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Abstract

Adding interpretative linguistic data to an individual collection of documents is known as
corpus annotation. Corpus annotation is widely accepted as one of the key contributions
to the benefit of a corpus, since annotations enrich a corpus with additional data that
is valuable for different tasks performed on a corpus. Over the last sixty years, different
kinds of annotations have been introduced with the intent that the annotations should
add a value to a corpus for tasks such as Information Retrieval (IR). Generally, inter-
pretative linguistic data is the product of text understanding and a specific task. Thus,
interpretative linguistic data is not objective, e.g., an annotation in form of an explana-
tion about an action in a text highly depends on the annotator the context represented
by the individual collection of documents and a corpus. So, different valid explanations
might exist for the same action in a document. Since manually adding data to documents
is time-consuming, in recent years more and more use has been made of semi-automatic
annotation systems. However, available annotation systems are document-oriented and
ignore the unique context of a document represented by an individual collection of docu-
ments in a corpus. The problem studied in this dissertation is the problem of estimating
context-aware Subjective Content Descriptions (SCDs) for documents in a corpus adding
a value for corpus-specific tasks. We introduce a new kind of corpus annotations denoted
as SCDs and use the idea of topic modeling approach Latent Dirichlet Allocation (LDA)
to solve the problem by estimating a context-aware relevance value for SCDs based on the
corpus-driven topics of documents as well as SCDs associated to documents. The contri-
butions of this dissertation are categorized into two parts: In the first part, we present
the foundation of SCDs followed by a context-specific corpus enrichment approach for
new documents. It follows an approach to estimate a document-specific relevance value
for SCDs which is used in a corpus-driven enrichment process associating weakly an-
notated documents with SCDs that are associated with similar documents in the same
corpus. Since SCDs might be encoded directly into the text, we present an approach to
identify hidden SCDs within the text of documents. Finally, we present a context-aware
adaptation approach to automatically estimate SCDs for documents in a new corpus
which are not associated with SCDs. In the second part, we focus on results regarding
topic modeling techniques in the domain of SCDs and provide techniques to compare
document-topic probability distributions with each other resulting from different topic
models and we present results for enhancing relational topic models with named entity
induced links between documents in a corpus.
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Kurzfassung

Das Hinzufügen interpretativer linguistischer Daten zu Dokumenten in einem Korpus
wird als Korpusannotation bezeichnet. Das Annotieren eines Korpus wird als einer der
wichtigsten Beiträge zum Nutzen eines Korpus verstanden, da Annotationen den Korpus
mit zusätzlichen Daten anreichern, die für bestimmte Aufgaben nützlich sein können die
mit dem Korpus durchgeführt werden. In den letzten sechzig Jahren wurden verschiedene
Arten von Annotationen eingeführt. Allen Annotationen ist gemeinsam, dass sie einen
Mehrwert für Aufgaben darstellen sollen wie z.B. der Informationsgewinnung aus Doku-
menten eines Korpus. Im Allgemeinen werden interpretative Annotationen aus dem
Textverständnisses gewonnen und sind daher nicht objektiv. Ob eine Annotation eine
Erklärung über eine im Text vorkommende Handlung darstellt, hängt vom jeweiligen An-
notator ab, sodass es unterschiedlich geeignete Annotationen geben kann. Dadurch, dass
das manuelle Hinzufügen interpretativer Daten zu Dokumenten zeitaufwendig ist, wurden
in den letzten Jahren zunehmend semi-automatische Annotationssysteme eingeführt. Die
verfügbaren Annotationssysteme sind dokumentenorientiert und ignorieren den Kontext
eines Dokuments, der durch die jeweilige Sammlung der Dokumenten repräsentiert wird.
Das in dieser Dissertation untersuchte Problem ist daher das Problem der Bestimmung
von kontextbewussten subjektiven Inhaltsbeschreibungen (SCDs) für Dokumente in einem
Korpus, sodass die Inhaltsbeschreibungen einen Mehrwert für korpusspezifische Aufgaben
bieten.
Wir kombinieren die Idee der sog. Themenmodellierung mit einer neuen Kategorie von

Korpusannotation, die wir als subjektive Inhaltsbeschreibung bezeichnen, mit dem Ziel,
das genannte Problem zu lösen und die Performanz von unterschiedlichen Aufgaben der
Annotation zu erhöhen. Wir konzentrieren uns auf den Ansatz der Latent Dirichlet Al-
location (LDA)-Themenmodellierung. Bei dieser Modellierung werden die Dokumente
mittels einer Wahrscheinlichkeitsverteilung über Themen darstellt, um die kontextbezo-
gene Ähnlichkeit zwischen Dokumenten in einem Korpus auf der Grundlage der Themen
sowie der Inhaltsbeschreibungen zu identifizieren.
Wir gliedern die Arbeit in die nachfolgenden zwei Teile. Zunächst präsentieren wir

Grundlagen der subjektiven Inhaltsbeschreibungen, gefolgt von einem Ansatz zur kon-
textspezifischen Korpusanreicherung neuer Dokumente. Anschließend präsentieren wir
einen Ansatz, um einen dokumentenspezifischen Relevanzwert von SCDs zu errechnen,
und wir nutzen diesen Relevanzwert in einem korpusgesteuerten Prozess zur Anreicherung
von schwach annotierten Dokumenten mit zusätzlichen Inhaltsbeschreibungen, die mit
ähnlichen Dokumenten innerhalb desselben Korpus assoziiert sind. Da Inhaltsbeschrei-
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Kurzfassung

bungen auch direkt im Text kodiert sein können, stellen wir ebenfalls einen Ansatz vor,
um kodierte Inhaltsbeschreibungen innerhalb eines Texts zu identifizieren. Schließlich
stellen wir einen Ansatz vor, um Inhaltsbeschreibungen für Dokumente, basierend auf den
Inhaltsbeschreibungen eines anderen Korpus, automatisch zu generieren. Im zweiten Teil
dieser Arbeit konzentrieren wir uns auf Ergebnisse zu Themenmodellierungstechniken im
Bereich der Inhaltsbeschreibungen und stellen Techniken zum Vergleich von Themen-
verteilungen vor, die sich aus verschiedenen Themenmodellen ergeben. Wir präsentieren
Ergebnisse zur Erweiterung eines relationalen Themenmodells mit Verknüpfungen zwis-
chen Entitäten die im Text der Dokumente vorkommen.
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Chapter 1

Introduction

Natural Language Processing (NLP) combines fields from linguistics, computer science,
and artificial intelligence, and is an important discipline concerned with the interaction
between machines and human language to process natural language data such as text.
One famous branch in the domain of NLP is Information Extraction (IE), which is the
task about structuring unstructured data and opens up new avenues to automatically
extracting data from unstructured machine readable data such as text in documents. In
the late 1970s, DeJong (1979) have introduced FRUMP — one of the first IE systems
focusing on the textual context of news stories instead of only words in the news stories.
Generally, extracting information from text for a specific task is difficult since some

kind of text understanding is necessary to interpret the text of a document. Thus, the
U.S. government-sponsored Message Understanding Conference (MUC) encourages the
development of new and better methods of IE. Over the last three decades, researchers
have introduced different tasks trying to extract data from the text of documents, e.g.,
Named-Entity Recognition (NER), introduced by Grishman and Sundheim (1996), which
is the discipline of extracting and tagging entities in a text, or relationship extraction,
introduced by Chinchor (1998), which is the task of detecting and classifying relationships
between entities. Other important tasks are sentiment analysis or detecting synonyms,
irony, and sarcasm.
A variety of document-oriented information extraction approaches focus on techniques

extracting data from the text of documents to (i) store the data in a structured format
such that those data can be easily processed for different tasks, (ii) mine the emotions
within the text, known as sentiment analysis, or (iii) add interpretative linguistic data to
documents, e.g., by indicating the word class whereto the words in a text belong, such
that words can be distinguished having the same spelling but different meanings. These
words are also known as homonyms.
Generally, interpretative linguistic data are the product of text understanding and a

specific task. Different types of linguistic data are defined such as Part-of-Speech (POS)
tagging or semantic annotations, where POS tagging adds grammatical tags like noun,
verb, or article to words. Those grammatical tags are necessary to understand the content
of text. Semantic annotations add data about the semantic category of words which
is useful to distinguish words having no difference in spelling or pronunciation, but a
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different semantic meaning. Generally, adding data to documents should increase the
performance of a specific task, e.g., the performance of a document retrieval system such
that more relevant documents might be identified for a given query. Adding interpretative
linguistic data to an individual collection of documents is known as corpus annotation
and is widely accepted as one of the key contributions to the benefit of a corpus, since
interpretative linguistic data add a value for different tasks performed on the individual
collection of documents representing the corpus. Thus, the performance of retrieval
systems may increase for an annotated corpus containing not only data explicitly available
within the text of documents, but containing additional data about the documents’
content. Mostly every modern search engine is based on the document retrieval task
where queries of users are matched against available documents. We use the term add
a value to describe the performance increase for a specific task on annotated documents
compared to unannotated documents.
In this dissertation, we follow the agent-theoretic perspective of Russell and Norvig

(2009), where an agent is a rational, autonomous unit acting in a world, perceived through
sensors, fulfilling a task, e.g., adding data to documents, or providing document retrieval
services given specific requests from users. We use the term agent referring to a soft-
ware agent for an information retrieval service and assume that an agent is working with
an individual collection of documents acting as a reference library. We assume that an
agent is working with an individual collection of documents pursues a defined task or
task, e.g., providing an information retrieval system matching a given query against a
set of documents and returns a set of best matching documents. The agent might not
only use the words available in documents and queries trying to match documents to a
query but annotate documents with Subjective Content Descriptions (SCDs), which the
agent expects to be relevant to its corpus-specific task. Maybe the most intuitive way to
imagine an SCD is given by a human generated Post-it Note associated with a document
since the content of a Post-it Note is subjective and task-specific. Generally, we assume
that the task provides a context in which SCDs add value for the task of an agent, e.g.,
notes added to specific sentences of an article may provide explanations or references.
Thus, SCDs add data relevant for the agent’s task and have a connection to a specific
section in the document s.t SCDs may optimize the performance of an agent’s retrieval
service.

