at
large Hurst parameter H. Since information about the Hurst parameter H as well
as about correlations of the variables can be derived single-handed from MPE-PCA
or PPE-PCA, this approach offers interesting advantages. Indeed, this chapter does
not fully solve the inverse problem, but focuses on the theoretical relationships that
motivate the solution of inverse problems. In Chapter 11 we discuss MPE-PCA or
PPE-PCA in in the context of all other MPEs.
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9.4 Interim Conclusion: MPE-PCA

The main limitation of PCA is that it projects the data in a linear way, with many
real-world challenges containing complex, non-linear relationships between variables.
Since this work examines counts or sums of ordinal patterns, a linear relationship
may be reasonable. Nevertheless, it remains to be investigated whether, for example,
kernel PCA, independent component analysis or functional PCA analysis can improve
the results.
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Chapter 10

Multivariate Ordinal Pattern
Permutation Entropy Applied to
Multivariate Fractional Brownian Motion

Finally, we investigate the behaviour of multivariate ordinal pattern permutation
entropy (MOPPE) applied to mfBm. We first presented this idea in the following
journal article.

Marisa Mohr and Ralf Möller. A Summary of Canonical Multivariate Permutation
Entropies on Multivariate Fractional Brownian Motion. Advances in Science,
Technology and Engineering Systems Journal, 6(5):107–124, 2021

Like MPE-PCA, MOPPE is designed to include interdependencies between the
spatial variables of a multivariate time series in its real-valued representation. Un-
like MPE-PCA, however, MOPPE does not involve correlations in the mathematical
sense, but encodes the simultaneous movements of two or more spatial variables at
a fixed point in time in its representation. This chapter provides contribution 2e) of
this work. For this, we provide a theoretical analysis of the behaviour of MOPPE on
mfBm in variation of its Hurst parameter H, before underpinning the results in an
experimental setting. We end with an interim conclusion.

10.1 Theoretical Analysis

Since multivariate ordinal patterns are defined as univariate ordinal patterns com-
bined in a matrix, joint probabilities are considered to investigate the behaviour of
MOPPE on mfBm. Let pτj be a probability for a univariate ordinal pattern j of arbi-
trary order d in fBm given in Section 6.1. Since any univariate ordinal pattern of any
order d is independent of the delay τ , we write pj in the following. Since there are
no results on conditional probabilities of ordinal patterns in the literature, we focus
on independent variables in the theoretical part.
In contrast to the previous MPE representations of order d = 2, the behaviour of

MOPPE on mfBm is dependent on the number of variables m but remains indepen-
dent of the delays τ .
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Chapter 10 MOPPE Applied to mfBm

Lemma 10.1.1. Let Bk
Hk

(s) and Bl
Hl

(t) for every k, l = 1, . . . ,m conditionally inde-
pendent, then it holds

MOPPE2,τ (Bm
H(t)) = − ln

( 1

2m

)
(10.1)

for all τ .

Proof. The independence from the delay τ follows directly from Definition 5.3.1 and
the distribution of the univariate ordinal patterns of order d = 2 in Eq. (6.1). Let
j ∈ {(0, 1), (1, 0)} be a univariate ordinal patterns of order d = 2. Let Xk = Bk

Hk
(t)

and Xl = Bl
Hl

(t) for every k, l = 1, . . . ,m conditionally independent, then the joint
probability function satisfies

P (X1 = j, . . . , Xm = j) = P (X1 = j) · · · · · P (Xm = j) (10.2)
= pj

m (10.3)

With Eq. (6.1) it is pj = 1/2 for every j, so that the joint distribution of every
m-fold combination of ordinal patterns j ∈ {(0, 1), (1, 0)} stays pjm. For number
of variables m, there exist 2m multivariate ordinal patterns as combinations from
univariate ordinal patterns, so that

−
2m∑
j=1

1

2

m

· ln
(1

2

m)
. (10.4)

For orders d = 3 and d = 4, the following theorem can be derived by considering
joint probabilities of univariate ordinal pattern distributions introduced in Section 6.1.

Lemma 10.1.2. Let Xk = Bk
Hk

(t) and Xl = Bl
Hl

(t) for every k, l = 1, . . . ,m condi-
tionally independent, then for orders d = 3 and d = 4, MOPPEd,m(Bm

H(t)) is inde-
pendent of all delays τ , but dependent on number of variables m, and monotonically
dependent on the Hurst parameter H.

Proof. The independence from the delay τ follows directly from Definition 5.3.1 and
the distribution of the univariate ordinal patterns or orders d = 3 or d = 4 in
Eq. (6.2) or Eq. (6.4), respectively. As introduced in Section 6.1, the distribution
of ordinal patterns of order d = 3 is twofold (see Eq. (6.3)). Therefore, let A =
{(0, 1, 2), (2, 1, 0)} and B = {(0, 2, 1), (1, 2, 0), (1, 0, 2), (2, 0, 1)}. Since multivariate
ordinal patterns are combinations of univariate ordinal patterns, in the following we
consider three cases where the ordinal patterns of all m variables are either from A,
from B or from A and B. Again, let Bk

Hk
(s) and Bl

Hl
(t) be conditionally independent

for each k, l = 1, . . . ,m.
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10.2 Experimental Evaluation

1. Let the univariate pattern ai of the i-th variable be ai ∈ A for all i = 1, . . . ,m.
Using Eq. (6.2) and Section 10.1 the joint distributions of all 2m combinations
of a1, . . . , am ∈ A are given by

m∏
i=1

1

πm
arcsin 2Hi−1 =:

m∏
i=1

1

πm
ui. (10.5)

2. Let the univariate pattern bi of the i-th variable be bi ∈ B for all i = 1, . . . ,m.
Using Eq. (6.3) and Section 10.1 the joint distributions of all 4m combinations
of b1, . . . , bm ∈ B are given by

m∏
i=1

1

4
(1− 1

πm
ui). (10.6)

3. Let the univariate pattern ci of the i-th variable be, where c1, . . . , ck ∈ A and
ck+1, . . . , cm ∈ B. Then using Eqs. (6.2) and (6.3) and Section 10.1 the joint
distributions of all 6m − 4m − 2m remaining combinations c1, . . . , cm are given
by

k∏
i=1

1

πk
ui ·

m∏
i=k+1

1

4
(1− 1

πm−k
ui). (10.7)

In particular, the joint distributions or the distributions of the multivariate ordinal
patterns remain monotonically dependent on the Hurst parameter H after the mono-
tonic transformations. For order d = 4, formulas for joint distributions corresponding
to multivariate ordinal patterns are derivable with Eq. (6.4) and Section 10.1 in the
same way as for order d = 3.

For orders d > 4, no closed formulas for the distribution of ordinal patterns in fBm
exist.

10.2 Experimental Evaluation

In this experiment, we compute MOPPE of different orders d and different delays τ
for simulations of mfBm in variation of the Hurst parameter H. Since the number of
MOPs depends on the number of variables m and thus also on MOPPE, we refrain
from an experimental evaluation of different m and assume m = 2 small for computa-
tional reasons. The experimental computations are based on the same simulations of
mfBms as in Section 6.3 with the difference that in this experiment we include more
than one correlation coefficient as MOPPE takes into account the interdependence of
spatial variables. With this experiment we underpin two aspects:

(i) independence of MOPPE from the delay τ , and

(ii) dependence of MOPPE from the correlation coefficient ρij .
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Chapter 10 MOPPE Applied to mfBm

(a) τ ∈ {1, 2, 5, 100}, H1 = H2, ρij = 0.0. (b) τ ∈ {1, 2, 5, 100}, H1 6= H2, ρij = 0.0.

Figure 10.1: Experimental computations of MOPPE for different delays τ applied
mfBm with m = 2 spatial variables in variation of its Hurst parameters H.

The results of the computations of MOPPE of orders d = 2 (green), d = 3 (orange),
and d = 4 (blue) for different delays τ applied to mfBm with correlation coefficient
ρij = 0.0 are visualised in Fig. 10.1 and underpin the lemmas derived in Section 10.1.
The results of the computations of MOPPE for different correlation coefficients ρij =
0.0 (gray) and ρij = 0.8 (black) of mfBm are visualised in Fig. 10.2.

In Fig. 10.1 we show the independence of MOPPE on mfBm from delay τ . Again,
the left figure (Fig. 10.1a) considers the special case where all components of the
Hurst parameter Hi are equal. The right figure (Fig. 10.1b) shows the general case
where the components of the Hurst parameter Hi are not equal. Specifically, H2 is
variable, while H1 = 0.6 is fixed. For both, the number of variables is fixed to m = 2.
All green lines, i.e., for d = 2, are constant with value − ln(1/4) for each τ , confirming
the independence of delay τ in Equation (10.1). All other lines, i.e., for d > 2, are
also the same for any τ , but monotonically dependent on the Hurst parameter H, i.e.,
for increasing Hurst parameter H the value of MOPPE decreases. The reason for the
deviations of the values of MOPPE in Fig. 10.1 with increasing Hurst parameter H
is the same as in the previous Section 6.3, namely from length restriction T < ∞ of
mfBm. All in all, the experiment underpins our theoretical results from Lems. 10.1.1
and 10.1.2.
Since the definition of multivariate ordinal patterns involves dependence on several

spatial variables at a fixed time, we examine dependence on cross-correlations of spa-
tial variables in Fig. 10.2. A high cross-covariance or correlation of the variables causes
the behaviour of the individual variables (for different Hurst parameters) to converge.
The behaviour of one variable is influenced by another and so is the occurrence of the
higher order ordinal patterns that are dependent on the Hurst parameter. For the
investigation of correlations using MOPPE the delay or the number of variables are
fixed to τ = 1 or m = 2, respectively. In Fig. 10.2, the black lines corresponding to
a correlation coefficient of 0.8 are constantly below the gray lines corresponding to a
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(a) τ = 1, H1 = H2, ρij ∈ {0.0, 0.8}. (b) τ = 1, H1 6= H2, ρij ∈ {0.0, 0.8}.

Figure 10.2: Experimental computations of MOPPE applied mfBm with m = 2 spa-
tial variables and different correlation coefficients ρij in variation of different Hurst
parameters H.

correlation coefficient of 0.0. This reflects the fact that due to a higher correlation of
the variables, there is a greater fit of the individual univariate ordinal pattern order
in the multivariate combination, resulting in a smaller MOPPE value.

10.3 Interim Conclusion: MOPPE

In this chapter, we have investigated the behaviour of MOPPE of different orders
d and delays τ on mfBm for different numbers of variables m in variation of its
Hurst parameter H ∈ (0, 1)m. For order d = 2, MOPPE is constant with value
− ln(1/2m), independent of the Hurst parameter H or the delay τ but dependent on
the number of variables m. The distribution of ordinal patterns of orders d = 2, 3, 4,
and thus also MOPPE, are directly related to the Hurst parameter H and can be
expressed in formulae. Since MOP encodes the behaviour of several spatial variables
at the same time, MOPPE, unlike canonical MPEs, is able to detect cross-correlations
between spatial variables. In the following chapter, we compare MOPPE with all
the representations discussed so far by summarising the individual advantages and
disadvantages.
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Chapter 11

Part II: Interim Conclusion

Up to this point, we have studied the behaviour of numerous multivariate represen-
tations of the class of multivariate permutation entropy (MPE), namely pooled per-
mutation entropy (PPE), multivariate multi-scale permutation entropy (MMSPE),
multivariate weighted permutation entropy (MWPE), multivariate permutation en-
tropy based on principle component analysis (MPE-PCA) and multivariate ordinal
pattern permutation entropy (MOPPE), applied individually to mfBm. In this chap-
ter we summarise all the results and discuss both the differences and the similarities
between the different representations. We first presented this comparison in the fol-
lowing journal paper.

Marisa Mohr and Ralf Möller. A Summary of Canonical Multivariate Permutation
Entropies on Multivariate Fractional Brownian Motion. Advances in Science,
Technology and Engineering Systems Journal, 6(5):107–124, 2021

The differences between the representations result in different possible applications
as well as different recommendations, with which this part of the work is concluded.

11.1 Comparison of MPE-Variants

The MPE-variants discussed in Part II have similarities as well as differences, es-
pecially in their behaviour when applied to mfBm. PPE can be understood as a
canonical extension of PE that pools the univariate ordinal patterns of the individual
spatial variables into a multivariate variant. MMSPE and MWPE belong to the same
family as PPE as they are all based on a pooled matrix, while addressing different
aspects within the time series and ordinal patterns respectively, namely scaling and
amplitudes. One advantage of these approaches is that, in contrast to MPE-PCA
and MOPPE, they also allow univariate analyses on the individual spatial variables
within the algorithms (by a simple extension). MPE-PCA or MOPPE are not de-
signed for univariate analysis, but on the other hand they are able to take into account
interdependencies in the form of mathematical correlations or similar movements, re-
spectively, of the spatial variables in a real-valued representation. Table 11.1 gives
an overview of the dependencies of the different MPE-variants on the parameters
belonging to MPE or mfBm.
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MPE mfBm

d = 2 τ ∈ N ε ∈ N m ∈ N H ∈ (0, 1)m ρij ∈ (−1, 1)

PPE (Thm. 6.2.1) 7 n\a 7 7 7

MMSPE (Thm. 7.2.1) 7 7 7 7 7

MWPE (Thm. 8.2.1) 7 n\a 7 7 7

MPE-PCA (Section 9.2) 7 n\a 7 7 7

MOPPE (Lem. 10.1.1) 7 n\a 3 7 7

d = 3, 4, 5 τ ∈ N ε ∈ N m ∈ N H ∈ (0, 1)m ρij ∈ (−1, 1)

PPE (Thm. 6.2.2) 7 n\a 3 3 7

MMSPE (Thm. 7.2.2) 7 7 3 3 7

MWPE (Thm. 8.2.2) 3 n\a 3 3 7

MPE-PCA (Section 9.2) 7 n\a 3 3 3

MOPPE (Lem. 10.1.2) 7 n\a 3 3 3

Table 11.1: Dependencies of the different MPE-variants on all parameters.