The problem this dissertation focuses on is that of estimating context-aware subjective
content descriptions for documents adding a value for corpus-specific tasks of an agent,
where a corpus-specific task might be identifying documents in a given corpus that are
similar to a new document presented to an agent’s retrieval system or identifying the
corpus-driven category of a new document an agent is faced with.
Available annotation systems enriching documents in a corpus with annotations focus

only on the content of documents and ignore the task of an agent as well as the individual
collection of documents within a corpus representing a specific context the agent is acting

2
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in. In contrast to available annotation systems, the goal of this dissertation is to design
techniques resulting in context-aware and subjective content descriptions for documents
by considering the individual collection of documents in a corpus given a corpus-specific
task. Next, we give an overview of related work in the domain of corpus annotation and
IE. Afterwards, we present the research objectives and scientific contributions of this
dissertation, followed by a short overview of all chapters.

1.1 Related Work

In this section, we present related work in the domain of corpus annotation, which is
a sub-task in the field of corpus linguistics. Corpus annotation can be defined as the
process of adding interpretative and linguistic data to documents in a corpus. Generally,
the granularity of annotations depends on the application and a single annotation may
cover a word, a sentence, a paragraph, a document, or an entire corpus. We refer to
ISO-Standard:24612:2012 (2012) for further details about the granularity of annotations.
Electronic corpus linguistics dates from the work of Henry Kučera and W. Nelson Francis
at Brown University in 1978. They have presented the first electronic corpus that has
been generated from publications consisting just over one million words from 500 text
samples of about 2000 words each.
Over the recent years, researches from the NLP community have introduced a consid-

erable number of annotation systems to enrich documents in a corpus with additional
data, denoted as annotations. The annotation systems can be grouped into the following
three categories:

(i) manual annotation systems,

(ii) semi-automatic annotation systems, and

(iii) automatic annotation systems.

An important research goal is automatically enriching documents in a corpus with
context-specific data adding a value to the task of an agent, e.g., for retrieval tasks of
an information retrieval agent working with an individual collection of documents in a
corpus. Generally, the value of data that has been added to a document depends on the
specific task of an agent. However, to control the quality of the annotations enriching a
document, most of the non-manual annotation systems are only semi-automatic instead
of fully automatic.

Manual Annotation Systems Manual annotation systems require human annotators
adding data to documents. One advantage of manual annotation systems is that new
data associated with a document might have a high quality since often domain-specific
annotation experts, having background knowledge of the documents’ content, would

3
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manually annotate documents in a corpus. However, manually enriching documents
with annotations is a time-consuming task, because each document has to be read by at
least one human annotator generating annotations for the documents in a corpus. The
quality of annotations depends on the background knowledge of the human annotator.
Even if two domain experts annotate the same document, it is very unlikely that the doc-
uments share the same annotations since enriching documents with annotations is highly
subjective and no single correct annotation exists. Thus, one of the greatest challenges
in the domain of manual annotation systems is creating high-quality annotations such
that the annotations adding a value for each specific task, e.g., increasing the information
retrieval performance of an agent.
Generally, domain-specific annotation experts are scarce and quite expensive. Thus,

another annotation approach to obtain manually generated annotations for documents is
crowdsourcing (Biemann (2013); Bontcheva et al. (2014); Sabou et al. (2014)). Crowd-
sourcing focus on fast generation of annotations at relatively low cost. Jurgens (2013)
considers that annotating documents in a crowdsourced fashion often suffers from high
error rates, but using voting systems the error rates can be minimized, thereby yielding
in an acceptable quality of annotations. Annotations generated in a crowdsourced fash-
ion are more generic, since human annotators are no domain-specific experts and have
only limited domain knowledge. Generally, depending on the specific task, annotations
generated in a crowdsourced fashion might be sufficient.
Next, we present some manual annotation systems for text documents.
Cunningham (2002) has introduced GATE, a general architecture for text engineering.

GATE Teamware (Bontcheva et al. (2013)) is part of the GATE family and provides a
collaborative annotation environment for manually annotating text by highlighting words
or completing sentences. Although there is an advantage in the use of GATE Teamware,
that other parts of the software family can be easily used, as well.
Stenetorp et al. (2012) have introduced Brat, a famous web-based tool for structured

annotation of text. In Brat, the annotations are not freeform text but have a fixed form,
such that the annotations can be automatically processed and interpreted by a machine
and different human annotators can easily create annotations of the same form. Brat
aims to support manual curation efforts and increase annotator productivity by providing
powerful annotation functions and rich visualization ability.
Eckart de Castilho et al. (2016) have introduced WebAnno, another web-based tool

for text annotation, to be prominent by their annotation project management, freely
configurable set of tags, and user management. WebAnno supports different types of
documents using an import function and provides part-of-speech tagging, named entity
extraction, dependency parsing, and co-reference chains. Additionally, WebAnno pro-
vides an interface to farm out the task of annotations to a crowdsourcing platform.
Yang et al. (2018) have introduced YEDDA, a lightweight, efficient, and comprehensive

open-source tool for text annotation including collaboration, evaluation of annotations,
and annotation analysis. In comparison to most annotation systems, YEDDA provides
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batch annotation for entities using a command line interface and presents recommenda-
tions for text annotations. Additionally, the system supports shortcut keys to efficiently
annotate text by hand. Those features reduce the required time for human annotators
adding annotations to text documents.

Automatic Annotation Systems In comparison to manual annotation systems, auto-
matic annotation systems analyse the text of a document whilst trying to identify the
context and automatically enriching a document with additional data. A well-established
automatic annotation task is POS tagging, which is the task of taking an unannotated
block of text and producing an annotated block of text that highlights the names of enti-
ties and classifies the entities into predefined categories such as persons, organizations, or
locations. Some automatic annotation systems take the identified Named-Entitys (NEs)
from the text and link those entities to an external source by relating more linked entities
and relationships which can be identified using link prediction. Getoor and Diehl (2005)
describe link prediction as the discipline of estimating the likelihood of the existence of
a link between nodes, using the given links and attributes of nodes within a graph.
The quality of data from external sources, acting as annotations for a given document,

depends on the document’s content and applicability of the source for the content of
documents. Generally, annotations are generic and mostly ignore the context presented
by the corpus. Two famous sources used to link entities to a document are DBpedia and
YAGO introduced in Lehmann et al. (2014) and Suchanek et al. (2007), respectively.
Day et al. (2000) have introduced cross-document annotation, which is a framework

that serves as a corpus-wide Knowledge Base (KB) for linguistic annotations. The frame-
work extracts data about individuals and events from different textual sources within the
same corpus to accrue to a single representation of that individual. The goal of the frame-
work is to support human annotators to accurately, and rapidly find previously annotated
candidate mentions and facilitate inspection of those mentions in context.
Dill et al. (2003) have introduced SemTag to generate semantic annotations. SemTag

is a module of the large-scale text analytics platform Seeker. SemTag uses a structural
analysis of text and the ontology TAP, introduced by Guha and McCool (2003), to auto-
matically annotate documents with data from the TAP ontology, containing lexical and
taxonomic information about movies, authors, locations, musicians, and others. SemTag
stores the annotations in a separate file.
Analogous to SemTag, the semantic annotation platform KIM, introduced by Popov

et al. (2003), provides a knowledge and information management infrastructure for au-
tomatic semantic annotation, indexing, and retrieval. KIM identifies entities in the text
of documents and links the entities to semantic descriptions which are provided by the
KIMO ontology, which is a pre-populated ontology with many instances. The KIM plat-
form allows KIM-based applications for automatic semantic annotation. KIM is based
on GATE and has been applied in different domains like anti-corruption, asset recovery,
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analysis of biomedical content, or scientific papers.
Reuters has introduced OpenCalais1, which has been a knowledge extraction tool and

has been offered as a web service by Reuters, which automatically tags data in unstruc-
tured text using a large ontology. OpenCalais extracts NEs with sense tags, such as
people, companies, books, albums, facts, and events. The annotations cover words. Dif-
ferent plugins are available like the OpenCalais TopBraid Composer, which generates
automatic RDF files. Reuters has sold OpenCalais some years ago to Refinitive.
Yosef et al. (2011) have introduced AIDA, which is an online tool for accurate dis-

ambiguation of NEs in text and tables. AIDA generates for a given text a mapping
from ambiguous names to canonical entities like people or places that are registered in
an available external ontology. AIDA has a web-based online interface accepting differ-
ent input formats and returning proper entities, e.g., for the input UC Berkeley, AIDA
returns University of California, Berkeley as output.
Petasis et al. (2011) have introduced BOEMIE, which is another ontology-based text

annotation tool, focusing on text block locations that correspond to specific types of NEs,
and additionally performs annotations of text that refers to the same domain. BOEMIE
automatically creates annotations from HTML files or text documents and stores them
in a separate file. BOEMIE supports manual annotations, too.
For further details about existing annotation systems please refer to the surveys of

Oliveira and Rocha (2013), Gangemi (2013), and Liao and Zhao (2019).

Information Extraction Automatic annotation systems often rely on IE techniques ex-
tracting structured data from unstructured text, e.g., in the form of relational tuples.
The tuples consist of two arguments and a phrase denoting the relation between both
arguments. Traditional approaches extracting data from the text of a document have
focused on the well-defined query answering tasks over a predefined set of target relations
on a small set of homogeneous documents by taking a target relation with hand-crafted
extraction patterns. Those hand-crafted rules work fine for a specific domain and tra-
ditional IE requires extensive human involvement. Yates et al. (2007) have introduced
TextRunner, which is one of the first IE systems relying on unsupervised extraction
strategies reducing the manual effort for extraction patterns or training data to a min-
imum. Those kind of IE systems are known as OpenIE systems. Using unsupervised
extraction strategies requires only few extraction patterns which need to be manually
defined or a small set of training data.
Having extracted entities from the text of a document allows an agent to identify

those entities in external sources. Afterwards, the agent might enrich documents with
additional data having a relationship with those extractable entities. As mentioned
before, annotations enrich a document with additional data, e.g., to distinguish words
having no difference in spelling or pronunciation, but a different semantic meaning. Thus,

1https://www.refinitiv.com/en/products/intelligent-tagging-text-analytics
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1.2 Research Objectives and Scientific Contributions

OpenIE is an important discipline to automatically enrich documents with data.
In recent years, systems have emerged using methods in the domain of IE and Statistical

Relational Learning (SRL) to extract data from text of millions of randomly selected
unstructured documents and derive large graphs, representing a symbolic content de-
scription using entities and relations between entities. Some of the most known sys-
tems containing relational data are DeepDive (Zhang (2015)), Never Ending Language
Learner (NELL)(Carlson et al. (2010)), YAGO (Suchanek et al. (2007)), FRED (Presutti
et al. (2012)), and KnowledgeVault (Dong et al. (2014)).
Generally, manual and automatic annotation systems are helpful to enrich a document

with additional data, supporting an agent or even humans on a corpus-specific task for
documents. However, we take the view that separately annotating documents ignores
the individual collection of documents represented by a corpus. Additionally, available
annotation systems ignore the available annotations associated with other documents
within the annotation process of an unannotated document and enrich documents with
general data from external sources by matching extractable entities from the text of the
documents to entities in the external sources to associate externally available entity-
related data to the documents.
Enriching documents with externally available entity-related data might increase the

performance of Information Retrieval (IR) tasks, since documents contain more data
related to entities covered by the documents’ text. However, those data ignores the
specific context represented by the individual collection of documents in a corpus and
the text of the document itself and only focus on the NEs extractable from the text of
documents.
Thus, this dissertation lays the foundation for subjective content descriptions for doc-

uments adding a value for corpus-specific tasks of an agent.

1.2 Research Objectives and Scientific Contributions

Generally, in the last decade, many efforts have been made in extracting structured data
from text in publicly available documents to estimate semantic relationships between
entities. Compared to the research of the last decade, the goal of this dissertation is to
lay the foundation of automatically annotating documents in a corpus with subjective
content descriptions to support an information retrieval agent on its corpus-specific tasks,
e.g., identifying a set of documents in a corpus being similar to a new document or
estimating SCDs for a new document based on the SCDs associated with documents
available in a corpus.
In detail, the objective of this dissertation is to provide techniques such that:

(1) Annotated documents in a corpus can be used to enrich an unseen corpus-extending
document with corpus-driven descriptions in form of SCDs.

7
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(2) An agent might be interested in extending its corpus only with documents having
certain properties represented by different document categories. A category might
represent the similarity of a new document to documents in the corpus. Based on
selected SCDs associated with a new document an agent can identify the document
category with respect to the documents in a given corpus and use the associated
SCDs directly for additional tasks.

(3) SCDs associated with documents in one corpus can be used to enrich documents
from another, but related corpus.

We introduce annotation techniques based on SCDs to bridge the gap between advan-
tages of manual annotation systems providing high quality annotations for documents
at high cost and advantages of automatic annotation systems generating annotations for
documents without considering the individual collection of documents in a corpus.
In this dissertation, we make several contributions to subjective content descriptions

and we can summarize the contributions as follows:

(1) Context-specific Corpus Enrichment An agent working with a reference library
containing an individual collection of documents is a common setting in an information
retrieval scenario. Over time, the agent is faced with new documents and an important
question for an agent in the domain of information retrieval is: Does the content of a new
document provides anything of value to add in the context of the reference library? We
show the potential of augmenting and automatically enriching a reference library with
new documents while considering the context represented by the reference library.

(2) Corpus-driven SCD Enrichment Manually generating SCDs and associating them
to documents in a corpus is a time-consuming and expensive task, since domain-specific
annotation experts have to read and annotate all documents in a corpus. Given a corpus
containing at least sparse and weakly annotated documents, we present an approach to
enrich those documents with additional SCDs associated with related documents in the
same corpus. Thus, an agent might benefit from those additional SCDs.
This contribution comprises (a) a definition of two similarity values for documents

resulting in (b) a definition of a relevance value for SCDs, and (c) an unsupervised iter-
ative annotation approach. The approach uses a combination of both similarity values,
as well as the relevance values of SCDs to enrich sparse and weakly annotated documents
with SCDs of related documents within the same corpus.

(3) Identifying SCDs within Text An agent in pursuit of new documents may come
across with documents where normal document text, i.e., content, and textual content
descriptions, i.e., SCDs, are interleaved. Manually identifying the SCDs within text or
creating a parser for separating the SCDs from the content by manually specifying rules

8
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for distinguishing content and SCDs is cost-intensive and requires intimate knowledge
about content and SCDs. We present an approach to automatically identifying SCDs
within text by using the SCD-word probability distribution of documents in a corpus,
which encodes as hidden state for each word in the document whether the word is part
of an SCD or not. Calculating a most probable sequence of hidden states in a Hidden
Markov Model (HMM) then allows for identifying the most probable sequence for SCDs
in text.

(4) Context-aware Adaptation of SCDs SCDs associated with documents in one cor-
pus, might add a value for the agent’s task working with documents in another corpus.
Automatically associating SCDs associated with documents in one corpus to documents
in another corpus while considering the context-shift between both corpora is an impor-
tant task, since manually generating SCDs for documents is expensive.
We present an unsupervised domain adaptation approach adapting the SCD-word

probability distribution from a source corpus to a target corpus supporting an agent with
an initial set of context-aware SCDs for documents in a non-annotated target corpus, such
that an agent has an initial set of SCDs.

(5) Maintaining Topic Models for Growing Corpora The individual collection of doc-
uments in a corpus might change over time since an agent decides to extend its library
with additional documents. Changing the documents in a corpus results in a different
similarity between documents and a modified relevance value of each associated SCD.
We analyse different techniques for different scenarios to incorporate corpus-extending
documents into a given topic model resulting from the initial documents in a corpus, such
that an agent can identify for the corpus-extending documents a set of similar documents
in the entire corpus based on the documents’ topic similarity.

(6) Named-Entity Induced Links for Relational Topic Models Relations between
documents provide important data for topic models. The text of similar documents
might share NEs and we can assume that documents sharing an entity are connected to
each other. We use the Relational Topic Model (RTM) approach, introduced by Chang
and Blei (2009), representing the relationship between documents in a corpus by adding
a link between two documents sharing an entity.
We (a) estimate the properties of NEs improving the performance of the RTM and

(b) compare the performance between the well-known topic modeling approaches LDA
and RTM by considering different settings for entity induced links between documents
in a corpus.
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1.3 Structure

After this introduction, we start a chapter on preliminaries, presenting definitions, giving
a brief overview of statistical models to identify hidden semantic structures in documents,
and providing an overview of corpus annotation and information extraction. After the
preliminaries, the main body of this dissertation begins, which is divided into two parts,
presenting the contributions of this dissertation.

• Part I introduces SCDs and different techniques to add a value to a corpus by
enriching documents with SCDs.

– Chapter 3 presents SCDs itself along with most probably suited SCDs for doc-
uments. Additionally, the chapter introduces notations on corpus annotation
(Contributions 1).

– Chapter 4 presents an approach for context-specific enrichment of a corpus
with new documents by considering the category of the new documents (Con-
tribution 1).

– Chapter 5 presents techniques to enrich documents in a given corpus with
SCDs associated with related documents of the same corpus (Contribution 2).

– Chapter 6 presents an HMM-based approach to identify SCDs within texts
and classify new documents into a predefined category (Contribution 3).

– Chapter 7 presents domain-adaptation techniques for SCD-word probability
distribution to automatically associate SCDs associated with documents in
one corpus to documents in another corpus with SCDs (Contribution 4).

This first part was mainly published in:

Tanya Braun, Felix Kuhr, and Ralf Möller. Unsupervised text annota-
tions. In Formal and Cognitive Reasoning - Workshop at the 40th Annual
German Conference on AI (KI-2017), 2017

Felix Kuhr, Bjarne Witten, and Ralf Möller. Corpus-driven annotation
enrichment. In 2019 IEEE 13th International Conference on Semantic
Computing (ICSC), pages 138–141. IEEE, 2019

Felix Kuhr, Tanya Braun, Magnus Bender, and Ralf Möller. To Extend
or not to Extend? Context-specific Corpus Enrichment. In Proceedings
of AI 2019: Advances in Artificial Intelligence, pages 357–368. Springer,
2019

Felix Kuhr, Tanya Braun, Magnus Bender, and Ralf Möller. Augmenting
and automating corpus enrichment. Int. J. Semantic Comput., 14(2):173–
197, 2020
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Felix Kuhr, Tanya Braun, and Ralf Möller. Augmenting and automat-
ing corpus enrichment. In 2020 IEEE 14th International Conference on
Semantic Computing (ICSC), pages 69–76. IEEE, 2020

Felix Kuhr, Magnus Bender, Tanya Braun, and Ralf Möller. Context-
specific adaptation of subjective content descriptions. In Proceedings of
AI 2020: Advances in Artificial Intelligence. Springer, 2020

Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller,
and Simon Schiff. Identifying subjective content descriptions among text.
In IEEE 15th International Conference on Semantic Computing, ICSC
2021, Virtual, January 27-29, 2021, pages 451–458, 2021

Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller,
and Simon Schiff. Identifying subjective content descriptions among text.
will be published in: Int. J. Semantic Comput., 15(4), 2021

Felix Kuhr, Magnus Bender, Tanya Braun, and Ralf Möller. Context-
specific adaptation of subjective content descriptions. In IEEE 15th
International Conference on Semantic Computing, ICSC 2021, Virtual,
January 27-29, 2021, pages 451–458, 2021

• Part II contains two additional chapters. Chapter 9 presents techniques for handling
topic models representing a growing corpus and new documents (Contribution 5).
Chapter 10 presents results for the relational topic model using NE induced links
as relation between documents (Contribution 6).

The second part is based on the following publications:

Felix Kuhr and Ralf Möller. Constructing and maintaining corpus-driven
annotations. In 2019 IEEE 13th International Conference on Semantic Com-
puting (ICSC), pages 462–467, Jan 2019

Felix Kuhr, Magnus Bender, Tanya Braun, and Ralf Möller. Maintaining
topic models for growing corpora. In IEEE 14th International Conference on
Semantic Computing, ICSC 2020, San Diego, CA, USA, February 3-5, 2020,
pages 451–458, 2020

Felix Kuhr, Matthis Lichtenberger, Tanya Braun, and Ralf Möller. Enhancing
relational topic models with named entity induced links. In IEEE 15th Inter-
national Conference on Semantic Computing, ICSC 2021, Virtual, January
27-29, 2021, pages 451–458, 2021

The first part and all subsequent chapters each end with a brief interim conclusion.
Chapter 11 presents overall conclusions and takes a look into what the future might hold
for subjective content descriptions.
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Chapter 2

Preliminaries

This section starts with an introduction to notations before presenting an overview of
information retrieval techniques and general definitions in corpus annotation.

2.1 Notations

We formalize the setting of a corpus representing an individual collection of documents,
where documents might be associated with a set of additional data, i.e., SCDs.

Definition 2.1.1 (word). A word w is a basic unit of discrete data from a vocabulary
V=(w1, . . . , wV ), V ∈ N, and can be represented as a one-hot vector of length V having
a value of 1 where w = wi and 0’s otherwise.

Example 2.1.1 (word). Let us assume that we have the following eleven words repre-
senting w1 to w11, respectively: David, Blei, received, the, ACM, Infosys, Foundation,
Award, in, summer, and 2013. We can represent each of the eleven words by a one-hot
vector, e.g., w4 can be represented as 〈00010000000〉 and w5 as 〈00001000000〉.