For order d = 2, all five MPE-variants are constant with value − ln(1/2) regardless
of the delay τ ∈ N, scale factor ε ∈ N, number of variables m ∈ N, Hurst param-
eter H ∈ (0, 1)m, or correlation coefficients ρij ∈ (−1, 1) (or − ln(1/2m) in case of
MOPPE). Because all MPE representations behave equally when applied to mfBm,
no characteristics or structures of mfBm can be derived via these representations.
Therefore the usage of order d = 2 is not reasonable in applications. Moreover, since
scaling does not change the structure of mfBm, MMSPE of any scale factor ε behaves
equally to PPE and analysis with MMSPE of higher orders d > 2 does not provide
any additional insight than PPE. PPE and MMSPE can be used interchangeably.
This result is consistent with the fractal property or scale invariance of mfBm.
However, for orders d > 2, the use of PPE, MWPE, MPE-PCA and MOPPE

provide interesting insights and possible applications to be discussed in the next
section. The distribution of ordinal patterns, and thus the MPE-variants, is directly
related to the number of spatial variables m and its individual Hurst parameter
H ∈ (0, 1)m, which can be expressed in formulas. As given in Section 8.1, the
weighting in MWPE is dependent on the delay τ . This pays off in that strictly
rising as well as falling ordinal patterns are weighted more so that MWPE falls more
sharply than PPE for increasing Hurst parameter H. Since MPE-PCA and MOPPE
are designed to account for interdependencies of spatial variables, they are dependent
on the correlation coefficients of mfBm.
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Figure 11.1: Differences between PPE and MMSPE or MWPE of different orders
applied to simulations of mfBm in a variation of its Hurst parameter.

Figure 11.1 compares PPE with its adaptations MMSPE and MWPE with different
orders d = 2, . . . , 5 from top left to bottom right. We set τ = 1, ε = 5 and m = 3.
The sub-figure top left shows the equality of PPE, MMSPE and MWPE for order
d = 2, which again underpin Thms. 6.2.1, 7.2.1 and 8.2.1. Thus, scaling or weighting
has no effect in this case. The other three right sub-figures show the equality of PPE
and MMSPE (blue lines) for orders d = 3, 4, 5. Similarly, they show a difference
between PPE and MWPE as the orange lines increase in variation of increasing H,
indicating a faster decrease of MWPE.
MOPPE can be understood as a canonical extension of univariate ordinal patterns

to multivariate ordinal patterns by conceiving univariate patterns as multidimensional
patterns in a matrix. The advantage of this approach lies in consideration of the
interdependencies of several variables at one point in time. A disadvantage in the
application is the exponentially increasing number of possible ordinal patterns (d!)m.
When many patterns exist relative to the length of the time series, each pattern occurs
in vanishingly small numbers, resulting in a uniform distribution and thus maximum
entropy for T � ∞. In this case, MPE-PCA offers a reasonable alternative since
here the multivariate problem is transformed into a univariate problem by means of
PCA before univariate patterns of each order are determined on it.
Figure 11.2 visualises the differences of MOPPE or MPE-PCA values when applied

to mfBm with fixed variable dimension m = 3 but different correlation coefficients
ρij = {0.0, 0.8} for different orders d = 2 (green), d = 3 (orange) and d = 4 (blue),
fixed delay τ = 1 and in variation of its Hurst parameter. In both sub-figures, the
differences are almost constantly zero for order d = 2, while they increase slightly
for orders d ∈ {3, 4} as Hurst parameter H increases. In particular, differences in

95



Chapter 11 Part II: Interim Conclusion

(a) Differences using MOPPE. (b) Differences using MPE-PCA.

Figure 11.2: Differences of MOPPE (left) or MPE-PCA (right) applied to mfBm with
different correlation coefficients ρij = {0.0, 0.8}.

MOPPE or MPE-PCA with different correlation coefficients are visible. The dif-
ference increases with increasing Hurst parameter H, as the behaviour of the cor-
relating spatial variables converges for large correlation coefficients, reducing overall
complexity. Furthermore, the increasing differences for increasing orders d result from
increasing maximum entropy values per order d.

11.2 Applications and Future Work

As motivated in Chapter 2, there are several possible applications for ordinal pattern
representations. As already mentioned in the previous section, the application of all
MPE-variants of order d = 2 leads to a constant value. A good distinguishability or
separability of different mfBm by using one or more MPE-variants is therefore not
given. However, for orders d > 2 the application of PPE, MWPE, MPE-PCA or
MOPPE to realisations of mfBm provide interesting possible applications.
For example, as discussed in Section 2.1, PPE, MWPE, MPE-PCA and MOPPE

are interesting candidates for solving the inverse problem, since they all depend mono-
tonically on H, i.e. the entropy decreases as H increases. Given one or a few reali-
sations of mfBm, the calculation of MPE can provide conclusions about the value of
the Hurst parameter H. Since multivariate ordinal patterns involve the dependence
of multiple spatial variables on mfBm, MOPPE is promising for estimating the Hurst
parameter H and cross-correlations ρij from a single source, which the other mea-
sures cannot do. However, MOPPE is only practical for a small number of spatial
variables m. In this case, it may be helpful to reduce the spatial dimensions before-
hand, while encoding the information about the correlation in the lower-dimensional
representation, and then use ordinal pattern representations. In this case, MPE-PCA
is an interesting candidate. In fact, Part II does not fully solve the inverse problem
but focuses on the theoretical relationships that motivate the solution of inverse prob-
lems. Experiments need to be evaluated in a detailed study to assess performance,
especially compared to other point estimators mentioned in Section 2.1. Similarly, for
simplicity, in Part II we have neglected the influence of the anti-symmetry parameter
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ηij ∈ R of mfBm. It is possible that one or more of all the representations presented
here is capable of uncovering corresponding information.

In addition, the theoretical results of the representations investigated in this part
also motivate the use of MPE as features in a learning task from the field of ML. In
classification tasks, for example, it is necessary to extract features that allow good
separation of the data. In contrast to PPE, MPE-PCA and MOPPE, MWPE is
substantially influenced by strictly ascending and descending ordinal patterns. For
this reason, MWPE decreases more sharply than PPE as H increases, providing more
expressive representations that may promise better discriminability. Moreover, if one
knows that the underlying data are long-range dependent and self-similar, the rela-
tionship in the form of MPE does not have to be learned again each time, for example
by complex deep learning methods. There are other approaches for the determination
of multivariate permutation entropy, specifically MvPE, MPE-EUCL, MPE-MANH
or MPE-NORM introduced in Chapter 4. Since their application requires a prior
transformation of mfBm and thus is not a canonical extension of the univariate defi-
nition, the study of it is not part of this work. Nevertheless, both have the potential
to uncover (additional) structures in mfBm, but are left for future work. Similarly,
the application of these representations is of great interest not only in the context of
mfBm, but for any real-world data sets, which is the focus of Part III of this work.
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Part III

Further Applications





In the previous part, we investigated the behaviour of several MPE-variants in
the context of the theoretical construct of multivariate fractional Brownian motion.
From this, interesting applications have been derived, such as the solution of an in-
verse problem given, i.e., the derivation (of parameters) of a generating system from
one or a few observations, as motivated in Section 2.1. Multivariate ordinal pattern
representations can be profitably used not only in the context of model construction
or model analysis, but also in other real-world applications involving query answering
or prediction in general.

In this last part, we no longer focus only on processes subject to the properties of
long-range dependence and self-similarity, but any real time series data from different
applications. We expand the ideas from Sections 2.2 and 2.3, and enrich them with
the multivariate ordinal pattern representations derived in this dissertation, MWPE,
MPE-PCA and MOPPE. In Chapter 12 we consider an example from the research
area of lifted probabilistic inference. We use multivariate ordinal patterns to approx-
imate groups of redundant or symmetric objects, a selected representative of which
can be used in query answering to reduce computational complexity. In Chapter 13
we consider two examples from the field of supervised learning, i.e., regression and
classification.
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Chapter 12

Multivariate Ordinal Patterns for
Symmetry Approximation

At the heart of many applications are large models that represent our world char-
acterised by uncertainty and complex relational structures with additional temporal
information. The more objects a model comprises, the more complex it becomes.
However, as the domain of objects increases, so does the likelihood of redundant
information being included in the model. As motivated in Section 2.2, exploiting
symmetries is key to a variety of different challenges in AI in general, e.g. discussed
by Dieleman et al. (2016); Satorras et al. (2021), and in dynamic probabilistic rela-
tional models (DPRMs) in particular. Informally speaking, symmetries are groups of
objects of redundant information. In the research area of lifted probabilistic inference,
a representative of a symmetry group is used to answer queries in order to reduce
computational complexity. In this chapter, we use multivariate ordinal patterns to
build symmetries. The idea is first presented in the following conference papers, with
the first paper focusing on the univariate case and the second paper extending to
the multivariate case. Note that Marisa Mohr co-authored the first paper, while the
authorship of Nils Finke and Marisa Mohr is equal for the second paper.

Nils Finke and Marisa Mohr. A Priori Approximation of Symmetries in Dynamic
Probabilistic Relational Models. In Stefan Edelkamp, Ralf Möller, and Elmar
Rueckert (Eds.), KI 2021: Advances in Artificial Intelligence, pages 309–323.
Springer, 2021

Nils Finke, Ralf Möller, and Marisa Mohr. Multivariate Ordinal Patterns for Sym-
metry Approximation in Dynamic Probabilistic Relational Models. In Guodong
Long, Xinghuo Yu, and Sen Wang (Eds.), AI 2021: Advances in Artificial In-
telligence, pages 543–555. Springer International Publishing, 2022

Although the approach does not depend on any particular model class, we use
DPRMs as a reference formalism. Having introduced DPRMs in as much detail
as necessary, we extend the motivation of symmetries introduced in Section 2.2 and
discuss the challenges that arise in maintaining symmetries in the context of DPRMs.
The remainder of this chapter provides contribution 3a of this work by introducing
MOP4SA, an approach to approximate symmetries based on MOP encodings and
spectral clustering. Understanding symmetrical behaviour by MOP4SA has several
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Supplyt−1(Z)

g1
t−1

Idlet−1(Z) Ratet−1(Z)

gS
Supplyt(Z)

g1
t

Idlet(Z) Ratet(Z)

Figure 12.1: Two-slice parameterised probabilistic model.

benefits that we evaluate in an application from logistics. We end with an interim
conclusion and future work.

12.1 Reference Formalism: Dynamic Probabilistic
Relational Models

In this section, we introduce dynamic probabilistic relational models (DPRMs) as
a reference formalism suitable to prove the effectiveness of the following approach.
Nevertheless, we refrain from formal definitions of DPRMs as far as possible and only
give the intuition with an example from seaborne transportation. For a complete
specification, we recommend reading the work of Braun and Möller (2016) for the
static case, Gehrke et al. (2018) for the dynamic case, and Finke et al. (2020) for a
discussion of DPRMs in the context of dry-bulk shipping.
In a DPRM, relational logic is combined with a probabilistic representation, where

logical variables (logvars) L1, . . . , Ln ∈ L, n ≥ 0 are used as parameters for random
variables (randvars) R also called parameterized random variables (PRVs) for short
and denoted as R(L1, . . . , Ln) (Poole, 2003; Gehrke et al., 2018). That is, PRVs com-
pactly represents multiple entities that are considered indistinguishable as a group
without further evidence, which is called a lifted representation. To represent inde-
pendent relations, PRVs are linked by parametric factors (parfactors) to compactly
encode the full joint distribution of the DPRM. Like most dynamic model formalisms,
DPRMs use two static parameterised models to describe how a model changes from
one time step to the next. A DPRM encodes a sequential dimension by a pair of pa-
rameterised models, one representing an initial time step and the other representing
how the model transitions from one time step to the next. They follow the same idea
as dynamic Bayesian networks with an initial model and a copy pattern for further
time steps (Murphy, 2002). DPRM are based on the first-order Markov assumption,
i.e., randvars from each time slice t depend only on randvars from the preceding time
slice t−1. DPRMs model a stationary process, i.e., changes from one time step to the
next follow the same distribution. The Semantics of DPRMs are given by instantiat-
ing a DPRM for a given number of time steps, followed by grounding and building a
full joint distribution (Sato, 1995).
Figure 12.1 shows a DPRM illustrating certain aspects of seaborne transportation.

Variable nodes (ellipses) correspond to PRVs, factor nodes (boxes) to parfactors.
Edges between factor and variable nodes denote relations between PRVs, encoded in
parfactors. The parfactor gS denotes a so-called inter-slice parfactor that separates
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the past from the present. The submodel on the left and the one on the right of this
inter-slice parfactor are duplicates of each other, with the one on the left referring to
time step t − 1 and the one on the right referring to time step t. Parfactors refers
to time-indexed PRVs, namely Idlet(Z), Ratet(Z) and Supplyt(Z) with range values
such as {high,medium, low}, built from randvar names R = {Idle, Rate, Supply}
and the logvar name L = {Z}. Note that idle is of non-boolean type, but a shortened
notation for idle time. Thus, intuitively a PRV represents multiple entities of the same
type represented through the logvar, e.g., supply within zones Z ∈ {z1, z2, . . . , zn}.
Seaborne transportation is subject to supply chain, i.e., vessels head towards zones
Z with supply to load cargo. Certain zones around the globe are of greater interest
due to higher freight rates Ratet(Z), a fee per ton paid to transport cargoes. If zones
are overcrowded, idle time Idlet(Z) can occur, affecting the overall vessel schedule.
In the context of a shipping application, an example query for time step t = 10,
such as P (Rate10(z1) | Supply10(z2) = high, Supply10(z3) = high), contains a set of
observations Supply10(z2) = high and Supply10(z3) = high as evidence.

12.2 Maintaining Lifted Representations

Primarily, in a DPRM, entities having similar or approximately similar behaviour
are treated together as a group and represented by a single entity. Lifting a model
thus enables a sparse representation of the model, reducing complexity and achieving
good performance. However, evidence leads to splits within the symmetrical struc-
tures of the models, i.e., asymmetric evidence slowly grounds a lifted model to its
propositional counterpart over time. Suppose we ask for the probability distribution
of supply at a time step t = 2 in a certain zone z1, given that in the previous time
step t = 1 the supply was high, i.e., P (Supply2(z1) | Supply1(z1) = high). Then,
evidence is encoded in parfactors g1

1 by duplicating the parfactor and using one to
encode evidence and one to represent all sets of entities that are still considered in-
distinguishable. Each parfactor represents a different set of entities bounded by the
use of constraints, e.g., limiting the domain for the evidence parfactor to z1. The
parfactor that encodes evidence is adjusted such that all range value combinations in
the parfactors distribution φ are dropped for Supply1(z1) 6= high. During message
passing, the splits carry over. Thus, the parfactors gS and g2

1 also split into one part
for z1 and another for all other instances.

Specifically, we denote a parfactor g by φ(A)|C with A = (A1, . . . , An) a sequence
of PRVs, φ : ×ni=1R(Ai) 7→ R+ a function with name φ ∈ Φ, and C a constraint
on the logvars of A. All PRVs are interdependent and are therefore combined by
a parfactor, i.e., in our example a parfactor g1 = φ1(Idle(Z), Rate(Z), Supply(Z)),
indicates the joint probability distribution. For simplicity, we omit the concrete
mappings of potentials to range values of φ1. Then, under evidence a model Gt =
{git}ni=1 at time step t, is split with respect to its parfactors such that its structure

105



Chapter 12 Multivariate Ordinal Patterns for Symmetry Approximation

remains

Gt = {gi,1t , . . . , gi,kt }ni=1 (12.1)

with k ∈ N+ is the number of splits gi,jt = φi,jt (Ai)|Ci,j , where 1 ≤ j ≤ k and Ai is a
sequence of the same PRVs but with different constraint Ci,j and varying functions
φi,jt due to evidence.
In the worst case a model is fully grounded, i.e., a model as defined in Eq. (12.1)

contains

k =
∏

L∈lv(A)

|L| (12.2)

splits for every parfactor git, where the term lv(Ai) refers to the logvars L in Ai. Then
each object l ∈ L is in its own parfactor split, and the lifted model is grounded to its
propositional model. In particular, performing inference is again extremely costly.
In order to maintain a lifted representation, the field of approximate inference,

i.e., approximation of symmetries, has emerged, in which similar but distinguishable
objects are treated as if they were identical. While only a small and limited error
is introduced, efficient reasoning is obtained in return. Dealing with groundings to
recover a lifted representation a posteriori has been studied extensively in the lit-
erature (Singla et al., 2014; Venugopal and Gogate, 2014; den Broeck and Niepert,
2015; Gehrke et al., 2020). Common to all these approaches is that in the first place
groundings are allowed and then dealt with afterwards, i.e., by exploiting symmetries
within message passing in inference tasks. While undoing splits a posteriori, also
known as taming (Gehrke et al., 2020), is reasonable, we propose learning sym-
metries a priori to prevent unnecessary splits due to inaccuracy or one-time events.
The combination of both methods provides a powerful tool in the research field of
lifted probabilistic inference.

12.3 MOP4SA: An Approach for Symmetry
Approximation

In previous research, it is assumed that lifted graphical models already contain sym-
metries that do not even need to be constructed, i.e., they have defaults. As far as
we know, we are the first to propose a priori symmetry construction, i.e., to learn
intrinsic defaults. Note that this idea opens up a whole new branch of research that
we cannot deal with in detail in this work. Rather, we are interested in demonstrating
the possibilities and value of multivariate ordinal patterns.
In the following, we propose an approach that uses Multivariate Ordinal Pattern

for Symmetry Approximation, MOP4SA for short. In the special framework of
DPRMs, symmetries of multivariate objects are approximated, i.e., entities repre-
sented by PRVs and linked in a parfactor. For this purpose, first the behaviour of the
multivariate time-dependent objects is encoded by MOPs. Subsequently, symmetries
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of MOPs are approximated via spectral clustering. Based on these approximate sym-
metry clusters, we get a better understanding of potential symmetric behaviour and
gain several advantages, which we evaluate in two use cases in the next section.

12.3.1 From DPRMs to Time Series

DPRMs are usually factorised with respect to a full joint probability distribution
by exploiting (conditional) independencies between randvars that evolve over time.
As such, DPRMs encode multivariate time series data through a set of dependent
randvars. The notion of symmetry of (multivariate) time series has indeed been dis-
cussed extensively in the literature in the context of similarities (see Section 1.1).
The direct search of similarities between multivariate time series is computationally
intensive due to the high dimensionality of the time series itself, and additionally
complex due to many entities represented in a lifted model. While the detection
of exact symmetric behaviour, i.e., two or more entities show exactly the same be-
haviour, by comparing all values of a time series is computationally expensive and
often not realistic, approximate symmetric behaviour with a bounded error is usually
desired. That is, the behaviour of two or more entities is approximately the same
over time. Symbol-based approaches such as MOP encode the multivariate time se-
ries observations as sequences of symbolic abstractions that match with the shape or
structure of the time series.

12.3.2 Encoding Object Behaviour by MOPs

To find symmetries of multivariate objects, we use evidence to encode a models’
entity behaviour w.r.t. a context, i.e., w.r.t. a parfactor. In particular, this means:
Every PRV represents multiple entities, e.g., zones Z, of the same type. That is,
for a PRV Supplyt(Z), entities z are represented by a logvar Z with domain D(Z)
and size |D(Z)|. Note that a PRV can be parameterised with more than one logvar,
but for the sake of simplicity we introduce our approach using PRVs with only one
logvar. Symmetry detection for m-logvar PRVs works similarly to one-logvar PRVs,
with the difference, that in symmetry detection, entity pairs, i.e., m-tuples, are used.
As an example, for any 2-logvar PRV Pt(A,B), an entity pair is a tuple (a1, b1) with
x1 ∈ D(A) and y1 ∈ D(B).
A DPRM, as introduced in Section 12.1, encodes temporal data by unrolling a

DPRM while observing evidence for the models PRVs, e.g., the PRV Supplyt(Z)
encodes supply at time t in various zones Z on the globe. In addition, a DPRM ex-
ploits (conditional) in-dependencies between randvars by encoding interdependencies
in parfactors. As such, parfactors describe interdependent data through its linked
PRVs, e.g., the correlation between supply Supplyt(Z), freight rates Ratet(Z) and
idle times Idlet(Z) within a common zone Z encoded by the parfactor g1

t . For each
entity zj ∈ D(Z) from the PRVs Supplyt(Z), Ratet(Z) and Idlet(Z) observations
are made over time, i.e., a time series ((xit)

3
i=1)Tt=1 is generated. In this work, the

time series is to be assumed multivariate, containing interdependent variables, i.e.,
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m > 1. Note that for the special case m = 1 univariate ordinal patterns from Defi-
nition 3.3.1 are used. Further details can be found in the conference paper by Finke
and Mohr (2021). Having |D(Z)| entities in Z, we consider |D(Z)| samples of mul-
tivariate time series X = (((xit)

m
i=1)Tt=1)

|D(Z)|
j=1 ∈ Rm×T×|D(Z)|, e.g., for m = 3 with

observations (x1
t , x

2
t , x

3
t ) = (Supplyt(zj), Idlet(zj), Ratet(zj)) for every zj ∈ D(Z) in

time t ∈ {1, . . . , T}. As such, a multivariate time series is defined for several PRVs
linked in a parfactor. Identification of entity symmetries is performed on a set of
observed multivariate time series that are related to the parfactor g1 (see Fig. 12.1).
Now, for each time step t = τ(d − 1) + 1, . . . , T of a multivariate time series X,

MOP is determined as described in Section 5.3. However, ordinal patterns are well
suited to characterise an overall behaviour of time series that is independent of the
data range, but the dependence on the data range can be also relevant, i.e., time
series can be similar in terms of their ordinals patterns, but differ considering their
y-intercept. In other words, transforming a sequence x = (xit)a≤t≤b as y = x + c,
where c ∈ R is a constant, should change y’s similarity to other sequences, although
the shape is the same. To address the dependence on the data range, we use the
arithmetic mean

xd,τt =
1

m

m∑
i=1

1

d

d∑
k=1

xi,t−(k−1)τ (12.3)

of the multivariate time series’ values corresponding to the ordinal pattern, where
xi,t−(k−1)τ is min-max normalised, as an additional characteristic or feature of be-
haviour. If one of the variables changes its behaviour significantly along the intercept,
the arithmetic mean uncovers this. There are still other features that can be relevant.
For simplicity, we only determine ordinal patterns and their means for each parfac-
tor g1 with, e.g., PRVs (Supplyt(Z), Idlet(Z), Ratet(Z)), yielding a new symbolic
representation

X = 〈o, x〉(T−(τ(d−1))×|D(Z)| (12.4)

where 〈o, ·〉tj represents the MOP and 〈·, x〉tj represents the corresponding mean xd,τt
for entity zj at time step t. The order d and delay τ are passed in from the outside
and might depend on, e.g., the frequency of the data, to capture long-term behaviour
of each entity.

12.3.3 MOPs for Symmetry Approximation by Spectral Clustering

Based on the derived representation in Eq. (12.4), we perform symmetry approxima-
tion by clustering entities. Since lifted models are specifically designed for encod-
ing large domains, we use spectral clustering, a popular setting for handling high-
dimensional data (Bertozzi and Merkurjev, 2019).
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Figure 12.2: (a) Similarity count for w3n (red) and (b) resulting similarity graph W.

Similarity Graph

To perform spectral clustering on the symbolised representation X of the multivariate
time series X, similarities have to be determined. The corresponding similarity graph
of the symbolised representation X contains nodes for each entity represented by
PRVs connected within a parfactor. Specifically, the similarity graph for a parfactor
g1
t connecting the PRVs Supplyt(Z), Idlet(Z) and Ratet(Z) contains one node for
each entity z ∈ D(Z) observed in form of multivariate time series. The edges of
the similarity graph represent the similarity between two nodes, or more precisely,
how closely related two entities of the model are. To measure similarity, we use the
symbolic representation X , which contains tuples of multivariate ordinal numbers and
mean values that describe the behaviour of an entity. The similarity of two entities
zi and zj is given by counts wij of equal behaviours, i.e.,

wij =
∑
t≤T

[
〈o, ·〉it = 〈o, ·〉jt ∧ |〈·, x〉it − 〈·, x〉jt| < δ

]
, (12.5)

where [x] = 1 if x is true, and 0 otherwise.
Simply put, as visualised in Figure 12.2a, one counts the time steps t at which both

multivariate time series of zi and zj have the same MOP and the absolute difference
of the mean values of the corresponding MOPs is smaller than δ > 0. Finally, as
shown in Figure 12.2b the counts wij correspond to the weights of the edges in the
similarity graphW, where zero indicates no similarity between two entities, while the
larger the count, the more similar two entities are.

Spectral Clustering

In the worst case, a similarity graph, representing the similarity of entities z ∈ D(Z),
contains

(|D(Z)|
2

)
fully-connected nodes. If the dimension of the similarity graph,

due to the potentially large domain of a lifted model, becomes too large, classical
clustering methods do not achieve good results due to the curse of dimensionality
(Bellman, 2015). Spectral clustering involves dimensionality reduction in advance
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before using standard clustering methods such as k-means or similar methods. For
dimensionality reduction, the similarity graph W is transformed into the so-called
graph Laplacian matrix L, which describes the relations of the nodes and edges of a
graph, where the entries are defined by

Lij :=


deg(zi) if i = j

−1 if i 6= j and wij > 0

0 else
, (12.6)

where deg(zi) =
∑|D(Z)|

j=1 wij . For decorrelation, the data in the graph Laplacian
matrix L are decomposed into its sequence of eigenvalues (spectrum) and the corre-
sponding eigenvectors. The eigenvectors form a new uncorrelated orthonormal basis
and are thus suitable for standard clustering methods. The observations of the re-
duced data matrix whose columns contain the smallest k eigenvectors can now be
clustered using k-means. Considering the reduced data matrix whose columns con-
tain the smallest k eigenvectors, the rows are used for clustering by, e.g., k-means.
An observation assigned to cluster Ci, i = 1, ..., k can then be traced back to its entity
z ∈ D(Z) by indices. That is, entity symmetry clusters C(g1

t ) =
⋃k
i=1 Ci are built

for parfactor git with each Ci containing a subset of entities z ∈ D(Z). As symmetry
clustering is done individually for each parfactor, C denotes the set of all entity sym-
metry clusters for all parfactors. Algorithm 6 presents the corresponding pseudocode.
After learning the clusters, we discuss how the clusters can be used, for example, to
prevent a DPRM from grounding, in the next section.

12.4 Practical Considerations of MOP4SA

As already mentioned at the beginning, the introduction of MOP4SA opens a new
branch of research in the field of lifted probabilistic inference, which we cannot fully
discuss within the scope of this work. Nevertheless, motivated by examples from a
logistics application, we show that approximating multivariate symmetries is key for
a variety of different challenges in DPRMs.

12.4.1 Preventing Groundings

Reasoning in lifted representations has a polynomial complexity in the domain size
of the model (Niepert and Van den Broeck, 2014). This means that finding objects
in the model domain that behave (almost) identically is the key to avoiding dupli-
cate computations in inference, as computations only need to be performed for one
representative of similarly behaving entities. For this reason, we evaluate the use of
MOP4SA to obtain a lifted solution of the model and to prevent a DPRM from being
grounded. Assuming a symmetry cluster contains entities z1, z2 and z3, groundings
occur whenever observations differ across entities in a symmetry cluster, e.g., when
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Algorithm 6: MOP4SA
Input: Parfactor g, Evidence E0:T , Order d, Delay τ , Delta δx̄, Number of

Clusters k
Function MOP4SA(g,E0:T , d, τ, δx̄, k):

X |A|×T ← get all evidence from E0:T concerning PRVs in g
X |A|×(T−τ(d−1)) ← symbolic representation matrix initialised with zeros
for every dimension i = 1, . . . , |A| of X do
Xi· ← create a time series of tuples with 〈ordinal,mean〉

W |A|×|A| ← similarity-matrix initialised with zeros
for every time step t of X·t do

wij ← do similarity counting
L← Calculate the graph Laplacian matrix L
C ← Perform spectral clustering based on the k eigenvectors of L
return C

• the observation (Supply1(z1) = high, Idle1(z1) = high) of entity z1 differs from
observations (Supply1(zi) = low, Idle1(zi) = mid) of entities zi for i = 2, 3, or

• observations are made for only a subset of the entities, i.e., for entities z2 and
z3 observations are made but not for entity z1.