Definition 2.1.2 (document). A document d is a sequence of words (wd1 , . . . , w
d
N ),

N ∈ N. Function #words(d) returns the total number of words in d, i.e., #words(d) = N .

Example 2.1.2 (document). A document is anything containing a sequence of words,
e.g., books, journals, papers, or manuscripts. We assume that documents are electronic
documents and that the documents are machine readable. Generally, techniques are
available to create an electronic version from the non-electronic document. The following
sequence of words represents a document:

“David Blei received the ACM Infosys Foundation Award in summer 2013. He is
known for latent Dirichlet allocation.”

Definition 2.1.3 (sentence). A sentence sen ∈ d contains Q ∈ N words and is defined
as a sequence of words: sen = (wd1 , w

d
2 , ..., w

d
Q), where wdi represents the i-th word in sen

of document d.
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Example 2.1.3 (sentence). The sentence “David Blei received the ACM Infosys Foun-
dation Award in summer 2013.” in document d contains eleven different words, namely
David, Blei, received, the, ACM, Infosys, Foundation, Award, in, summer, and 2013. We
represent the sentence by a sequence words wd1 to wd11:
(wd1 , w

d
2 , w

d
3 , w

d
4 , w

d
5 , w

d
6 , w

d
7 , w

d
8 , w

d
9 , w

d
10, w

d
11), where each word refer to an entry in a vo-

cabulary V.

Generally, the meaning of a word depends on the context the word occurs in. A well
known form representing a specific context is a document containing a sequence of words.
Another item representing a specific context is given by a corpus.

Definition 2.1.4 (corpus). A corpusD represents a set ofD ∈ N documents {d1, . . . , dD}
and VD returns the corpus-specific vocabulary containing all different words occurring in
the D documents of corpus D.

Example 2.1.4 (corpus). Collecting documents is not an end in itself and an agent col-
lecting documents has a specific task in mind when collecting documents, e.g., collecting
related work for a journal article or collecting books from the same author. Thus, the set
of documents in a corpus are not randomly chosen and represents an individual collection
of documents.

A corpus is not fixed and might change over time, e.g., an agent interested in extend-
ing the initial corpus with new documents relevant for the agent’s task. We introduce
document categories to classify new documents with respect to documents in a given
corpus, s.t. the category of the same new document depends on the individual collection
in a corpus.

Definition 2.1.5 (document category). A new and previously unseen document d′ /∈ D
can be classified based on the documents in corpus D using a classification function
classifyD(d′). We focus on the following four categories to classify a given document d′

based on corpus D: The content of a new document d′ is

(i) similar to at least one document in D – category sim,

(ii) an extension of a document in D – category ext,

(iii) a revision of a document in D – category rev, and

(iv) unrelated to all documents in the corpus – category unrel.

The set containing all four document categories is defined as C.

Example 2.1.5 (document category). An agent might be interested in any of the four
document categories depending on the specific task at hand. Let us assume, an agent
provides a document retrieval service for a company and the corpus of the agent contains
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only documents in a specific domain, e.g., the content of all documents is about NLP.
The agent might be interested in extending the corpus with more documents containing
text about NLPs. Thus, the agent is interested in documents from category sim.

Definition 2.1.6 (SCD). An SCD t is a subjective content description and contains
data. We can represent in a triple structure, s.t. t = (s, p, o), where s represents a
subject, p a predicate, and o an object. Generally, an SCD can take any form and in
later chapters, we use a sequence of words as SCDs. The triple structure is similar to
Resource Description Framework (RDF) and for specific tasks it is possible to represent
SCDs as RDF triples. As such, the format of SCDs may be highly diverse and for our
main contributions, the specific format of a subjective content description depends on
the specific task of an agent working with the SCDs.

Example 2.1.6 (SCD). An SCD t having the form of a triple is represented by a subject,
a predicate, and an object. There exists no single perfect SCD for a sentence, since SCDs
contain subjective descriptions about the content of documents, such that different SCDs
are possible for the same document. The reason for different SCDs for the same sentence
is given by the subjective interpretation of the corresponding content as well as the
individual collection of documents in a corpus and the corpus-specific task of an agent.
An agent might build the following three SCDs (i) t1, (ii) t2, and (iii) t3 for the following

sentence in document d ∈ D “David Blei received the ACM Infosys Foundation Award in
summer 2013.”:

(i) t1 : (David Blei, is, professor)

(ii) t2 : (David Blei, teach at, Columbia University)

(iii) t3 : (ACM Infosys Foundation Award, renamed into, ACM Prize in Computing)

However, another agent might build only a subset of those SCDs or another SCD, e.g.,
t4 : (ACM Infoss Foundation Award, take place in, summer) depending on the task of
the agent.

Definition 2.1.7 (located SCD). An SCD t can be associated with a position ρ in a
document d ∈ D. We represent a located SCD t by the tuple (t, {ρi}li=1), where {ρi}li=1

represents the l ∈ N positions in document d that t is associated with.

Example 2.1.7 (located SCD). In Example 2.1.6, we have mentioned that an agent
might build SCDs (i) t1 : (David Blei, is, professor) (ii) t2 : (David Blei, teach at,
Columbia University), and (iii) t3 : (ACM Infosys Foundation Award, renamed into,
ACM Prize in Computing) for document d ∈ D containing the sentence “David Blei
received the ACM Infosys Foundation Award in summer 2013.” Located SCDs extend
SCDs with a location, such that each of the three SCDs t1, t2, and t3 are associated with
a position in the sentence.
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Definition 2.1.8 (SCD set). For each document d ∈ D, there exists a corresponding
SCD set T (d). If document d is associated with located SCDs, then T (d) contains a set of
md located SCDs {(tj , {ρi}

lj
i=1)}m

d

j=1, and each SCD is associated with l positions in d. The
set of all SCDs associated with documents in a corpus D, ignoring the document-specific
locations, is given by T (D) = {tj}mj=1, where m =

∑
d∈Dm

d.

Definition 2.1.9 (SCD window). For each located SCD tj ∈ T (d) exists a corresponding
SCD window wind,ρ referring to a sequence of words in d surrounding position ρ, i.e.,
wind,ρ=(wd(ρ−i), ..., w

d
ρ, ..., w

d
(ρ+i)), i ∈ N and ρ marks the middle of the window. The

window-specific position of a word wd ∈ wind,ρ is given by pos(wd, wind,ρ) and the size
of window wind,ρ is given by s(wind,ρ) = 2i+ 1.

Example 2.1.8 (SCD window). Let us assume SCD t3 is associated with the sixth word
position in Example 2.1.2. Then, we can create an SCD window wind,ρ for SCD t3, which
is associated with position ρ = 6. We underline the sixth word w6 in d to visualize the
associated SCD t3.

wind,ρ = (w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11) (2.1)

We argue that the distance between words in d and position ρ of an SCD t ∈ T (d)
represents the strength of a relationship between the SCD and the words in the window.
Thus, we introduce an influence value to represent the relationship between words and
SCDs more formally.

Definition 2.1.10 (influence value). Each word wd in the sequence of wind,ρ is associated
with an influence value I(wd, wind,ρ) representing the distance between word position of
wd and the position ρ of the corresponding SCD. The closer a word is positioned to
the position ρ in wind,ρ, the higher its corresponding influence value is. Or in other
words, the larger the distance between a word and the location of an SCD the smaller
the influence value for the word. Generally, the function to estimate the influence value
of a word depends on the specific task of an agent.

Example 2.1.9 (influence value). Again, we use the same document as in Example 2.1.8
and estimate the influence value of a word in the window wind,ρ. The influence value
is similar to the binomial distribution for all words in the SCD window. The influence
value of a word wd at position pos(wd, wind,ρ) in document d is then given by:

I(wd, wind,ρ) =

(
n

k

)
· qk · (1− q)n−k, (2.2)

where n = s(wind,ρ), k = pos(wd, wind,ρ), and q = ρ
n . Thus, we can estimate the

following influence values for wind,ρ in Expression (2.1).

(0.000965, 0.00977, 0.04395, 0.11719, 0.20508, 0.24609, 0.20508, 0.11719, 0.04395, 0.00977, 0.000965)
(2.3)
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Evaluation Metrics

In this dissertation, we evaluate the performance of different techniques by using standard
evaluation metrics. All metrics are based on True Positives (TPs), False Positives (FPs),
True Negatives (TNs), and False Negatives (FNs).
A TP is an outcome where a model correctly predicts the positive class. Similarly,

a TN is an outcome where a model correctly predicts the negative class. A FP is an
outcome where a model incorrectly predicts the positive class. And a FN is an outcome
where the model incorrectly predicts the negative class.

Definition 2.1.11 (Precision). Precision, also denoted as Positive Predictive Value
(PPV), attempts to answer the following question: What proportion of positive iden-
tifications was actually correct? In other words, precision represents the probability that
a positive result is a true positive. Mathematically, precision is defined as follows:

Precision =
#TP

#TP + #FP
(2.4)

Definition 2.1.12 (Recall). Recall, also denoted as true positive rate (TPR), attempts
to answer the following question: What proportion of actual positives was identified
correctly? Mathematically, recall is defined as follows:

Recall =
#TP

#TP + #FN
(2.5)

Definition 2.1.13 (F1-score). The F1-score is the harmonic mean of the precision and
recall and is defined as follows:

F1-score =
2 · precision · recall
precision + recall

, (2.6)

Definition 2.1.14 (Accuracy). Accuracy is a metric for evaluating classification models.
Informally, accuracy is the fraction of numbers of predictions a model got right. Formally,
accuracy has the following definition:

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN
, (2.7)

where # refers to the number of occurrences of an event, i.e. TP, FP, TN , and FN .

Definition 2.1.15 (False Discovery Rate). The False Discovery Rate (FDR) is the ex-
pected ratio of the number of false positive classifications to the total number of positive
classifications. Mathematically, FDR is defined as follows:

FDR =
#FP

#FP + #TP
. (2.8)

17



Chapter 2 Preliminaries

In Chapter 9 and Chapter 10, we evaluate the performance of a topic model using the
perplexity measure on held-out data given by Newman et al. (2009).

Definition 2.1.16. The perplexity is a measurement of how well a probability distribu-
tion predicts a sample and can be used to to compare different probability models with
each other.
Mathematically, the perplexity is defined as follows:

perplexity(w) = exp

(
− log (p(w))∑D

d=1

∑V
j=1 n

(jd)

)
, (2.9)

where n(jd) represents the occurrence of the j-th word in document d. The smaller
the perplexity, the better the quality of the model, since a low perplexity indicates the
probability distribution is good at predicting the sample.