In both cases, the entities z2 and z3 would split off from their initial symmetry group,
and are henceforth treated individually in exact inference. That means that DPRMs
dissolve into ground instances through asymmetric evidence. However, differences
introduced through evidence might be minimal or overcome by model behaviour over
time (Gehrke et al., 2020). Entity symmetry clusters, as created in Section 12.3.3,
contain entities that all behave approximately the same over time and therefore can
be used to avoid model splits to some extent by applying evidence to other entities in
their group. The idea is to align evidence across all entities in the cluster to prevent
the model from grounding. Since the entities of the cluster have behaved similarly
before, it is assumed that they continue to behave similarly. The learned symmetry
clusters are used as intrinsic default, i.e.,

(a) if evidence is observed only for a subset of the entities, evidence is also applied
to the other entities of the symmetry cluster, or

(a) if evidence differs between the entities of a cluster, the most frequently observed
observation is also applied to the other entities of the symmetry cluster and all
contrary evidence is discarded.

We compare runtime advantages obtained by using symmetry clusters and the
accuracy in lifted inference with and without the use of symmetry clusters. To setup
a DPRM as shown in Figure 12.1, we use historical vessel movements from 2020
based on automatic identification system (AIS) data provided by the Danish Maritime
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Figure 12.3: Runtime [ms] and splits [#] w/ and w/o preventing groundings and
KLD.

Authority for the Baltic Sea (see Appendix A.2). Each AIS signal contains the current
geo-position and the total cargo quantity of a vessel. Preprocessing for retrieving
variables Supply and Idle for 367 defined Zones can be found on GitHub1. To
construct symmetry clusters, we use Alg. 6 with MOP4SA(g,E0:15, 2, 1, 0.1, 12).
Inference in DPRMs is performed by the lifted dynamic junction tree algorithm.

Details are presented by Gehrke et al. (2018). More specifically, we perform in-
ference by answering prediction queries P (Supplyt(Z), Idlet(Z)) for each time step
t ∈ {16, . . . , 45} and obtain a marginal distribution for each entity z ∈ D(Z).
Figure 12.3 (left) shows runtime (solid) and number of splits (dotted) to answer
queries for each time step. The two red lines, i.e., for answering queries without
preventing groundings, are greater than the green ones with preventing groundings
by means of MOP4SA underpinning the runtime advantage. Figure 12.3 (right)
shows Kullback Leibler divergence (KLD) as a measure of the accuracy of the pre-
dictions, exemplary for two constructed symmetry clusters C1 = {z5, z73, z109} and
C2 = {z26, z98, z223, z241, z356}. KLD compares the predicted probability distribu-
tions of the individual entities z ∈ D(Z) respectively with and without preventing
groundings. More precisely, for discrete probability distributions P and Q defined on
the same probability space X , KLD is defined as the relative entropy of Q to P , i.e.,

DKL(P,Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (12.7)

Here, the average KLD over all entities for each time step, denotes the overall ac-
curacy for a time step. A KLD close to 0 is indicative of similar distributions, thus
corresponds to a small error. Summing up, Figure 12.3 shows that the a priori intro-
duction of symmetry clusters to prevent groundings by MOP4SA speeds up inference
while introducing only a small error in inference.

With MOP4SA, we propose learning approximate model symmetries a priori to
relieve the model from unnecessary splits due to inaccuracy or one time events. As
already mentioned in Section 12.2, there exist some procedures to undo splits a pos-
teriori. For example, Gehrke et al. (2020) propose taming, i.e., recreating a new
lifted representation by merging groundings, which were introduced over time. As we
argue, combining both kind of approaches brings together the best of both worlds:

1https://github.com/FinkeNils/Processed-AIS-Data-Baltic-Sea-2020
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Figure 12.4: Heatmaps of the similarity graph of clusters C1 (top) and C2 (bottom)
at different time steps t.

(a) While with determining approximate model symmetries a priori, we can use the
full amount of historical training data to prevent groundings,

(b) with temporal approximate merging, we can merge non-preventable parfactor
splits even after they occurred.

12.4.2 Detecting Structural Changes

Symmetries between entities can change over time. In the worst case, they can
dissolve. Knowing changing symmetry structures is important when approximating
symmetries in order not to compromise too much on accuracy in inference and can be
detected as direct outcome of MOP4SA. Figure 12.4 shows heatmaps of two symmetry
clusters that relate the entities of a cluster based on their similarity count over several
time steps. The heatmap at t = 15 shows the similarity at the time of learning
clusters, while the heatmaps for all other time steps t > 15 show only the difference
in similarity counts to the previous time step. That means that for t = 20 the heatmap
is based on similarity counts between t = 15 and t = 20 only. Figure 12.4 (top) shows
a symmetry cluster of which entities quickly drop out, but then at t = 35 entities
behave similar again. Figure 12.4 (bottom) shows a symmetry cluster containing
entities, which share similarities constantly over time with only a few exceptions for
the relation between entities 1 and 3 and 2 and 3, which do not relate for t = 20
and t = 30. Both heatmaps indicate periodicities, while also giving insights about
the validity of the cluster over time. In the context of MOP4SA, the similarity graph
builds up over time and also changes over time, i.e., it can be used to detect structural
changes in symmetries. If the similarity graph changes over time in a constant and
balanced way, symmetry clusters stay valid. If the similarity graph changes over time
in an unbalanced manner, i.e., if similarity counts change significantly, there is a
change in the structure of the symmetry clusters. Finke and Möller (2022) expand
the idea of change detection in symmetry clusters and provide further discussions
with suitable metrics and evaluations.
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12.4.3 MOP4SA for Further Model Classes and Applications

As the application of MOP4SA is performed on observed time series of a DPRM,
the approach is suitable for the symmetry approximation of arbitrary multivariate
time series. Practicality and performance in context of other models need to be
evaluated. Depending on the applications, there are parts of MOP4SA that can be
changed. Even if the choice of ordinal patterns is justified, limitations exist in the
consideration of the data ranges. As a remedy, we have added the arithmetic mean x
as a second feature. Whether further or other representations increase the accuracy
is a question of feature selection and its underlying application. Similarly, even if the
choice of spectral clustering including k-means is reasonable, there exist numerous
other clustering algorithm that – in dependence of the application – may perform
better.

12.5 Interim Conclusion: MOP4SA

Exploiting symmetries is an important topic to obtain benefits in lifted inference in
DPRMs. In this chapter, we have proposed MOP4SA, an approach to approximate
multivariate model symmetries in DPRMs. For the determination of symmetries,
this novel approach uses spectral clustering based on similarity graphs of multivariate
ordinal patterns representing the up and downs in an observed multivariate time series
of an entity. By learning symmetry clusters with MOP4SA as intrinsic defaults, we
show that groundings in a DPRM can be prevented and runtime advantages in lifted
inference can be obtained while accuracy remains good. Furthermore, we motivate
various applications as well as extensions of MOP4SA in the research area of lifted
probabilistic inference, which we cannot fully discuss within the scope of this work.
However, we show great potential for the use of multivariate ordinal patterns.
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Chapter 13

Multivariate Permutation Entropy in
Supervised Learning

As discussed in Section 2.3, a good prediction depends on both, the choice of fea-
tures, as well as the choice of a model. In this chapter we show that ordinal pattern
representations are appropriate features in supervised learning tasks. In a regression
task from manufacturing, we compare the performance of entropies with respect to
other prominent features classes. The entire case study is first presented in the fol-
lowing conference paper. Note that Nils Finke and Marisa Mohr contributed equally
to this work.

Nils Finke, Marisa Mohr, Alexander Lontke, Marwin Züfle, Samuel Kounev, and
Ralf Möller. Recommendations for Data-Driven Degradation Estimation with
Case Studies from Manufacturing and Dry-Bulk Shipping. In Samira Cherfi,
Anna Perini, and Selmin Nurcan (Eds.), Research Challenges in Information
Science, pages 189–204. Springer, 2021

In several classification tasks, we evaluate which of the MPE-variants presented in
this work can be used flexibly and reliably and leads to good predictions on different
real-world data. The experiments are first presented in the following conference paper.

Marisa Mohr, Florian Wilhelm, Mattis Hartwig, Ralf Möller, and Karsten Keller.
New Approaches in Ordinal Pattern Representations for Multivariate Time Se-
ries. In Proceedings of the 33rd International Florida Artificial Intelligence
Research Society Conference (FLAIRS-33), pages 124–129, 2020

The remainder of this chapter provides the last contribution 3b of this work.
First, we start with a short introduction to regression before presenting a case study
from the field of predictive maintenance that underpins the effectiveness of PE as
a feature. Second, we present a small introduction to classification before solving
several classification tasks from the multivariate time series classification (MTSC)
archive using MPE, provided by the University of East Anglia (UEA), and determine
the most efficient variants. Both parts of this chapter are followed by an interim
conclusion involving future work.
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13.1 Regression as a Learning Task

Regression models are used for simple output prediction. Basically, a regression
algorithm learns a relationship between input (feature representations or predictors)
and output (target or label) data and uses this relationship to make predictions on
new, unseen observations. Usually, the relationship is expressed by output Yi ∈ R
of an observation i being a function of the input Xi, a parameter β and an additive
noise εi, i.e.,

Yi = f(Xi, β) + εi. (13.1)

The goal is to estimate the function f that best fits the available data. Here, the
prediction Yi depends not only on the choice of the regression model f , but also on
the features or representation of the data Xi used for training.
In the following, we briefly present the idea of four regression models. We have

limited ourselves here to the most popular ones. Further background information can
be found in popular books such as “The Elements of Statistical Learning” by Hastie
et al. (2009).

Multiple Linear Regression MLR is a statistical technique that fits an observed
dependent variable by several independent variables using the method of least squares.
More precisely, the coefficients w1, . . . wK of a linear function yt = xt1w1 + xt2w2 +
· · ·+ xtKwK + εt = x>t w + εt, t = 1, 2, . . . , T , are estimated, where y is the response
variable, xK are the predictors, and w the coefficients of the model. Basis functions
are used to model the functional relationship, e.g., yt = ϕ(x>t )w+εt with polynomial
basis function ϕ(x) ∈ Rdϕ , [1, x]

ϕ→[1, x, x2, . . . , xd].

Gaussian Process Regression In a traditional regression model, we infer a sin-
gle function f , used in Y = f(X). In Gaussian process regression (GPR), we place
a Gaussian process over f(X). A Gaussian process (GP) is a collection of random
variables, of which any finite subset of random variables is Gaussian distributed. It
is completely specified by its mean µ = m(x) = E[f(x)] and its covariance or kernel
function k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. As such, GP describes a distri-
bution over possible Gaussian density functions. The chosen kernel k (e.g. periodic,
linear, radial basis function) that describes the general shapes of the functions, de-
fines a prior distribution of f(X). This corresponds roughly to the selection of the
degree of a polynomial function for the regression. Placing the Gaussian prior over
f(X) yields a posterior joint distribution being used to determine the future process.

Linear Network Regression An artificial neural network (ANN) can pretend to
be any type of regression model. The output of an ANN is based on the activation
function between input and output layer. As an ANN is mainly used for classification,
the sigmoid function is used as a popular activation function, whereas when using an
ANN to solve a linear regression problem, the activation function is chosen as linear
equation y = w0 + w1x1 + · · ·wnxn.
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Support Vector Regression Support vector regression (SVR) is based on similar
principles as SVM for classification, identifying the optimal support vectors of a hy-
perplane that separates the data into their respective classes. Instead of separating
classes, SVR fits a hyperplane describing the training data best. To solve the optimi-
sation problem of finding the best hyperplane, the coefficient vector of the hyperplane
is minimised – in contrast to ordinary least squares fitting where the squared error is
minimised. Instead the squared error term is handled in the constraints allowing a
certain error range ε, i.e., min 1

2‖w‖2 s.t. |yi − wixi| < ε.

13.2 PE for Degradation Estimation in Manufacturing

In this section, we present a general approach for estimating the degradation of a
machine part and its remaining useful lifetime through regression. To challenge the
effectiveness and the relationships between the extracted features such as entropies
and the regression model, we conduct several experiments in a comprehensive case
study from manufacturing.

Challenge. Data-driven products and machine learning methods offer large bene-
fits for production engineering companies. Predictive maintenance can reduce the risk
of unwanted production and operational downtime and help keep machines in opti-
mal condition. One key challenge is to estimate the remaining useful lifetime (RUL),
that is, predicting the time to failure. However, the development of appropriate ma-
chine learning methods requires a large initial investment in the model definition and
training data acquisition. The latter is especially important as the prediction quality
of a machine learning model is largely determined by the data used for training. In
real-world challenges, as in case of large expensive machines, large amounts of labeled
run-to-failure data are extremely rare. Of course, one could deliberately degrade ma-
chines to capture more failure patterns, but that is at least financially irresponsible.
For this reason, we focus on degradation models to model the RUL without having
labeled or complete failure data from similar machines. In Appendix B.2.1, two al-
ternatives for modelling the RUL are presented. Degradation models estimate the
RUL indirectly by relating the degradation of parts of the product itself to the failure
mechanisms. In order to determine the current level of degradation of a machine
part, data are usually used that are recorded by sensors of a machine over time,
i.e., time series. Classical data-driven models, i.e., machine learning models such
as multiple linear regression or artificial neural networks, cannot process time series
directly as they require (time-)independent observations. Thus, it is necessary to
extract scalar-valued representations (features) from time series before using these
algorithms. In case the algorithms can process time series data directly, such as au-
toregressive integrated moving average (ARIMA) models or long-short-term-memory
(LSTM) networks, time series representations or an adequate preprocessing result
can be more useful than the raw time series data to detect the degradation. Conse-
quently, feature extraction is a crucial part of the prediction process and is closely
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related to the regression model.
Research provides numerous methods for modelling degradation and RUL. To de-

cide on an appropriate approach, there are few or insufficient comparisons of existing
methods. To help deciding on a solution for real-world challenges, one needs a mech-
anism to compare existing methods. To demonstrate feasibility, one is interested to
setup a basic solution before improving the overall approach by, e.g., improving the
accuracy of the prediction. In the following, we present a general data-driven ap-
proach for predicting RUL that considers comparability of existing approaches in the
best possible sense.

Degradation Estimation Process. In general, the degradation estimation pro-
cess consists of six technical steps, i.e., time series data acquisition, health stage
classification, frequency analysis, feature or indicator extraction, degradation estima-
tion by regression, and deployment and integration as presented in Fig. 13.1. Data
acquisition (step 1) such as an appropriate deployment and integration of the predic-
tive model (step 6) depend on both the domain and the user’s system infrastructure,
so we do not go into detail here. Health stage classification (step 2) and frequency
analysis (step 3) are optional and do not directly address the problem of this work.
For background on these two optional steps, see Appendices B.2.3 and B.2.4.

Instead, in the context of this work and by means of the approach, we focus on
the following research questions that arise in the search for a suitable degradation
estimation process:

(RQ3) Which feature sets are appropriate for the estimation of degradation?

As the choice of features affects the accuracy of the regression model, the following
question, i.e.,

(RQ4) Which data-driven regression method yields the highest accuracy?

is directly related to RQ3 and is considered in this section as well. Further research
questions (RQ1 and RQ2) related to the problem and established in the original con-
ference paper can be found in Appendix B.2.2. Since, in this work, we limit ourselves
to two specific research questions, we only address feature extraction (Step 4) and
degradation regression (Step 5) as parts of the degradation process in the following.

The extraction of features in Step 4 visualised in Figure 13.1 refers to the creation
of new information from time series, which is time-independent and was not previ-
ously available. Techniques for feature extraction can be classified into two groups,
namely feature engineering and feature learning. Feature engineering is the older dis-
cipline of the two. New features are created by processing domain-specific knowledge
or by transforming data. Techniques for feature engineering origin from at least two
research areas. The first way to extract features is by means of statistical analy-
sis. Classic statistical measures used in related work include root mean square and

118



13.2 PE for Degradation Estimation in Manufacturing

Figure 13.1: Six technical steps of RUL prediction (2 and 3 are optional).

kurtosis (Du et al., 2012; Ahmad et al., 2019; Pan et al., 2020). A complete list of
the statistical features for a univariate time series used in this work is presented in
Appendix B.2.5. Another way of extracting features is by using information-theoretic
measurements, i.e., entropies, as used by Boskoski et al. (2015); Zhang et al. (2016);
Wang et al. (2019); Kim and Nam H. (2017). In this example, as entropy features,
we specifically use Shannon entropy based on SAX and univariate PE. All statistical
and entropy features can be applied directly to time or frequency spectrum. Com-
pared to feature engineering, feature learning solve optimisation problems to learn
features from a set of time series. Learned features can reveal task-specific patterns
that are not obvious to humans, including non-linear patterns. There are numer-
ous ways to learn feature representations, for example by using principal component
analysis (see Section 5.2), autoencoders, or convolutional neural network (CNN) (see
Appendices B.2.6 and B.2.7). Then, in Step 5, regression models, as one of the most
popular data-driven techniques for RUL prediction, fit the derived features by regres-
sion functions. Related work in the context of data-driven models for degradation
estimation includes polynomial regression (Loukopoulos et al., 2019; Wu et al., 2019),
SVR (Kim et al., 2012), or ANN for regression (Wang et al., 2019). Furthermore,
in this case study, we use the regression models introduced in the previous section,
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Figure 13.2: Horizontal and vertical acceleration (vibration) of bearings b14 (top) and
b32 (bottom). The red line indicates end of useful lifetime.

namely MLR, GPR, linear network regression (ANN) and SVR.

Experimental Results. The dataset used for the case study is the well-known
FEMTO bearing dataset that contains run-to-failure tests of 17 bearings each with
time series data of vibration acceleration along the horizontal and vertical dimen-
sion. Degradation itself corresponds directly to increasing vibrations. Details such as
sample rates or conditions can be found in Appendix A.1. Figure 13.2 visualises the
horizontal and vertical vibration acceleration over time for two bearings.
In total, we conduct 104 experiments, whereas each experiment results from the

combinations of the components visualised in Figure 13.1. Note that technically not
all combinations of components from the frequency analysis and feature extraction
step are possible, thus, we denote them explicitly as follows. We choose Zi,j to
be an experiment, where Z ∈ {A, . . . ,M} denotes a combination of preprocessing
steps listed in Table 13.1, i ∈ {true, false} denotes if the health stage classifier is
used, and j ∈ {MLR,GPR,ANN, SVR} denotes the selected regression model for
prediction. For example, the notation Bfalse,MLR represents no application of health
stage classifier, followed by entropy feature extraction and multiple linear regression.

Note that the general aim of the following case study was not to achieve the best
possible accuracy in prediction, but to investigate the relation of different compo-
nents. For example, accuracy could be improved by performing hyperparameter
tuning or appropriate feature selection methods, which we leave out on purpose.
Instead, we investigate the interaction of steps and show that simple features from
encodings of up and down movements can be equally successful in terms of RUL pre-
diction accuracy compared to complex learned feature representations, for example
using complex CNNs. Implementation details such as selected architectures or chosen
(hyper-)parameters can be found in Appendix B.2.8. Each experiment is trained on a
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Table 13.1: All combinations of preprocessing steps used in the case study.
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Figure 13.3: Violin plots for RMSE (dark) and PCC (light) for bearing data for each
experiment. Note, bearing results are log-scaled for readability.

training dataset so that the RUL of an unseen sequence from the test dataset can be
predicted before the results are then evaluated using root mean square error (RMSE)
and Pearson correlation coefficient (PCC) (see Appendix B.2.9) between the observed
and the estimated process of degradation. The experimental code and results can be
found on GitHub2. Figure 13.3 shows violin plots for each experiment. Further re-
sults from this case study, particularly in relation to the remaining research questions
on health stage classification (RQ1) and frequency analysis (RQ2), can be found in
Appendix B.2.10.
To answer the research question RQ3, i.e., which feature set is most appropriate,

2https://github.com/inovex/RCIS2021-degradation-estimation-bearing-vessels
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we compare RMSE and PCC of experiments {A,G}i,j vs. {B,H}i,j vs. {C, I}i,j vs.
{D,J}i,j vs. {E,K}i,j vs. {F,L}i,j vs. Mi,j for i = {true, false} and every j. The
average RMSE per feature extraction method across all 8 experiments (with and with-
out health stage classification and 4 regression methods) are 20.299, 93.429, 15.797,
50.555, 10.952, 8.449, and 15.986, respectively, suggesting that CNN as particularly
effective or entropy feature particularly ineffective. However, when considering the
effectiveness of the features in the context of different regression models, experiments
{A,G}i,j , {E,K}i,j , {F,L}i,j , and Mi,j perform worst with MLR, and {B,H}i,j ,
{C, I}i,j , and {D,J}i,j perform worst with GPR. Disregarding these two regression
methods, average RMSEs are 6.962, 6.265, 13.603, 13.513, 7.082, 6.721, and 6.238.
Learned features perform on average more than twice as bad as engineered features.
Feature learning on engineered features, such as performing PCA or autoencoder on
statistical features, is more efficient. In general, there is no free lunch, i.e., not ev-
ery feature set is suitable for every regression model (Wolpert and Macready, 1997).
Across all methods, CNN performs best, followed by entropy features, which only
fail in the context of GPR. Comparing the model complexities of the two feature
extraction methods, i.e., CNN and entropies, it is even more remarkable that the
relatively simple entropy features perform so well.
To answer the research question RQ4, i.e., which regression model yields the

highest accuracy, we compare the RMSEs of the experiments {A, . . . ,M}i,MLR vs.
{A, . . . ,M}i,GPR vs. {A, . . . ,M}i,ANN vs. {A, . . . ,M}i,SVR for all i. Regarding all
experiments, the average RMSE are 22.677, 87.091, 9.578, and 8.041 for each dif-
ferent regression model j = {MLR,GPR,ANN, SVR}, respectively, with standard
deviations of 19.166, 202.102, 3.663, and 3.042. GPR in particular turns out to be
unsuitable at first glance, an affect that must be examined with regard to the outlier
predictions. ANN and SVR prove to be particularly stable, which, together with the
results of the third research question, indicates a good ability to generalise.

13.3 Interim Conclusion: Regression

All in all, in the experiments, entropies prove to be suitable representations for clas-
sical regression models. As introduced in Chapter 3, the concept of entropies is
intuitive, simple and not particularly complex, especially when compared to other
prominent feature representations, e.g., CNNs from the field of deep learning. It is
all the more remarkable that entropy features are this effective compared to other
features. Moreover, they work in combination with any classical regression model.
There are still numerous other methods for feature extraction and regression. We

have limited ourselves here to the most popular ones. As the focus of this work
was not to achieve the best possible performance, but to investigate the relation of
different components, the application of regularisation, feature selection methods, a
corresponding hyperparameter tuning, as well as the optimisation of network archi-
tectures are left for future work. As we only present a small part of a comprehensive
case study in this work, some open challenges exist. Additional results for composing
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data-driven prediction processes for degradation estimation based on the conducted
experiments can be found in Appendix B.2.11 or in the original conference paper by
Finke et al. (2021).

13.4 Classification as a Learning Task

To show that entropies are not only effective representations in the context of re-
gression tasks, we focus on classification in the following. The aim of classification
is to predict a certain class label and not, as in regression, a continuous value. In
Section 2.3 we have already mentioned some models that can be used in supervised
learning. An important criterion for the selection of supervised ML models for solv-
ing tasks is model complexity. Advanced and complex state-of-art models like ANNs
can probably learn everything that a simple k-nearest neighbour (kNN) model can.
However, this complexity also comes at a price: Developing or training an ANN, i.e.,
adjusting the training data, takes a lot of time. Furthermore, a more complex model
needs much more training data to be fitted, and this data is not always available.
Last but not least, more complex models are more difficult for us humans to interpret,
whereas the interpretability of a model is often necessary and valuable. Therefore, in
the following we focus on one of the least complex models, which is quickly trainable
and easy to interpret: kNN. Conversely, kNN also has disadvantages, of course, in
terms of its ability to adapt to highly complex relationships between independent
and dependent variables. kNN is a non-parametric method, which means the model
has a fixed number of parameters, and which do not grow with the amount of train-
ing data. Parametric models have the advantage that they are often faster to use
out-of-the-box. However, stronger assumptions are made about the nature of the
data distributions. In addition, the computational tasks are often computationally
difficult with large data sets. For advanced tasks such as natural language processing
or computer vision, kNN is less suitable. More details can be found in all classical
machine learning textbooks, for example, by Murphy (2012).

kNN. The kNN algorithm is based on the assumption that similar things exist in
close distance. Roughly speaking, kNN selects the k ∈ N>0 points in the training
set Xtrain that are closest to the test input xtest. Euclidean distance is usually
used to determine the distance, although other metrics can be used. The empirical
proportion of members of each class yi in this selected set is returned as an estimate.
More formally,

p(y = c|xtest, Xtrain, k) =
1

k

∑
i∈Nk(xtest,Xtrain)

[yi = c] (13.2)

where Nk(xtest, Xtrain) are the (indices of the) k nearest points to xtest in Xtrain and
[a] is the indicator function, i.e., [a] = 1 if a is true, and 0 otherwise. The class c
with the highest proportion p(y = c|xtest, Xtrain, k) is then assigned to the test input
xtest.
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13.5 MPE on the UEA MTSC Archive

In this section, we perform several experiments to investigate the relevance of the
different ordinal pattern representations for multivariate time series. We challenge
the introduced ordinal pattern representations in classification tasks on the UEA
MTSC archive, a collection of different time series data sets from many real-world
cases, released in October 2018 by Bagnall et al. (2018).

Experimental Details. We consider a representation as being good, if it is flexible
and realiable applicable on different real-world data sets. The UEA MTSC archive
consists of 30 data sets with a wide range of series lengths, dimensions and cases from
human activity recognition, motion classification, ECG classification and EEG to au-
dio spectra classification and many others. The properties of the data sets contained
in the archive, such as training size ntrain, test size ntest, number of spatial variables
m, length T of the time series and number of classes C differ and can be found in
App. A.3. Note that 2 out of 30 data sets of the archive could not be used due to the
different length Ti of each spatial variable i = 1, . . . ,m. We perform classifications on
the UEA MTSC data sets to compare the ability of separation through eight ordinal
pattern representations, namely PPE, MWPE, MOPPE, MPE-EUCL, MPE-MANH,
MPE-NORM, MPE-PCA and MPE-PCA2, where MPE-PCA2 denotes the reduction
of the dimension to two spatial variables before MOPPE is executed. Higher accuracy
means that the representation is able to identify the underlying explanatory factors
better than other representations and discriminatory properties can be identified as
useful inputs for supervised predictors (Bengio et al., 2013). The initial benchmarking
on the UEA MTSC archive by Bagnall et al. (2018) is with the standard 1-NN classi-
fier with three different distance functions, namely Euclidean, dimension-independent
dynamic time warping and dimension-dependent dynamic time warping. To make a
certain comparability we also use the 1-NN classifier as described in the previous
section. As model input, all eight MPE-variants were used individually for the eval-
uation. Finding an optimal order d and time delay τ is a challenging problem in
research (Riedl et al., 2013; Myers and Khasawneh, 2020). For simplicity, we have
done an extensive hyperparameter optimisation. Results can be found in Table B.2
in App. B.3.1. Before we start with a general evaluation of different data sets, we give
a detailed insight in one specific data set out of the 30 for a better understanding.

Example 13.5.1 (Atrial Fibrillation Classification). The AtrialFibrillation data set
contains two-channel ECG recordings for predicting spontaneous termination of atrial
fibrillation (AF). The class labels are: t, s and n. Class t contains data, where the
AF terminates at the latest within one second after the recording ending. Class s is
described as an AF that self-terminates at least one minute after the recording ending.
In Class n, the AF does not terminate for at least one hour after the recording of
the data. An example of the recordings for each class is shown in Figure 13.4. More
details can be found in the original paper by Moody (2004).
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13.5 MPE on the UEA MTSC Archive

Figure 13.4: Example of 2-channel recordings for all three classes.

We examine the separability of the three classes based on the different MPE-
variants, PPE, MWPE, MOPPE and MPE-PCA. The variance ratio for the first
main component is greater than 74.17% for every l = 1, .., ntrain, where ntrain is the
number of training samples. So a dimensionality reduction via PCA to a single dimen-
sion can be applied without losing too much information. Figure 13.5 shows boxplots
for the calculated values of four different MPE-variants for each class. While PPE
does not allow any separability of the classes, the weights of MWPE help to keep the
classes n and t in a smaller range of MWPE values to make them identifiable. With
MOPPE the class n can be separated relatively well by higher values from the class s
by smaller values in comparison. An even better separation of classes n and s from t
is achieved by MPE-PCA.