Next, we give an overview in the domain of IR systems and present techniques to
compare documents with each other.

2.2 Information Retrieval

Information retrieval is the process of obtaining data from an IR system that are rel-
evant to the information need of an agent and the agent might search for information
in a document or for documents themselves. In the 1980s, many document retrieval
methods were based on word matching strategies to identify best matching documents
for natural language queries. Those retrieval methods represent documents as a bag of
words by ignoring the specific sequence of words within documents. The bag of words
representation simplifies the documents’ structure.
Generally, the basic scenario for document retrieval methods was an agent that for-

mulates a query by providing a small set of keywords and expects a document retrieval
system to return those documents from a corpus, where the corpus contains data the
agent is interested in. However, document retrieval methods based on word matching
strategies are often too simple. The problem with word matching strategies is that agents
want to retrieve information on the basis of the core sense of a word which is also known
as the conceptual meaning. However, word matching strategies ignore the conceptual
meaning and use only the words themselves and individual words cannot provide evi-
dence about the conceptual meaning of a document since usually many ways exist to
express a given concept such that query terms in an agent’s query may not match with
the words of relevant documents. Additionally, most words have multiple meanings s.t.
an agent’s query will match to terms in documents that are not of interest to the agent.
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Latent Semantic Indexing. Deerwester et al. (1990) have introduced Latent Semantic
Indexing (LSI), which is an approach for mapping documents and query terms into a
latent semantic space by performing a dimension reducing linear projection based on
singular value decomposition (SVD). First, the authors create for documents in a corpus
a document-term matrix containing word counts per document, where rows represent
words and columns represent documents. The SVD technique reduces the number of rows
in the document-term matrix while preserving the similarity structure among columns
such that words with similar conceptual meaning are represented in the same way. The
latent semantic space allows more reliably estimating the similarity between documents,
e.g., by using the cosine of the angle between two document vectors. The document
vectors are given by the columns of the document-term matrix. For IR, the query of an
agent is translated into the same low-dimensional space as performed for the documents
in a corpus. Afterwards, similar documents can be identified for a query by using the
cosine of the angle between the vector representation of both, documents and the query.
However, LSI has no probabilistic model of term occurrences and the results are difficult
to interpret.

Probabilistic Latent Semantic Indexing. Thus, some years later, Hofmann (1999) has
introduced the Probabilistic Latent Semantic Indexing (PLSI) model which is a latent
variable model based on the idea of a latent class model, where a set of observed multi-
variate variables relates to a set of latent variables. In the PLSI model, the observable
words from documents mapped to c hidden classes. The classes are denoted as topics.
PLSI models the probability of each co-occurrence of words and documents as a mixture
of conditionally independent multinomial distributions. In terms of a generative model,
which is a statistical model of the joint probability distribution, PLSI is defined in the
following fashion:

(i) Select document d with p(d),

(ii) take a latent class c with p(c | d),

(iii) generate a word w with p(w | z).

Each document in a corpus is characterized by a specific mixture of factors with weights
P (c | d). This means, that each document is represented by a probability distribution
over the c hidden classes. Figure 2.1 presents a graphical representation of PLSI.

Today, Machine Learning (ML)-based text-mining approaches trying to identify hidden
semantic structures within the text of documents relating a set of observed multivariate
variables to a set of hidden classes are denoted as topic models — thus, PLSI is one of
the first topic modeling approaches. The hidden classes resulting from a topic model-
ing approach emerge directly from the analysis of words in a collection of documents.
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d cd,n wd,n

D
N

Figure 2.1: Graphical representation of PLSI. The boxes represent replicates for the (D)
documents and the (N) words. Variable c is hidden; d and w are visible.

However, topics are only a synonym for hidden classes and no high-level descriptions like
sports, places, or film-industry are available for topics.
Generally, the results of PLSI have a clear probabilistic interpretation and the problems

like polysemi of words are better addressed than in word matching strategies and the LSI
approach. However, the PLSI model is incomplete as it provides no probabilistic model
at the document level. In PLSI, each document is represented as a list of numbers and
no generative probabilistic model is given for these numbers such that the number of
parameters in the model grows linearly with the size of the corpus, leading to overfitting.
Additionally, it is unclear how to assign a probability to documents not part of the
training set. Thus, some years later, Blei et al. (2003) have introduced LDA focusing on
the deficiencies in the PLSI model.

2.2.1 Latent Dirichlet Allocation

Blei et al. (2003) have introduced the LDA topic modeling approach as a generalization
of the PLSI model. The techniques used in LDA are similar to PLSI, except that LDA
makes use of a sparse Dirichlet prior for the document topic probability distribution and
another Dirichlet prior for the topic word probability distribution.
Similar to PLSI and LSI, Blei et al. (2003) follow the idea to represent the documents

as a bag of words to simplify the structure of documents by ignoring the sequence of
words within the text of documents. Blei et al. (2003) assume documents to be repre-
sented as a mixture of topics and each topic is characterized by a probability distribution
of words from the corpus-driven vocabulary containing all different words occurring in
the documents of a given corpus D. The document topic probability distribution can
be interpreted as a dimensionality reduced representation of a document and the dimen-
sionality is given by the number of topics (K) used in the topic model. For a document
d in a given corpus D, the LDA approach learns a discrete probability distribution θd.
The probability distribution θd contains for each topic k ∈ {1, . . . ,K} a value between 0
and 1 and for each document d ∈ D the sum over all K topics is 1.
A corpus D contains documents d ∈ {d1, ..., dD}, where each document d is repre-

sented as a set of words wd ∈ {1, ..., Nd}. A per-word topic assignment zd,n is drawn
from the per-document topic proportion vector θd. Each topic k ∈ {1, ...,K} is a multi-
nomial probability distribution of the vocabulary generated from all documents in D.
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Figure 2.2: Graphical representation of an LDA topic model. The boxes represent repli-
cates. Variables φk, θd, and zd,n are hidden variables; αD and βD are corpus-specific
hyperparameters and the N words wd,n (shaded) within the D documents are visible.

Additionally, the LDA model has two corpus-specific hyperparameters α and β, where
αD conditions the per-document topic probability distribution θd and βD conditions the
per-corpus topic probability distributions φk, k ∈ {1, ...,K} for corpus D.
The two hyperparameters trade off the following two goals to find groups of tightly

co-occurring words:

(i) Allocate the words of documents to as few topics as possible.

(ii) Assign a high probability to as few terms as possible in each topic.

However, these two goals are conflicting. Assigning all words within a document to a
single topic achieves the first goal, but makes it difficult to achieve the second goal.
Achieving the second goal and assigning only few words to each topic makes it difficult
to reach the first goal for documents containing many words.
Figure 2.2 presents an LDA topic model as a graphical model in plate notation. The

boxes represent replicates and observable variables are shaded.
The generative process of LDA is defined as follows:

(1) Choose θd ∼ Dir(αD), where d ∈ D and Dir(αD) is a Dirichlet distribution with
hyperparameter αD.

(2) Choose φk ∼ Dir(βD), where k ∈ {1, ...,K} and Dir(βD) is a Dirichlet distribution
with hyperparameter βD.

(3) For each of the word positions j within each document d ∈ D and j ∈ {1, ..., N}, N
is the total number of words in document d:

(a) Choose a topic zd,j ∼Multinomial(θd)

(b) Choose a word wd,j ∼Multinomial(φzd,j )

The multinomial probability distribution in step (3a) and step (3b) refers to the categor-
ical probability distribution, since the authors of LDA use a multinomial with only one
trial by selecting a topic in step (3a) and a word from the selected topic in step (3b).
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Generally, for documents in a corpus nothing but words are visible. At the beginning no
per-topic word probability distribution, or per-document topic probability distribution is
available. The key inference problem in the LDA topic modeling approach is computing
the posterior distribution that refers to reversing the generative process and learning the
posterior distributions of latent variables in the model given the observed data.
Mathematically, we can represent the inference problem computing the posterior dis-

tribution as following equation:

p(θ, φ, z | w,α, β) =
p(θ, φ, z, w | α, β)

p(w | α, β)
, (2.10)

where the left side of Expression (2.10) defines the probability of (i) the per-document
topic probability distribution θ, (ii) the per-topic word probability distribution φ, and
(iii) the topic labels z, given all words w and hyperparameters α and β.
Given K topics, hyperparameters α and β, we are interested in determining the per-

document topic probability distribution θd for each d ∈ D, the per-topic word probabil-
ity distribution φ, and the word topic assignment z. However, exactly calculating the
posterior distribution is intractable, since the normalization factor p(w | α, β) cannot
be computed exactly since we have to marginalize over the hidden variables (Darling
(2011)).
Different inference algorithms have been introduced which can be used to approximate

the posterior distribution in Expression (2.10). Some approximative inference algorithms
for the posterior distribution of hidden variables using expectation propagation (Minka
and Lafferty (2002)) or Gibbs sampling (Griffiths and Steyvers (2004); Griffiths (2002);
Pritchard et al. (2000)). Generally, Gibbs sampling is a special case of the Markov-chain
Monte Carlo (MCMC) approach, where the dimensions of the distribution are sampled
alternately one dimension at a time, s.t. the fixed dimension is conditioned on the values
of all other dimensions. For further details about the Gibbs sampling algorithm we refer
to Griffiths (2002) and Griffiths and Steyvers (2004). Blei et al. (2003) have introduced a
variational inference algorithm making use of Jensen’s inequality to obtain an adjustable
lower bound on the log likelihood by removing dependencies between variables. For more
details, about the variational inference algorithm, please refer to Blei et al. (2003).
Over the last two decades, a large number of topic modeling approaches have been

introduced. Most of those approaches are based on the LDA topic modeling approach.
A few of those models relaxing the statistical assumptions of LDA, e.g., relaxing the
bag-of-words assumption, so that the order of words is incorporated by generating words
conditioned on the previous word (Wallach (2006)), or relaxing the assumption that the
order of documents within the corpus is irrelevant allows to account for topics changing
over time (Blei and Lafferty (2006); Wang et al. (2008)). Teh et al. (2006) provide a
solution for the need to know beforehand fixed and known number of topics in LDA
by determining the number of topics during posterior inference. Other topic modeling
approaches enhance LDA by incorporating structure from metadata, e.g., author-topic
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model, introduced by Rosen-Zvi et al. (2004), or RTM, introduced by Chang and Blei
(2009) extending LDA by considering links between documents.