Figure 13.5: Boxplots for the values of four different MPE-variants of order d = 5
and delay τ = 1 for classes n, s and t.
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Experimental Results. Table 13.2 shows the mean accuracy for the given test
data and labels for each UEA MTSC dataset when performing a 1-NN classification
based on a single MPE-variant. Note that the results here may differ from those
in the original paper (Mohr et al., 2020b) as we have extended the hyperparameter
search. The highest accuracy score per data set with respect to all eight MPE-variants
is printed in bold. Besides, the names of data sets whose benchmark accuracy we
outperform are marked in italics. Additional metrics, such as precision, recall and
F1-score can be found in Appendix B.3.2.
We start with a discussion of the results of the canonical variants PPE, MWPE,

which is based on univariate ordinal patterns, and MOPPE, which is based on mul-
tivariate ordinal patterns. MWPE does not perform better than PPE for even half
of the data sets. This is due to the fact that the amplitude information is not al-
ways relevant. Whether MWPE can be used profitably depends in particular on
the application. MOPPE dominates in Cricket and Eigenworms, two of the longest
records in the archive, confirming that the inclusion of the simultaneous motion of
all spatial variables in the calculation is an important property for class separation.
Nevertheless, the length T must be large and the number of spatial variables m small
for this variant to be more successful than its averaged variant PPE, which discards
the temporal commonality of spatial patterns in the computation. Next, we compare
the results of the MPE-variants based on dimension reduction methods. MPE-PCA
performs best on 10 data sets, while MPE-EUCL performs best only on 2 data sets
and MPE-NORM only on 1 data set. MPE-MANH also achieves the highest accu-
racy only 1 times, along with MPE-NORM. All dimension-reducing procedures code
certain properties of the spatial variables onto a projected single-dimensional variable
on which the PE is subsequently calculated. The success of MPE-PCA shows that
taking into account the correlations of the spatial variables is an important property
to classify multivariate time series. In particular, a dimensionality reduction based
on a decorrelation of the variables and then using the variable of greatest variance as
a projection is more successful than a dimensionality reduction by classical distance
measures such as Euclidean distance. The accuracy scores of MPE-PCA2 confirm
that adding more principal components does not necessarily give better results than
MPE-PCA, so using the first principal component is sufficient in most cases.

1-NN based on

Data set P
P
E

M
W

P
E

M
O
P
P
E

E
U
C
L

M
A
N
H

N
O
R
M

P
C
A

P
C
A

2

ArticularyWordRecog. 0.13 0.14 0.10 0.13 0.14 0.14 0.11 0.10
AtrialFibrillation 0.47 0.40 0.40 0.53 0.73 0.60 0.80 0.47
BasicMotions 0.55 0.75 0.53 0.58 0.38 0.43 0.55 0.58
Cricket 0.24 0.33 0.36 0.26 0.31 0.35 0.32 0.29
DuckDuckGeese 0.36 0.30 0.32 0.32 0.30 0.30 0.32 0.32
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Eigenworms 0.50 0.47 0.56 0.47 0.47 0.53 0.49 0.46
Epilepsy 0.50 0.51 0.44 0.41 0.40 0.46 0.54 0.51
ERing 0.49 0.44 0.41 0.37 0.34 0.30 0.30 0.33
EthanolConcentration 0.29 0.30 0.29 0.29 0.29 0.28 0.30 0.28
FaceDetection 0.52 0.53 0.50 0.52 0.51 0.52 0.51 0.52
FingerMovements 0.54 0.56 0.49 0.54 0.58 0.58 0.60 0.57
HandMovementDir. 0.28 0.27 0.32 0.36 0.34 0.32 0.27 0.30
Handwriting 0.07 0.05 0.07 0.06 0.06 0.07 0.08 0.07
Heartbeat 0.67 0.65 0.65 0.63 0.63 0.62 0.68 0.62
JapaneseVowels 0.25 0.23 0.22 0.17 0.25 0.19 0.26 0.22
Libras 0.31 0.37 0.29 0.27 0.29 0.37 0.31 0.28
LSST 0.20 0.03 0.19 0.13 0.13 0.13 0.13 0.13
MotorImagery 0.61 0.64 0.60 0.55 0.61 0.63 0.57 0.59
NATOPS 0.19 0.41 0.22 0.23 0.25 0.24 0.23 0.22
PEMS-SF 0.75 0.61 0.56 0.61 0.60 0.64 0.63 0.63
PenDigits 0.22 0.17 0.18 0.19 0.18 0.18 0.19 0.15
PhonemeSpectra 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
RacketSports 0.38 0.33 0.32 0.32 0.32 0.30 0.38 0.32
SelfRegulationSCP1 0.59 0.56 0.57 0.61 0.61 0.58 0.62 0.59
SelfRegulationSCP2 0.61 0.55 0.56 0.55 0.55 0.57 0.53 0.54
SpokenArabicDigits 0.15 0.11 0.14 0.15 0.15 0.15 0.16 0.17
StandWalkJump 0.53 0.60 0.47 0.53 0.47 0.53 0.53 0.67
UWaveGestureLibrary 0.24 0.22 0.21 0.20 0.19 0.19 0.20 0.20

Table 13.2: Accuracy scores of all eight MPE-variants.

13.6 Interim Conclusion: Classification

In the second part of this chapter, we discussed ordinal pattern representations for
multivariate time series in several classification tasks. We have shown that the newly
introduced approaches, MWPE, MOPPE and MPE-PCA, outperform existing mul-
tivariate approaches on many real-world data sets. Which representation is chosen,
however, depends in particular on the application. For example, MOPPE is a valu-
able representation in the case of a small number m of variables and a large length T
of the time series. MWPE should only be used if the amplitude information is of rele-
vance in the application. MPE-PCA takes into account the correlations of the spatial
variables in the dimensional reduction and is thus more suitable than classical dis-
tance measures for reduction. Due to an improvement in prediction results and easy
handling, the integration into toolboxes for representation learning of multivariate
time series is indispensable.
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Conclusion

Generally speaking, a good representation is one that
makes a subsequent learning task easier.

Goodfellow et al. (2016)

The success of a data-driven predictive model depends on the representation of
the data used as input. Extracting representations from raw data – hand-crafted
engineered or learned automatically – is an indispensable step when modelling time
series, predicting the future or in other estimation or learning tasks. Representations
must be informative and non-redundant in order to solve a learning task. Although
the space of possible representations is infinitely large and at the same time infinitely
exciting, this work focuses on one particular class, namely multivariate ordinal pattern
representations. In this final chapter, we summarise the contributions of this work
made in the context of multivariate ordinal pattern representations and give some
directions for future work.

14.1 Summary of Contributions

In this work, we have focused on ordinal pattern representations in the context of
multivariate time series. We have discussed limitations in existing approaches and
proposed new approaches that overcome their main weakness: the incorporation of
interdependencies or correlations of spatial variables of a multivariate time series.
To show that the representations introduced are good, we have analysed them in
different contexts. Overall, we summarise the contributions that are made in this
work as follows.

(I) New Approaches in Multivariate Ordinal Pattern Representations

In Part I we reviewed previous research on multivariate ordinal pattern rep-
resentations and uncovered their limitations. We have introduced three new
multivariate ordinal pattern representations. Multivariate weighted permuta-
tion entropy (MWPE) fills the gaps by incorporating amplitude information.
Multivariate ordinal pattern permutation entropy (MOPPE) and multivariate
permutation entropy based on principle component analysis (MPE-PCA) over-
come limitations of existing multivariate ordinal pattern representations by in-
cluding dependencies or correlations between several spatial variables of the
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multivariate time series. While MOPPE is based on a generalisation of the
definition of univariate ordinal patterns to the multivariate case, MPE-PCA is
based on a dimensional reduction of the spatial variables that allows the use of
univariate patterns in its origin.

(II) Investigations of Multivariate Ordinal Pattern Representations on
Multivariate Fractional Brownian Motion

In Part II we have studied the behaviour of both existing and newly introduced
representations when applied to multivariate fractional Brownian motion. We
have shown that there is a theoretical relationship between distributions of
(multivariate) ordinal patterns and parameters of multivariate fractional Brow-
nian motion such as the Hurst parameter, amplitude information or correlation,
which can be expressed in formulae. Therefore, different multivariate ordinal
pattern representations can be used to estimate different characteristics of mul-
tivariate fractional Brownian motion. Moreover, if it is known that an arbitrary
time series is subject to the properties of mfBm, the statistical property of mul-
tivariate permutation entropy can be derived using simple formulas and does
not have to be learned each time using complex (deep) learning methods.

(III) Further Applications on Real-World Data

In Part III we have proven the effectiveness of the introduced multivariate or-
dinal pattern representations in different learning tasks – unsupervised and
supervised. In an unsupervised application, we used multivariate ordinal pat-
terns for symmetry approximation in the context of dynamic probabilistic rela-
tional models. We have shown that MOP4SA is a promising approach to avoid
groundings and thus obtain runtime advantages without significantly reducing
the accuracy in prediction. In a supervised application, we used multivariate
ordinal pattern representations in regression as well as classification. More-
over, a representation is good if it is flexible and reliably applicable to different
problems and real-world data sets. We have shown that permutation entropy
representations overperform several other known classes of features and lead
to better results in the context of different regression models for predicting the
remaining useful lifetime life. Furthermore, we have shown that the newly intro-
duced multivariate pattern representations outperform existing representations
in several classification tasks on different real-world data sets of the UEA MTSC
archive.

All in all, multivariate ordinal pattern representations are interesting because they
are intrinsically motivated by interpretable upward and downward movements. In the
context of this work, we have shown by example that by using multivariate ordinal
pattern representations, specific subsequent learning tasks can be solved more easily.
Nevertheless, the search for the best possible representation remains an exciting field
of research.
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14.2 Future Work

Starting from this work, there are various opportunities to investigate in the field of
multivariate ordinal pattern representations and beyond. We highlight three topics.

Solving Inverse Problems. A main contribution of this work is the analysis of
the theoretical relationship between the distribution of multivariate ordinal patterns
and the Hurst parameter H of multivariate fractional Brownian motion. The direct
relationship between these two can be used to solve an inverse problem, i.e., parame-
ters such as self-similarity, cross-correlations or amplitude information are estimated
from realised observations of mfBm and used to build a generalised model. How well
multivariate ordinal pattern distributions are suited for this task must be evaluated
accordingly within the framework of existing procedures.

Structures in Symmetries. In Chapter 12 we present MOP4SA, an approach to
approximate symmetries of multivariate time series in the context of dynamic proba-
bilistic relational models. Rather, MOP4SA is designed to be used in the context of
arbitrary multivariate time series to cluster objects that behave the same or approx-
imately the same. As is usual in machine learning, the success of MOP4SA in other
time series applications can only be proven by numerous evaluations on different real
data sets. In addition, MOP4SA opens up a new possibility to recognise structures
such as periodicities in symmetry clusters. By looking at the similarity graph in
MOP4SA, suitable metrics and algorithms can uncover changes in or dependencies
between the symmetry clusters. These metrics and algorithms need to be developed
in future work.

Representation Learning. In classical machine learning, the extraction of rep-
resentations or features, and the use of the model are considered as two separate
steps that are performed one after the other. In this work, therefore, the extrac-
tion of multivariate ordinal representations and the modelling of the classification
by k-nearest neighbours in Chapter 13 were also considered as two separate steps.
Moreover, since this work investigates a special class of features, that of multivariate
ordinal pattern representations, only one particular representation at a time was used
for classification to compare them all. Usually, a high number of different features
can increase the accuracy of the classification model. The set of optimal features can
be determined by feature selection methods. In deep learning, on the other hand,
internal representations are learned automatically within the model. Since intrinsic
(multivariate) ordinal pattern representations have proven successful in recent years,
the next step could be to learn them automatically. For example, one could try to
learn the up and down movements as an internal representation of an autoencoder.

131





Part IV

Appendix





Appendix A

Datasets

For the evaluations conducted in this work, we use several real-world data sets, which
we briefly present below.

A.1 FEMTO Bearing Dataset

In Section 2.3, we use a data set representing bearings of a machine. The data set
is provided by FEMTO-ST institute within PRONOSTIA, an experimental platform
dedicated to the testing and validation of bearing failure detection, diagnostic, and
prognostic approaches (Nectoux et al., 2012). The FEMTO bearing data set contains
run-to-failure tests of 17 bearings each with time series data of vibration acceleration
along the horizontal and vertical dimension as well as temperature. Temperature is
not present in every run, thus, we exclude it in our experiments. The temperature
and acceleration measurements, respectively, are sampled every ten seconds at 10Hz
and 25.6kHz for 2560 time steps until failure. The bearings were operated under
three different conditions (7 runs at 1800 rpm and 4000 N vs. 7 runs at 1650 rpm
and 4200 N vs. 3 runs at 1500 rpm and 5000 N). The designation of samples blm is
composed of the operating condition l and the number of runs m, where l ∈ {1, 2, 3}
andm ∈ {1, ..., 7}. The different operating conditions result in different test duration,
ranging from 28min (b33) to 7h 47min (b11). The observed data are divided into a
training and a test set with six and eleven bearings, respectively. Degradation itself
corresponds directly to increasing vibrations. The fact that the bearings have different
degradation patterns makes the building of a general model for RUL prediction more
difficult. Further details can be found by Nectoux et al. (2012).

A.2 Automatic Identification System Data

In Chapter 12, we use historical vessel movements from 2020 based on automatic
identification system (AIS) data1 provided by the Danish Maritime Authority for the
Baltic Sea to setup a DPRM as shown in Figure 12.1. AIS is an automatic tracking
system that records data via a wireless system with the aim of improving the safety
and guidance of vessel traffic by exchanging navigational and other vessel data. It
was adopted as a mandatory standard by the International Maritime Organisation

1https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/
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on 6 December 2000. Each AIS signal contains the current geo-position and the total
cargo quantity of a vessel. As AIS data provides information about the position of a
vessel, including specifications about the vessel itself, the actual supply and demand
have to be calculated first. By dividing the Baltic Sea into zones, we derive the total
amount of cargo transported between those zones based on the vessel movements
and their cargo and thus obtain the data set for this evaluation. Preprocessing for
retrieving variables Supply and Idle for 367 defined Zones can be found on GitHub2.

A.3 UEA MTSC Archive

In Chapter 13, we challenge different MPE-variants in classification tasks on mul-
tivariate time series classification (MTSC) archive provided by University of East
Anglia (UEA). Like the corresponding univariate archive, the archive was a col-
laborative effort between researchers at the UEA and the University of California,
Riverside (UCR). The archive consists of different multivariate time series data sets
from many real-world cases and was released in October 2018 by Bagnall et al. (2018).
The 2018 vintage archive consists of 30 data sets with a wide range of series lengths,
dimensions and cases from human activity recognition, motion classification, ECG,
EEG and magnetoencephalography (MEG) classification to audio spectra classifica-
tion and others. The data included should be formatted so that all time series in a
data set are of equal length, no time series with missing data are included and there
is a predefined split between training and testing. Table A.1 provides an overview of
all data sets of the archive with regard to the number of training samples ntrain, test
samples ntest, variable dimensions m, time series length T and classes C.

Dataset ntrain ntest m T C

ArticularyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
CharacterTrajectories 1422 1436 3 182 20
Cricket 108 72 6 1197 12
DuckDuckGeese 60 40 1345 270 5
EigenWorms 128 131 6 17984 5
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 30 4 65 6
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26

2https://github.com/FinkeNils/Processed-AIS-Data-Baltic-Sea-2020
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Heartbeat 204 205 61 405 2
JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
LSST 2459 2466 6 36 14
InsectWingbeat 30000 20000 200 78 10
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Table A.1: A summary of the 30 datasets in the UEA Multivariate Time Series
Classification Archive, 2018 (Bagnall et al., 2018).
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Experimental Details

In this work we conduct several experiments. In the following, we present correspond-
ing details or additional results that only indirectly influence the results of the work,
but are necessary to ensure understanding and reproducibility.

B.1 MPE-PCA Applied to mfBm

0.3 0.4 0.5 0.6 0.7 0.8 0.9

H1

2.0

2.5

3.0

(a) ρij = 0.0, H2,3 = H1 − 0.26

PPE

PE1

PE2

PE3

0.3 0.4 0.5 0.6 0.7 0.8 0.9

H1

2.0

2.5

3.0

(c) ρij = 0.0, H2,3 = H1 − 0.26

PPE-PCA

MPE-PCA1

MPE-PCA2

MPE-PCA3

0.3 0.4 0.5 0.6 0.7 0.8 0.9

H1

2.0

2.5

3.0

(b) ρij = 0.8, H2,3 = H1 − 0.26

PPE

PE1

PE2

PE3

0.3 0.4 0.5 0.6 0.7 0.8 0.9

H3

2.0

2.5

3.0

(d) ρij = 0.8, H2,3 = H1 − 0.26

PPE-PCA

MPE-PCA1

MPE-PCA2

MPE-PCA3

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

H1

0.00

0.05

0.10
(e) Differences in ρij ∈ {0.0, 0.8}
PPE

PPE-PCA

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

H1

0.00

0.05

0.10
(f) Differences PPE-PCA and PPE

δρij=0.0

δρij=0.8

Figure B.1: Comparison of PPE and MPE-PCA of order d = 4 applied to mfBm.
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Figure B.2: Three families of models for the prediction of RUL.

B.2 PE in Degradation Estimation in Manufacturing

In Section 2.3, we present a small part of a broad case study on data-driven degra-
dation estimation in manufacturing. In the following, we provide further details that
are helpful for a comprehensive understanding.

B.2.1 Modelling the Remaining Useful Lifetime

Depending on the type of measurement data, three different model families are applied
(Zheng, 2019):

• Similarity models use run-to-failure data from similar machines, starting during
healthy operation and ending close to failure or maintenance. RUL is directly
estimated from historical labeled training data by applying a pattern matching
of trends or conditional indicator values.

• Survival models are used when the user does not have a complete history of
run-to-failure data but instead has data about the life span of related com-
ponents. Probability distributions are determined based on the behaviour of
related components and used to estimate RUL.

• Degradation models estimate the degradation process without requiring faulty
data. Historical behaviour of a machine condition indicator is used to extrapo-
late the damage progression to indirectly determine RUL.

The different families of data-driven models for predicting RUL are visualised in
Figure B.2, with arrows indicating the types of training data available. As in real-
world challenges complete run-to-failure data are rarely available, Section 2.3 focuses
on degradation models.

B.2.2 Research Questions

(RQ1) Can health stage classification improve the accuracy of prediction?

(RQ2) Does the frequency spectrum of a time series provide more useful information
than the raw data, i.e., time spectrum, itself?

(RQ3) Which feature sets are appropriate for the estimation of degradation?

(RQ4) Which data-driven regression method yields the highest accuracy?
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B.2.3 Health Stage Classification

The second step of the overall process outlined in Fig. 13.1 is considered optional and
is not explored further within the scope of this work. Nevertheless, we provide here
an overview of what is meant by health stage classification. Caused by the fact that
healthy data outweighs degradation data in regular operation, data-driven prediction
of the degradation process can be impeded or even biased by healthy data. In order
to distinguish between healthy and faulty stages in a time series, the point in time
when the degradation starts has to be identified. The boundary of the two stages is
called first prediction time. For simplicity, in this work we include an approach by Li
et al. (2019), where kurtosis is used as classification indicator. The first prediction
time corresponds to the time when the kurtosis of a sliding window over the time
series exceeds the interval µ± 2σ for the second time, where µ is the mean and σ is
the standard deviation at the beginning of the time series. After the identification of
the first prediction time, observations in data classified as healthy are omitted from
both training and prediction of degradation. The prediction by the regression model
is initiated when data is classified as unhealthy.

B.2.4 Frequency Analysis

The second step of the overall process outlined in Fig. 13.1 is considered optional
and is also not explored further within the scope of this work. Nevertheless, we
provide here an overview of what is meant by frequency analysis. The analysis of
the frequency range of a time series can provide further insights into the degradation
process. In this step we distinguish between time spectrum, frequency spectrum and
time-frequency spectrum analysis. By time spectrum, we denote the raw time series
on which no frequency analysis is performed.
Fourier transform (FT) transforms an integrable function f : R→ C from time to

frequency domain. It is defined as

(Ff)(y) =

∫ ∞
−∞

f(t)e−2πiy·tdt (B.1)

for any real number t. The operator F decomposes the intensities of frequencies over
time. Since in most real-world scenarios an integrable function f(t) is not known,
but only its values at discrete points in time, a discrete expansion is necessary. By
frequency spectrum, we denote a time series that is transformed by discrete Fourier
transform (DFT). DFT transforms a finite sequence of equally-spaced observed data
points (x0, ..., xT ) into another sequence (X0, X1, . . . , XT ) that is a complex-valued
function of frequency given by

Xk =
T∑
j=0

e−2πi· jk
T · xj (B.2)

for k = 0, ..., T . The fast Fourier transform (FFT) is an efficient algorithm for
computing DFT (Cooley and Tukey, 1965). Showing a trend, degradation time series
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are inherently non-stationary, i.e., the mean is not constant over time. To analyse
the frequency spectrum of non-stationary time series, short-time Fourier transform
is used. To assume stationarity, the short-time Fourier transform uses a window
function to select short time periods with constant mean. Several frequency spectra
are calculated per window by DFT. By calculating several frequency spectra over the
windows, in which the time series is assumed to be stationary, it is then possible to
calculate a time-frequency spectrum via the FT. The short-time Fourier transform
is defined as

X(τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−iωtdt, (B.3)

where x(t) is the time series that the time-frequency distribution should be computed
for, w(τ) is the sliding window function, and τ the delay in between windows. In
most cases, the windows are selected with some overlap. By time-frequency spectrum,
we denote a time series on which short-time Fourier transform is performed. Note
that in the next step of the overall process, not every feature extraction method can
be applied on every frequency analysis method.

B.2.5 Statistical Features

Mean x̄ = 1
T

∑T
i=1 xi Skewness

1
T

∑T
i=1(xi−x̄)3

( 1
T

∑T
i=1(xi−x̄)2)

3
2

Max max{x1, ..., xT } Kurtosis
1
T

∑T
i=1(xi−x̄)4

( 1
T

∑T
i=1(xi−x̄)2)2

Min min{x1, ..., xT } Peak factor max(x)√
1
T

∑T
i=1 x

2
i

Root mean square
√

1
n

∑T
i=1 x

2
i Change coefficient x̄√

1
T

∑T
i=1 x

2
i

Peak to peak value max(x)−min(x) Clearence factor max(x)
1
T

∑T
i=1(xi)2

Variance 1
T

∑T
i=1(xi − x̄)2 Absolute Energy

∑T
i=1 x

2
i

Table B.1: List of statistical features.

B.2.6 Autoencoder

A relatively new method for reducing dimensionality are autoencoders, a branch of
ANNs. The architecture consists of two connected ANNs compressing the input vari-
able into a reduced dimensional space, also called encoder, and re-creating the input
data, also called decoder. Each node of the hidden “bottleneck” layer of compressed
information can be treated as a feature in subsequent learning tasks. The autoencoder
can be applied directly to the time and frequency spectrum.
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B.2.7 Convolutional Neural Network

A CNN is another type of ANNs typically used for image recognition, but also for
signal processing. The architecture of a classical CNN consists of one or more con-
volutional layers followed by a pooling layer. In a convolutional layer, a matrix, also
called filter kernel, is moved stepwise over the input data calculating the inner prod-
uct of both. The result is called feature map. Accordingly, neighbouring neurons
in the convolutional layer correspond to overlapping regions such as similar frequen-
cies in signals. In a pooling layer, superfluous information is discarded and a more
abstract lower-dimensional representation of the relevant information is obtained by
combining neighbouring elements of the map, e.g., by calculating the maximum. To
feed the matrix output of the convolution layer and the pooling layer into a final fully
connected layer, it must first be unrolled (flattened). The flatten layer is then treated
as a feature. The CNN has to be applied to the time-frequency spectrum.

B.2.8 Implementation Details for the Bearing Experiment

For the purpose of reproducibility, we list the implementation details as follows. Out-
liers are removed based on Z-Score before data is normalised with Min-Max-Scaler
by scikit-learn. FFT and short-time Fourier transform are implemented with SciPy
with sampling rate 25.6kHz. For short-time Fourier transform, the Hann window
function is used with a window length of 256 and an overlap of 128, meaning when
given a time series with 2560 data points, the time series is separated into 21 differ-
ent overlapping windows, and the Fourier transform is calculated for each of them
resulting in the time-frequency spectrum of the time series. Statistical and entropy
features are provided by tsfresh. For the calculation of Shannon entropy we use
the classical symbolisation of the time series by SAX from pyts. For the calcula-
tion of permutation entropy we use the ordinal symbolisation by tsfresh with delay
τ = 10 and order d = 5. PCA is implemented using scikit-learn with encoding size
25. The autoencoder, CNN and ANN are implemented using Keras. The autoen-
coder architecture for feature learning consists of two encoding layers of size 160 and
80, followed by the coding layer of size 25 and two decoding layers of size 80 and
160. The CNN architecture for feature learning consists of 2 convolutional layers of
dimension 6 × 6, each followed by a pooling layer of dimension 2 × 2 and a batch
normalisation before the flattening layer is used for feature representation. The ANN
architecture for the regression task consists of two hidden layers and an output layer,
each of them with 512 hidden units. The activation function is chosen as rectified
linear unit, i.e., ReLu(x) = max(0, x). To avoid overfitting, the dropout rate is set
to 0.5. The autoencoder, CNN, and ANN are trained using Adam optimizer with
learning rate 0.001 and loss function as mean squared error. MLR, GPR and SVR
are implemented by scikit-learn with default settings. For health stage classification
only one of the available variables is used, namely horizontal vibration for bearing
and log speed for the vessel dataset. Observations in each dataset are recorded until
end of useful lifetime.
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B.2.9 Metrics

RMSE is defined by

RMSE(x, y) =
( 1

n

T∑
i=1

(yi − xi)2
)1/2

, (B.4)

where x = (x1, ..., xT ) and y = (y1, ..., yT ) are time series and T is the length of both
time series. Note that both time series are assumed to be of equal length. PCC
measures the linear correlation of two time series x and y, and is defined by

PCC(x, y) =

∑T
i=1(xi − x̄)(yi − ȳ)√∑T

i=1(xi − x̄)2

√∑T
i=1(yi − ȳ)2

, (B.5)

where x̄, ȳ and sx, sy are the mean and the sample standard deviation of each
respective time series. PCC has a value from −1 to 1, where 1 means that x and y
are positively correlated, 0 means that there is no correlation at all, and −1 means
a negative correlation. PCC describes the similarity of the behaviour of two time
series, i.e., PCC indicates whether a learned model is able to correctly identify the
degradation pattern (in case, PCC is close to 1). Note, PCC should be considered
together with RMSE.

B.2.10 Further Experimental Results

To answer the first research question (RQ1) from App. B.2.2, whether a health
stage classification can improve the accuracy of the prediction, we compare RMSE
and PCC of experiments {A, . . . ,M}true,j vs. {A, . . . ,M}false,j for every regression
model j = {MLR,GPR,ANN, SVR}. Experiments show that RMSE decreases if the
HS classifier is applied in 59%, 78%, 64%, and 74% of the predictions, respectively.
Thus, in general, an improvement is observed. This does not imply that the total
RMSE over all bearings or vessels must also decrease. Indeed, for bearing data it
even increases for {K,L,M}true,MLR and {B, J}true,GPR, which can be taken from
Figure 13.3 (top, blue and orange). Compared to RMSE, PCC increases in 41%,
63%, 34%, and 69% of the predictions, which indicates an overall improvement. Nev-
ertheless, there is a deterioration of the average PCC in both case studies when using
MLR. Hence, it should be checked individually whether there is an improvement in
the functional relationship.