2.2.2 Document-Topic Similarity

Generally, different topic modeling approaches are available. In this dissertation, we
follow the idea of Blei et al. (2003) that a per-document topic probability distribution
θ and a per-topic word probability distribution φ exist. We represent a topic model
generated from documents in a corpus D by the tuple (θ, φ) denoted byM(D).

Definition 2.2.1 (Topic Model). A topic model is a corpus-driven representation of
document topic probability distribution θ and topic word probability distribution φ re-
sulting directly from the documents in corpus D, e.g., using the LDA approach from
Section 2.2.1. Mathematically, we define a topic model M(D) as a tuple of the two
probability distributions:

M(D) = (θ, φ). (2.11)

Generally, having a corpus-driven topic modelM(D), we can represent each document
d ∈ D using the corpus-specific document topic probability distribution θd. Having the
document topic probability distribution θd for each document d ∈ D, we can estimate
the similarity between two documents di ∈ D and dj ∈ D by analyzing the similarity
between the corresponding document topic probability distributions θdi and θdj .
The Hellinger distance, introduced by Hellinger (1909), is a metric for measuring the

distance between two probability distributions. Thus, for each document d ∈ D we use
the Hellinger distance to identify a set of documents from the same corpus each having
similar document topic probability distribution to d. Given two documents di and dj , we
can represent the documents topic probability distributions by θdi and θdj , respectively.
The Hellinger distance H(θdi , θdj ) between both document topic probability distributions
θdi and θdj is then given by:

H(θdi , θdj ) =
1√
2

√√√√ K∑
k=1

(√
θdi,k −

√
θdj ,k

)2
, (2.12)

where K refers to the number of topics that have been used within the topic model.
The resulting Hellinger distance between the document topic probability distributions
is a value between 0 and 1 because of the normalization term 1√

2
in Expression (2.12).

Sometimes factor 1√
2
in front of the sum is omitted resulting in a Hellinger distance range

from zero to the square root of two. Generally, the distance between the same document
is zero, represented by H(θdi , θdi) = 0.
Having generated a topic model M(D) from all documents within a corpus D, it is

feasible to calculate the Hellinger distance between every combination of two documents
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di ∈ D and dj ∈ D. Generally, the Hellinger distance between two documents di and
dj changes with the collection of documents in D, because the underlying topic word
probability distribution of the topic model depends on the words of all documents in
corpus D.

Example 2.2.1 (Hellinger distance). Given a topic model M(D) generated from the
documents in corpus D the Hellinger distance between two documents di ∈ D and dj ∈ D
results from the corresponding per-document topic probability distributions θdi and θdi .
Let us assume that we have K = 5 topics and the document topic probability distri-

butions for di and dj are given by:

θdi = (0.1, 0.17, 0.1, 0.6, 0.03) (2.13)
θdj = (0.15, 0.05, 0.05, 0.7, 0.05) (2.14)

Then, the Hellinger distance H(θdi , θdi) between both document topic distributions is
given by 0.2224.

In addition to the Hellinger distance, there are further methods available to compare
two probability distributions, e.g., the Kullback-Leibler divergence, which has been in-
troduced by Kullback and Leibler (1951). However, the Kullback-Leibler divergence is
not symmetric and the divergence depends on the direction comparing two distributions,
e.g., the divergence of per-document topic distribution di and dj is not the same as for
dj and di.

2.3 Corpus Annotation

Corpus annotation is an extensive field in corpus linguistic comprising different tasks,
such as NER, POS tagging, or IE. We follow the definition of Leech (2005): Corpus
annotation can be described as the task of adding interpretative linguistic data to docu-
ments in a corpus.
Generally, the granularity of annotations depends on the application and a single

annotation may cover a word, a sentence, a paragraph, a document, or an entire corpus.
In this section, we give an overview of linguistic annotations for corpora containing
documents of written texts and describe two types of annotations, namely

(i) grammatical word tags, which represent for a word the particular part of speech,
e.g., nouns, verbs, adjectives, adverbs, etc., and

(ii) semantic annotations, which represent for a text chunk of a document a concept,
instance, or an individual from an ontology.
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Born in a small town, she took the midnight train going anywhere.

prep_in

det

amod nsubj

vmod dobj

det

nn

vmod dobj

Figure 2.3: Dependency graph containing the grammatical word tagging of a text snippet.

Grammatical Word Tags Grammatical word tagging started in the early 1970s and it is
the discipline of adding grammatical annotations to a corpus by specifying the grammat-
ical characteristics of text in documents. The first corpus for grammatical word tagging
is the Brown Corpus (Francis and Kucera, 1979). The tag set contains 77 word-class la-
bels to identify not only major part of speech, such as nouns, verbs, or prepositions, but
also subclasses like singular and plural nouns, or comparative and superlative adjectives.
Francis and Kucera successfully tagged about 80% of words in the documents of the
Brown Corpus to the correct classes. For the remaining 20% of words exist ambiguities
and eliminating all remaining ambiguities was performed by manual editing the corpus.
In the following years, further tagging projects followed, e.g., the LOB Corpus Marshall
(1983). Next, we present an example of grammatical word tagging for a single sentence.

Example 2.3.1 (grammatical annotation). In Figure 2.3, we illustrate an example for
grammatical word tagging for the sentence: Born in a small town, she took the midnight
train going anywhere., where, e.g., det is a determiner, representing a relation between
the head of a noun phrase (NP). dobj is a direct object, nsubj is a nominal subject,
prep_in is a preposition, vmod is a verb modifier, nn is a noun, and amod is a
adjectival modifier.

Grammatical annotations are important to identify the relationship between words to
extract the semantics from a sentence. Generally, researchers look for automatic tagging
methods to identify the class of words, since manually tagging words is impracticable.
Different challenges exist making (automatic) grammatical annotations to an ongoing
research field. Some well-known challenges are given by:

(i) Multiwords – At least two orthographic words correspond to one morphosyntactic
word. A morphosyntactic word is an abstract word unit representing a word in
terms of its grammatical properties.

(ii) Merged words – one orthographic word corresponds to many morphosyntactic word.

(iii) Phantom words – words are only implicit part of a given text, e.g., the short sentence
Looks good. has the phantom word it before the word Looks. This means the
phantom word extends the sentence resulting in It looks good.

(iv) Choice of tagset – select a tag-set and encoding for them to annotate words.

Next, we give an overview of semantic annotations.
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Semantic annotations Generally, there is no single definition for semantic annotations.
For Bechhofer et al. (2002) a semantic annotation consists of some rich and machine
processable semantic information. Leech (2005) has described a semantic annotation as
the process of adding information about the semantic category of words. Talantikite
et al. (2009) have introduced semantic annotation as a description that is linked to an
entity (from a text) and a semantic annotation is a referent to an ontology. Liao et al.
(2011) describe that designing an appropriate ontology is the first step of the semantic
annotation process.
Over the last decade, additional definitions for semantic annotations have been intro-

duced. However, we focus on all definitions having in common that semantic annotation
is the process of linking extractable entities from a text to an external source of data like
an ontology representing a specification of a conceptualization.
Generally, semantic annotations add data to documents being somehow related to

the text of documents, e.g., a semantic annotation describes an entity via references to
concepts, instances, or individuals from an ontology, where concepts might be people,
places, organizations, or products. Semantic annotation systems analyse the text of a
document trying to identify entities and estimating relationships to other entities in
an external source. In Example 2.3.2, we give a short example for enriching text with
semantic annotations by mapping entities occurring in the text to externally available
concepts.

Example 2.3.2 (Semantic annotation). Let us assume, that the following sentence is in
a document of a corpus and an external source is available containing concepts:

“Born in a small town, she took the midnight train going anywhere.”

Depending on the external data source, we can create different mappings between
concepts and words. Having an external data source containing concepts train and
town, it is possible to map the two words train and town to the concepts of the same
name, respectively. Depending on the data source, an agent might map the following
additional semantic annotation (train instance-of transportation) to train.

Enriched documents in a corpus with annotations results in an annotated corpus. The
annotated corpus represents a more valuable resource than the original corpus, since
different additional tasks can be performed on the annotated corpus. Unlike classic text
annotations, which are often only for the reader’s reference, semantic annotations can
also be used for tasks like automatically find documents based on annotations or identify
hidden relationships between entities in a text.
For the sentence in Example 2.3.2, an automatic annotation system might add addi-

tional semantic annotations, e.g., by mapping she to concepts like person, mammal or
directly to an individual. Generally, there is no single correct semantic annotation for
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a document and semantic annotations not necessarily describe the semantic meaning of
a document, since semantic annotations depend on the subjective interpretation of a
document that is influenced by the context, e.g., the documents in a corpus.
Thus, in this dissertation, we introduce subjective content descriptions and present

different methods to enrich documents with subjective content descriptions while consid-
ering the content of a document and the corpus-driven context. Compared to semantic
annotation systems, we focus on available content descriptions associated with documents
in a corpus, e.g., to enrich only weakly annotated documents with additional subjective
content descriptions from related documents from the same corpus.
In Part I, we introduce subjective content descriptions and present different approaches

to enrich documents in a corpus with those descriptions.
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Part I

Subjective Content Descriptions





The following workshop paper has introduced the idea of unsupervised text annotations
for documents, providing first definitions, and algorithms in the domain of context-aware
corpus annotation using subjective content descriptions:

Tanya Braun, Felix Kuhr, and Ralf Möller. Unsupervised text annotations.
In Formal and Cognitive Reasoning - Workshop at the 40th Annual German
Conference on AI (KI-2017), 2017

The initial idea was extended regarding corpus enrichment using unseen documents,
annotation enrichment of documents in the same corpus, estimating hidden content de-
scriptions within texts, and adaptation of annotations from one corpus to another corpus.
The extensions has been published in the following literature:

Felix Kuhr, Bjarne Witten, and Ralf Möller. Corpus-driven annotation enrich-
ment. In 2019 IEEE 13th International Conference on Semantic Computing
(ICSC), pages 138–141. IEEE, 2019

Felix Kuhr, Tanya Braun, Magnus Bender, and Ralf Möller. To Extend or
not to Extend? Context-specific Corpus Enrichment. In Proceedings of AI
2019: Advances in Artificial Intelligence, pages 357–368. Springer, 2019

Felix Kuhr, Tanya Braun, Magnus Bender, and Ralf Möller. Augmenting and
automating corpus enrichment. Int. J. Semantic Comput., 14(2):173–197,
2020

Felix Kuhr, Tanya Braun, and Ralf Möller. Augmenting and automating
corpus enrichment. In 2020 IEEE 14th International Conference on Semantic
Computing (ICSC), pages 69–76. IEEE, 2020

Felix Kuhr, Magnus Bender, Tanya Braun, and Ralf Möller. Context-specific
adaptation of subjective content descriptions. In Proceedings of AI 2020:
Advances in Artificial Intelligence. Springer, 2020

Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller, and
Simon Schiff. Identifying subjective content descriptions among text. In IEEE
15th International Conference on Semantic Computing, ICSC 2021, Virtual,
January 27-29, 2021, pages 451–458, 2021

Magnus Bender, Tanya Braun, Marcel Gehrke, Felix Kuhr, Ralf Möller, and
Simon Schiff. Identifying subjective content descriptions among text. will be
published in: Int. J. Semantic Comput., 15(4), 2021
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Felix Kuhr, Magnus Bender, Tanya Braun, and Ralf Möller. Context-specific
adaptation of subjective content descriptions. In IEEE 15th International
Conference on Semantic Computing, ICSC 2021, Virtual, January 27-29,
2021, pages 451–458, 2021

This part contains the first four contributions of the dissertation. Chapter 3 starts with
the foundation of SCDs, where the SCDs act as annotations for documents. We define
comparison techniques for SCDs and documents available in the same corpus. Chapter 4
contributes a context-specific enrichment approach of corpora with new documents based
on the similarity values of SCDs. Chapter 5 describes a corpus-driven SCD enrichment
approach of documents using SCDs that are associated with other documents in the
same corpus. Chapter 6 describes an approach for handling documents where SCDs are
interleaved within the text of a document, while Chapter 7 presents a domain adaptation
approach to enrich documents from one corpus with SCDs associated with documents in
another corpus. Finally, Chapter 8 concludes this part.
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Chapter 3

Foundation of Subjective Content
Descriptions

In this chapter, we present the foundation of subjective content descriptions. First, we
introduce a corpus-driven SCD-word probability distribution we use in the subsequent
chapters for different tasks an agent might perform on a corpus. Second, we describe
how to select the most probably suited SCDs for documents based on the corpus-driven
SCD-word probability distribution.

3.1 Subjective Content Descriptions

This section provides the theoretical foundation for SCDs we have introduced in Defini-
tion 2.1.6. We present an additional representation for each SCD by taking a vector of
length V , where V = |VD| s.t. each vector entry refers to a word in the vocabulary V of
all documents in corpus D. The vector entry itself is a probability value describing how
likely it is that a word occurs in an SCD window surrounding the position associated
with the SCD, yielding an SCD-word probability distribution for each SCD associated
with documents in D. In other words, given a corpus containing documents associated
with SCDs, we can correlate SCDs and words in a window around the position of SCDs
from documents in the corpus resulting in SCD word frequency vectors, one vector for
each SCD. We use a word frequency vector to represent each SCD instead of a bit vector,
since SCDs are not exclusively associated with a single document in a corpus and might
occur more than once. Algorithm 1 generates the SCD-word probability distribution for
all m SCDs in the SCD set T (D) from corpus D.
The input of Alg. 1 is a corpus D containing a set of documents associated with

SCDs. We start with an initialization of an empty matrix δ(D) and fill the matrix with
zeros (line 4). Afterwards, we fill the SCD-word distribution matrix δ(D) based on the
SCDs and words occurring in the documents of corpus D using a maximum-likelihood
strategy such that we count for each SCD t the number of occurrences of each word w
in the corresponding windows wind,ρ of all documents in D. We weight the occurrences
by the influence value of each word in a window (line 9). At the end of each outer loop
iteration, the SCD-word probability distribution of the current SCD t is normalized to
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Algorithm 1 Forming SCD-word probability distribution matrix δ(D)

1: function buildMatrix(Corpus D)
2: Input: Corpus D
3: Output: SCD-word probability distribution matrix δ(D)
4: Initialize an m× V matrix δ(D) with zeros
5: for each d ∈ D do
6: for each t ∈ T (d) do
7: for ρ of t do
8: for each w ∈ wind,ρ do
9: δ(D)[t][w] += I(w,wind,ρ)

10: Normalize δ(D)[t]
11: return δ(D)

yield a probability distribution for each SCD over the complete vocabulary (line 10).
Finally, Alg. 1 returns the SCD-word distribution matrix δ(D).
Formally, normalization is given by:

vi,j =
vi,j∑V
k=1 vi,k

, (3.1)

where the denominator contains the sum of all influence values for words occurring in a
corresponding SCD window surrounding an SCD t. For each entry in δ(D), we divide
the corresponding influence value by the sum of all influence values we have previously
calculated. Expression (3.2) represents the SCD-word probability distribution by an
m × V matrix δ(D), with the SCD-word probability distribution vectors forming the
rows of the matrix:

δ(D) =



w1 w2 w3 · · · wV

t1 v1,1 v1,2 v1,3 · · · v1,V

t2 v2,1 v2,2 v2,3 · · · v2,V
...

...
...

...
...

...
tm vm,1 vm,2 vm,3 · · · vm,V

 (3.2)

We illustrate the behaviour of Alg. 1 using an example.

Example 3.1.1 (SCD-word probability distribution). Let us assume that we have a
corpus containing a document d and that d has an SCD window wind,ρ for SCD t1 with
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t1 positioned at the center of the window (w15, underlined). Expression (3.5) represents
the influence values based on Expression (2.2) with:

n = s(wind,ρ)− 1 = 6, (3.3)

s.t. k ∈ {0, . . . , 6}, and entry positions corresponding to positions in Expression (3.4).
Expression (3.4) represents the SCD window wind,ρ.

wind,ρ = (w21, w4, w8, w15, w16, w23, w42) (3.4)
(0.015625, 0.09375, 0.234375, 0.3125, 0.234375, 0.09375, 0.015625) (3.5)

Based on the innermost loop of Alg. 1 (line 8-9), seven entries of δ(D) are updated,
e.g., for w21 at position 0:

δ(D)[t1][w21] += 0.015625

where δ(D)[t1][w21] refers to v1,21, which is incremented by 0.015625. Algorithm 1 up-
dates δ(D) for the remaining words and then continues with the next window. When
Alg. 1 is finished with d1, it moves on to the next document in D, going through all
windows. After iterating over all documents, Alg. 1 repeats going through all documents
and their windows for the remaining SCDs.

The model behind an SCD-word probability distribution matrix δ(D) is generative as
one could now choose M � m SCDs and sample a new document based on the chosen
SCDs. Given the generative nature, we are now interested in the Most Probably Suited
Subjective Content Descriptions (MPSCDs) to have generated words of a new, previously
unseen document.
Thus, in the next section we look at the problem of selecting those SCDs that are most

probably suited given the words of a new document.

3.2 Most Probably Suited Subjective Content Descriptions

This section presents the problem of estimating the MPSCDs for new documents an
agent might be interested in extending its corpus with. Generally, new documents are
not associated with SCDs and without having thoroughly processed a new document,
the question for the agent is: Does that document have anything of value to add in the
given context and the corpus-specific task of an agent? The problem is a decision making
problem: Should the agent extend its corpus with the new document or should it not?
Faced with a new document d′ having no SCDs associated with, an agent can divide

d′ into M word sequences, each representing a window and select for each word sequence
an SCD. Since each window contains a sequence of words an agent can generate for each
window a word frequency vector δ(wind′,_) based on the words in the corresponding
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window. The agent compares the word frequency vector of each window with the word
frequency vector of each SCD associated with documents in the corpus. Then, the agent
can compare the word frequency vector of a window with the word frequency vectors of all
SCDs associated with documents in the corpus by using the cosine of the angle between
two document vectors. The SCD where the corresponding word frequency vector has the
smallest distance (highest cosine similarity) to the word frequency vector of the window is
associated with a window. We denote the associated SCD as the MPSCD describing the
content of the new document.We argue to divide a new document d′ intoM windows and
select for each window the corresponding MPSCD resulting in a sequence of MPSCDs,
where each MPSCD is associated with a location in the new document and each MPSCD
contains a similarity value.
Mathematically, the MPSCD problem asks for the M most probable SCDs for a new

document d′ given the SCD-word probability distribution matrix δ(D) and the words in
d′. As we do not model an influence of one SCD on the next and as we place the M
windows next to each other in d′, we can separately calculate the probability for each
window and associated the SCDs with d′:

{arg max
t∈T (D)

P (t|δ(wind′,ρ1), δ(D)), . . . , arg max
t∈T (D)

P (t|δ(wind′,ρM ), δ(D))}. (3.6)

The intuition is as follows: If d′ is a document from the same context as documents in
D or a close variation of the documents in D, then Expression (3.6) yields MPSCDs with
high probabilities for each window. If d′ is an unknown document, the resulting MPSCDs
vary in their probability. If the vocabulary or word composition is very different, the
probabilities are very low on average. The closer vocabulary and word composition of d′

get to the characteristics of documents in D, the higher the probabilities of MPSCDs.
Based on the statistics of the corpus, we approximate Expression (3.6) for an SCD t

in a window wind′,ρ by determining the SCD in δ(D) with the most similar distribution
compared to a vector representation of wind′,ρ using influence values. The setting is as
follows: Given a new document d′ and the SCD-word probability distribution matrix
δ(D), we select theM MPSCDs for d′. Based onM , M windows wind′,ρ lie over the text
of d′ with a window size of σ = #words(d′)

M and positions ρ starting at σ
2 and incrementing

by σ. For each wind′,ρ, the SCD is unknown at the start, i.e., t = ⊥. As the words in
wind′,ρ have an influence value based on Expression (2.2), an agent can build a vector
δ(wind′,ρ) of length V . The entries δ(wind′,ρ)[w] are set to 0 for each word w ∈ V not in
wind′,ρ and set to I(w,wind′,ρ) otherwise. Using cosine similarity, the SCD most similar
to δ(wind′,ρ) is given by the cosine between both vectors:

arg max
i∈T (D)

δ(D)[i] · δ(wind′,ρ)
|δ(D)[i]| · |δ(wind′,ρ)|

. (3.7)

Algorithm 2 estimates MPSCDs for d′ using δ(D) given M . The output of the algorithm
is a set of triples containing MPSCDs, the corresponding MPSCD similarity value, as
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Algorithm 2 Selecting MPSCDs based on Similarities
1: function selectMPSCD(new document d′, Number of SCDs M , matrix δ(D))
2: Input: new document d′, Number of SCDs M , matrix δ(D)
3: Output: Sequence of triples Wd′

4: σ ← #words(d′)
M , W ← ∅

5: for ρ← σ
2 ; ρ ≤ #words(d); ρ = ρ+ σ do

6: Set up a window wind′,ρ of size σ around ρ
7: δ(wind′,ρ)← new zero-vector of length V
8: for w ∈ wind′,ρ do
9: δ(wind′,ρ)[w]+ = I(w,wind′,ρ)

10: t← arg maxi
δ(D)[i]·δ(wind′,ρ)
|δ(D)[i]|·|δ(wind′,ρ)|

in wind′,ρ . Cosine similarity

11: sim← maxi
δ(D)[i]·δ(wind′,ρ)
|δ(D)[i]|·|δ(wind′,ρ)|

12: W ←W ∪ {(t, sim,wind′,ρ)}
13: return Wd′

well as the window-details. The outer loop (line 5 to line 12) iterates over the positions of
the M SCDs, setting up a window wind′,ρ and a vector representation δ(wind′,ρ). Then,
Alg. 2 calculates cosine similarities between δ(wind′,ρ) and the SCD vectors in δ(D) based
on Expression (3.7). The algorithm returns the SCD with the highest similarity value as
MPSCD t for the window wind′,ρ. The approach rests on the following proposition:

Proposition 3.2.1. For a new document d′ Algorithm 2 estimates the (locally) M MP-
SCDs, i.e., for each window Expression (3.7) estimates SCDs of Expression (3.6).