To answer the second research question research question (RQ2) from App. B.2.2,
whether frequency analysis can provide additional information, we compare RMSE
and PCC of experiments Ai,j vs. Gi,j , Bi,j vs. Hi,j , Ci,j vs. Ii,j , Di,j vs. Ji,j ,
Ei,j vs. Ki,j and Fi,j vs. Li,j for all i, j. The average RMSE and average PCC
shows that only in the case of Bi,j vs. Hi,j an improvement is achieved, i.e., a
reduction of the RMSE and an increase of the PCC. More specifically, we find that

144



B.2 PE in Degradation Estimation in Manufacturing

the feature calculation on the frequency spectra leads to a reduction of RMSE only
in 42%, 50%, 47%, 38%, 52% and 55% of the predictions, which is close to random
guessing. It is further to point out that Dtrue,GPR and Etrue,MLR lead to an increase
in RMSE in 100% of the predictions for bearing data, while in the case of vessel
data they decrease in 100% of predictions. Therefore, we do not recommend blind
use of frequency analysis, but rather use it wisely. Note, that we did not investigate
whether combining features on the raw time spectrum in combination with features
on the frequency spectrum gives better results. We leave this for future work in the
context of feature selection.

B.2.11 Recommendations

We provide recommendations for composing data-driven prediction processes for
degradation estimation based on the conducted experiments. Limits in the applica-
tion depend on the individual use case that is to be implemented. Note that finding
suitable degrading data directly related to the RUL of a machine part or complex
system is not trivial. It requires initial analyses of the data and its correlations. The
functional relationship have to be investigated or, if necessary, transformed by ap-
propriate preprocessing such as creation of indicators. Along the research questions
we recommend as follows.

1. Health stage classifier : We advise integrating a health stage classifier within the
degradation estimation process, as in the vast majority of cases both RMSE and
PCC are improved. Note that there are other health stage classifiers that may
be more appropriate for your individual problem.

2. Frequency analysis: We do not recommend predicting the degradation solely by
features calculated on frequency spectra. This does not mean that such features
cannot add value in combinations with others.

3. Feature set : While CNN and entropy features are most suited for bearing data,
classical statistical features are for vessel data. For getting started, we rec-
ommend using feature engineering before putting a lot of effort into feature
learning and tuning its hyperparameters. The feature extraction method can
be easily replaced in the process later. A good prediction depends on both, the
choice of features, as well as the choice of a model.

4. Regression model : GPR may be used with caution and only be applied to ap-
propriate data. Furthermore, we recommend more complex models than MLR.
Not surprisingly, ANN and SVR perform best, with ANN being able to better
represent the functional relationship. SVR is known for good generalisation
ability, which is also shown here. Our comparison results confirm those of other
authors, e.g., by Kim et al. (2012); Ozkat (2019).
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B.3 MPE on the UEA MTSC Archive

B.3.1 Hyperparameter-Tuning

For each UEA MTSC dataset and each MPE-variant, we determined the best hyper-
parameters from a set of orders d ∈ {2, . . . , 6} and delays τ ∈ {1, 2, 3, 5, 10} in terms
of classification. Results are shown in the following Table B.2.

1-NN based on

Data set P
P
E

M
W

P
E

M
O
P
P
E

E
U
C
L

M
A
N
H

N
O
R
M

P
C
A

P
C
A

2

ArticularyWordRecognition
d 3 5 2 4 5 4 6 4
τ 5 5 1 1 1 1 1 10

AtrialFibrillation
d 2 2 4 6 3 6 2 2
τ 10 5 1 5 1 10 1 5

BasicMotions
d 3 5 2 6 4 5 5 3
τ 5 1 5 1 1 1 5 5

Cricket
d 5 5 3 3 5 4 4 5
τ 5 10 5 10 10 1 1 1

DuckDuckGeese
d 2 4 2 5 2 3 3 4
τ 1 1 1 10 10 10 1 1

Eigenworms
d 3 3 2 3 3 2 5 3
τ 10 1 5 10 1 5 10 10

Epilepsy
d 6 4 4 4 6 4 5 5
τ 1 1 10 5 5 1 5 10

ERing
d 2 3 3 2 2 6 6 4
τ 1 3 3 3 3 3 1 1

EthanolConcentration
d 3 4 3 3 5 4 3 2
τ 10 5 5 5 5 10 10 5

FaceDetection
d 4 4 2 2 3 5 4 4
τ 1 3 3 2 3 3 1 2

FingerMovements
d 5 4 2 4 4 5 5 2
τ 1 3 1 2 3 2 2 1

HandMovementDirection
d 4 4 3 3 4 4 3 4
τ 5 1 1 5 1 5 5 1

Handwriting
d 5 5 4 5 3 5 5 3
τ 10 10 10 10 1 10 1 1
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Heartbeat
d 2 3 5 3 5 3 2 2
τ 1 5 5 10 1 10 10 10

JapaneseVowels
d 3 3 2 4 4 2 2 2
τ 2 2 3 1 1 1 1 1

LSST
d 3 4 3 4 3 3 4 3
τ 2 1 1 1 2 2 1 1

Libras
d 5 4 4 6 5 5 5 3
τ 3 2 1 1 3 2 3 3

MotorImagery
d 5 2 2 2 2 4 2 3
τ 10 1 1 5 5 1 10 10

NATOPS
d 3 5 2 4 4 5 2 5
τ 1 2 2 1 3 2 3 2

PEMS-SF
d 3 3 2 5 5 5 5 4
τ 1 5 10 1 10 10 1 5

PenDigits
d 3 3 2 3 2 3 3 2
τ 2 2 1 1 2 1 1 2

PhonemeSpectra
d 3 4 3 4 4 3 3 5
τ 1 1 1 1 1 1 1 1

RacketSports
d 4 4 2 3 4 5 3 3
τ 2 2 2 2 2 1 2 2

SelfRegulationSCP1
d 4 3 5 5 5 4 4 5
τ 1 5 1 5 5 5 1 1

SelfRegulationSCP2
d 2 4 2 2 4 2 5 2
τ 10 10 5 5 1 1 10 5

SpokenArabicDigits
d 2 4 2 3 3 3 3 2
τ 2 1 3 2 2 2 2 2

StandWalkJump
d 4 3 2 3 2 4 3 3
τ 1 10 1 1 5 10 5 1

UWaveGestureLibrary
d 2 3 3 2 3 6 2 4
τ 10 1 1 5 1 10 1 1

Table B.2: Selected hyperparameters for classification.
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B.3.2 Precision, Recall and F1-Score

Precision and recall are then defined by

p = tp
tp+fp , (B.6)

r = tp
tp+fn , (B.7)

where tp denotes true positives, tn denotes true negatives, fp denotes false positives,
and fn denotes false negatives. The traditional F1-measure or balanced F1-score is a
measure that combines precision and recall, i.e., the harmonic mean of precision and
recall. Specifically,

F1 = 2 · precision · recall

precision + recall
(B.8)

In the experiments we use the weighted F1-score, i.e., for each label the F1-score is
calculated and then their average is weighted with the accuracy. This can result in
an F1-score that is not between precision and recall. Table B.3 shows precision, recall
and weighted F1-score of the experiments performed for each data set of the UEA
MTSC archive.

1-NN based on

Data set P
P
E

M
W

P
E

M
O
P
P
E

E
U
C
L

M
A
N
H

N
O
R
M

P
C
A

P
C
A

2

ArticularyWordR.
r 0.13 0.14 0.09 0.15 0.13 0.14 0.11 0.10
p 0.13 0.14 0.10 0.13 0.14 0.14 0.11 0.10
F1 0.13 0.13 0.10 0.13 0.13 0.13 0.10 0.10

AtrialFibrillation
r 0.51 0.44 0.57 0.57 0.74 0.61 0.61 0.45
p 0.47 0.40 0.40 0.53 0.73 0.60 0.60 0.47
F1 0.47 0.39 0.39 0.53 0.73 0.59 0.59 0.45

BasicMotions
r 0.56 0.75 0.53 0.59 0.32 0.44 0.55 0.56
p 0.55 0.75 0.53 0.58 0.38 0.43 0.55 0.58
F1 0.54 0.75 0.51 0.58 0.34 0.41 0.54 0.55

Cricket
r 0.31 0.33 0.37 0.23 0.27 0.37 0.28 0.27
p 0.24 0.33 0.36 0.26 0.31 0.35 0.32 0.29
F1 0.24 0.32 0.36 0.24 0.28 0.34 0.30 0.27

DuckDuckGeese
r 0.39 0.30 0.31 0.18 0.28 0.42 0.35 0.31
p 0.36 0.3 0.32 0.30 0.30 0.32 0.32 0.32
F1 0.35 0.29 0.31 0.21 0.28 0.33 0.32 0.30

Eigenworms
r 0.51 0.49 0.54 0.46 0.47 0.52 0.49 0.46
p 0.50 0.47 0.56 0.47 0.47 0.53 0.49 0.46
F1 0.53 0.47 0.55 0.46 0.46 0.52 0.49 0.45
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Epilepsy
r 0.49 0.51 0.44 0.40 0.40 0.45 0.55 0.51
p 0.50 0.51 0.44 0.41 0.40 0.46 0.54 0.51
F1 0.49 0.51 0.44 0.40 0.39 0.45 0.54 0.51

ERing
r 0.49 0.45 0.40 0.33 0.32 0.30 0.27 0.29
p 0.49 0.44 0.41 0.37 0.34 0.30 0.30 0.33
F1 0.47 0.45 0.40 0.34 0.31 0.30 0.27 0.29

EthanolConc.
r 0.29 0.29 0.29 0.30 0.29 0.28 0.30 0.28
p 0.29 0.30 0.29 0.29 0.30 0.28 0.30 0.28
F1 0.29 0.29 0.29 0.29 0.29 0.28 0.30 0.28

FaceDetection
r 0.52 0.54 0.54 0.53 0.51 0.52 0.51 0.52
p 0.51 0.52 0.50 0.52 0.51 0.52 0.51 0.52
F1 0.52 0.52 0.34 0.47 0.51 0.52 0.51 0.51

FingerMovements
r 0.54 0.57 0.48 0.54 0.58 0.59 0.60 0.57
p 0.54 0.56 0.49 0.54 0.58 0.58 0.60 0.57
F1 0.54 0.55 0.37 0.54 0.58 0.57 0.60 0.57

HandMovementD.
r 0.31 0.28 0.36 0.42 0.37 0.40 0.32 0.32
p 0.28 0.27 0.32 0.36 0.34 0.32 0.27 0.30
F1 0.29 0.27 0.33 0.37 0.34 0.34 0.27 0.30

Handwriting
r 0.07 0.05 0.06 0.07 0.06 0.07 0.06 0.07
p 0.07 0.05 0.07 0.06 0.06 0.07 0.07 0.07
F1 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.06

Heartbeat
r 0.67 0.66 0.61 0.64 0.64 0.60 0.69 0.63
p 0.68 0.65 0.65 0.63 0.63 0.62 0.68 0.62
F1 0.67 0.65 0.63 0.63 0.64 0.61 0.68 0.63

JapaneseVowels
r 0.30 0.25 0.28 0.19 0.24 0.21 0.27 0.24
p 0.26 0.23 0.22 0.17 0.25 0.19 0.25 0.22
F1 0.27 0.23 0.24 0.14 0.22 0.19 0.25 0.22

Libras
r 0.32 0.37 0.29 0.24 0.34 0.38 0.29 0.27
p 0.31 0.37 0.29 0.27 0.29 0.37 0.31 0.28
F1 0.31 0.36 0.29 0.25 0.29 0.36 0.29 0.27

LSST
r 0.20 0.18 0.10 0.17 0.17 0.18 0.17 0.17
p 0.20 0.19 0.03 0.13 0.13 0.13 0.13 0.13
F1 0.20 0.18 0.03 0.14 0.13 0.14 0.14 0.13

MotorImagery
r 0.61 0.64 0.60 0.55 0.61 0.64 0.57 0.59
p 0.61 0.64 0.60 0.55 0.61 0.63 0.57 0.59
F1 0.61 0.64 0.60 0.55 0.61 0.63 0.57 0.59

NATOPS
r 0.19 0.42 0.17 0.23 0.24 0.24 0.24 0.23
p 0.19 0.41 0.22 0.23 0.25 0.24 0.23 0.22
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F1 0.19 0.40 0.19 0.23 0.24 0.24 0.20 0.22

PEMS-SF
r 0.75 064 0.57 0.62 0.63 0.64 0.66 0.65
p 0.75 0.61 0.56 0.61 0.60 0.64 0.63 0.63
F1 0.74 0.61 0.56 0.61 0.59 0.63 0.63 0.63

PenDigits
r 0.31 0.17 0.18 0.18 0.09 0.23 0.16 0.06
p 0.22 0.17 0.19 0.20 0.18 0.18 0.19 0.15
F1 0.18 0.17 0.15 0.18 0.11 0.15 0.16 0.09

PhonemeSpectra
r 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07
p 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
F1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04

RacketSports
r 0.38 0.33 0.31 0.32 0.33 0.31 0.34 0.33
p 0.38 0.33 0.32 0.32 0.32 0.30 0.34 0.32
F1 0.37 0.32 0.30 0.31 0.32 0.30 0.33 0.32

SelfReg.SCP1
r 0.59 0.56 0.59 0.62 0.61 0.58 0.62 0.59
p 0.59 0.56 0.57 0.62 0.61 0.58 0.61 0.59
F1 0.59 0.56 0.55 0.62 0.61 0.58 0.61 0.59

SelfReg.SCP2
r 0.61 0.55 0.56 0.55 0.55 0.57 0.53 0.54
p 0.61 0.55 0.56 0.55 0.55 0.57 0.53 0.54
F1 0.61 0.55 0.55 0.55 0.55 0.56 0.53 0.54

SpokenArabicD.
r 0.18 0.11 0.15 0.15 0.15 0.15 0.15 0.17
p 0.15 0.11 0.14 0.15 0.15 0.15 0.16 0.17
F1 0.13 0.11 0.10 0.15 0.15 0.15 0.15 0.16

StandWalkJump
r 0.57 0.59 0.51 0.72 0.48 0.67 0.53 0.68
p 0.53 0.60 0.47 0.53 0.47 0.67 0.53 0.67
F1 0.53 0.59 0.47 0.51 0.45 0.66 0.53 0.65

UWaveGestureL.
r 0.24 0.22 0.20 0.18 0.19 0.19 0.20 0.21
p 0.24 0.22 0.21 0.20 0.19 0.19 0.20 0.20
F1 0.24 0.22 0.20 0.19 0.19 0.19 0.19 0.20

Table B.3: Precision, recall and weighted F1-scores for classifications.
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