We argue that the similarity between the influence distribution over the words in a
window and the SCD-word probability distribution indicates that the SCD is most likely
to generate the words in the window. Another SCD generating other words with high
probability would not generate the words in the window with a high probability and as
such, does not lead to a high similarity. The MPSCDs represent a local optimum based
on the current setting of the windows.
The next chapter describes the enrichment of a given corpus with new documents using

the corpus-specific SCD-word probability distribution matrix δ(D) and MPSCDs for all
new documents resulting from the SCD-word distribution of the corpus. If an agent
decides on adding a new document to the corpus and using the MPSCDs for additional
corpus-specific tasks like query answering or document retrieval, optimizing the initial
SCDs of d′ might lead to more attuned SCDs. We describe the optimization of an initial
set of SCDs associated with a document in Chapter 5.
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Chapter 4

Context-specific Corpus Enrichment

This chapter presents an approach for extending a corpus with new documents and
automatically enriching the new documents with SCDs while considering the context
represented by the documents in a corpus. Aforementioned, documents in a corpus
play an important role for an agent’s task, and we assume that SCDs associated with
documents are optimized for the task of the agent. An agent might be interested in
extending its corpus with a new document only if the content of that document is relevant
for its task, e.g., the new document contains content related to the content of other
documents in the corpus. But, what should an agent do while presented with a new
document, which typically has no associated SCDs? The question for the agent is: Does
the content of a new document provide anything of value to add in the context of a given
corpus? An agent might be interested in new documents being similar to documents
already in the corpus or containing content extending the content of documents in the
corpus. Generally, an agent can classify new documents into one category from a set
of predefined categories C, where each category represents the relationship between the
content of new documents and the content of documents in the corpus. We use the
following document categories an agent might be interested in:

(i) sim - new document is similar to at least one document in the corpus,

(ii) ext - new document is an extension of a document in the corpus,

(iii) rev - new document is a revision of a document in the corpus, and

(iv) unrel - new document is unrelated to all documents in the corpus.

Additionally, we argue that a new document provides a value for the task of an agent
if the document is classified into category sim, ext, or rev, since a document classified
to one of those three categories contains content related to content of documents in the
corpus. We denote the process of extending a corpus with documents adding a value
for the task of an agent with the notion corpus enrichment. Generally, the specific
categories an agent is interested in is task-specific and depending on the task further
categories might be beneficial for the agent.
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We assume that the relatedness of a window’s content to the content of documents in
the corpus has an impact on the relatedness of the content in the next window. Different
approaches exist to model a sequential impact. We use Hidden Markov Models modeling
the sequential impact and use the relatedness of the content (related/unrelated) as hidden
states and MPSCD similarity values as observations.
To estimate the category of a new document, we perform the following steps. First, we

learn for each of the four document categories a corpus-specific HMM where each slice in
an HMM concerns a window in a document and the hidden state in the HMMs concerns
whether the SCD in the window is related or unrelated to the agent’s task. Second, given
a new document, we estimate for each window an MPSCD and use the corresponding
sequence of MPSCD similarity values as observable input data for the Viterbi algorithm,
introduced by Viterbi (1967), to estimate the most likely sequence of related/unrelated
content (hidden states) for each of the four previously learned HMMs. This technique
results in four probability values, one probability value for each of the estimated most
likely sequences of hidden states. The probability values can be used to rank the most
likely sequences. The category of a new document is given by the HMM resulting in the
sequence with highest probability value.
Additionally, an agent can use the most likely sequence of hidden states to provide

location-specific information about new data within the context of the specific corpus.
If an agent decides to extend its corpus with new documents based on the documents’
category it can even choose to retain the initially estimated MPSCDs, possibly adapting
them with new SCDs, and use the SCDs as a basis for enriching SCDs in the corpus, in
an automatic fashion.
We introduce the problem of classifying a new document d′ into a predefined category

given an individual composition of documents in a corpus D, and present an HMM-based
approach to identify the category of new document d′ by estimating the probability of
the most likely sequence of hidden states from the observable MPSCD similarity values
in d′. We then provide a decision making procedure and describe how an agent can use
the most likely sequence to augment corpus enrichment with providing location-specific
information about new data within the context of the specific corpus. Even though
one might use any identified category relevant to a specific task, we consider the four
document categories sim, ext, rev, and unrel.
Before going into details about document classification techniques, in the next section

we first describe each document category and show how document classification has a
chance at success using the sequence of MPSCD similarity values.

4.1 Document Categories and Similarity Values

We assume that a document is labeled with one of the four previously introduced doc-
ument categories and assume that the category of a document can be estimated by
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considering the MPSCD similarity values. Before presenting details about the document
categories, let us consider an example for document categories.
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(a) Similar document.
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(b) Unrelated document.
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(c) Revision document.
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(d) Extending document.

Figure 4.1: Representation of MPSCD similarity value characteristics for a similar (a),
unrelated (b), revision (c), and extending (d) document in an exemplary way.

Example 4.1.1 (document category). Assume that an agent is presented with four doc-
uments of similar length and each of them from one of the four categories sim, ext, rev,
and unrel, respectively. Figure 4.1 presents the similarity value characteristics of the
MPSCDs for each of the four documents using seven windows to segment the content
within the documents. The x-axis represents the SCD window number within each docu-
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ment, and the values on the y-axis represent the similarity value of MPSCDs. Generally,
the similarity values change slightly between neighboring windows for both similar and
unrelated documents and only few major shifts between neighboring windows are given.
But the MPSCD values of similar documents are considerably higher compared to unre-
lated documents. Extending documents are characterized by high similarity values in the
initiating SCD windows and smaller similarity values in the later windows. The similar-
ity value for the windows’ MPSCD of revision documents behave like similar documents.
However, there are windows having a significant change in the similarity value of the
neighboring windows, namely, those windows having new content which is unrelated in
the corpus-specific context.

Based on the observations shown in the last example, we describe the document cate-
gories in more detail.

Similar documents (sim). The content of a new document d′ is classified as category
sim if the document’s content is related to the content of a subset of documents in
corpus D, i.e., the new document tells about the same event, same person, or same
domain yielding to high MPSCD similarity values using Alg. 2. Thus, values in the
MPSCD similarity sequence are mostly high and contain only few entries with slightly
lower values. In other words, the range of MPSCD similarity values is small. A new
document d′ is a similar document w.r.t. the documents in a corpus D if

∀wind′,ρ ∈ d′ : max
i

δ(D)[i] · δ(wind′,ρ)
|δ(D)[i]| · |δ(wind′,ρ)|

> th1. (4.1)

Threshold th1 describes the minimum required relatedness for each window in d′. The
threshold is subjective and depends on the individual composition of documents in D.

Unrelated documents (unrel). The content of a new document d′ is classified as cat-
egory unrel if the document’s content is unrelated to the content of all documents in
corpus D. The values in the MPSCD similarity sequence of d′ are mostly low and only
a small number of windows contain higher similarity values. Thus, we define a new
document d′ as an unrelated document w.r.t. the documents in a corpus D if

∀wind′,ρ ∈ d′ : max
i

δ(D)[i] · δ(wind′,ρ)
|δ(D)[i]| · |δ(wind′,ρ)|

< th2. (4.2)

Threshold th2 describes the maximum relatedness for each window in document d′. The
threshold is subjective and depends on the individual composition of documents in D.

Extending documents (ext). The content of a new document d′, representing an exten-
sion of another document d ∈ D is mostly related to the content of at least one document
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in D but additionally contains content which is not available in documents of D, i.e., the
new document is an extended version of another document in corpus D. Thus, new doc-
ument d′ can be represented by d′ = [a, a, ..., b, b, ...], where each a represents one of the
first windows of d′ containing MPSCD similarity values greater than th1 and b represents
the second part of windows having MPSCD similarity values smaller than th2. We can
represent the windows properties using the following regular expression: a+b+.

Revision documents (rev). The content of a new document d′, representing a revision
of another document d ∈ D is generated by appending, replacing, or removing some
sentences of document d. The MPSCD similarity value of most windows is greater than
th1 and the MPSCD similarity value of few windows is less than th2. We can represent the
described behaviour as the following regular expression: (a+b | b+a)(a | b)∗. Again, a and
b represent MPSCD similarity values greater than th1 and smaller than th2, respectively.
Next, we define the problem of classifying a new document into one of the four doc-

ument categories and present an approach to solve the problem using four HMMs, one
for each document category.

4.2 Document Classification Problem

After estimating the MPSCDs for a new document d′ using Alg. 2, we can extract a
sequence of MPSCD similarity values over the SCD windows in d′. The document classi-
fication problem asks for the most probable category of document d′ given the observable
sequence of MPSCD similarity values and documents in D. More technically, we can rep-
resent the classification problem by Expression (4.3).

arg max
c∈C

P (c|Wd′), (4.3)

where Wd′ represents the document-specific triple containing SCDs, corresponding simi-
larity values and windows. As described in the previous section, we follow the idea that
if the content in a window of a new document d′ is related to the agent’s task, then
d′ contains high similarity values, which may vary over the course of a new document,
with related and unrelated parts mixing. Generally, we can only look at the observable
similarity values of MPSCDs but cannot directly observe if the content in a window is
related to the task of an agent. The consequence of this consideration is a sequence of
hidden states, encoding the relatedness of the document’s content, and a sequence of
observations given by the similarity values of MPSCDs. HMMs can model the described
setup and we are interested in solving the document classification problem by learning
four HMMs, one for each category of documents, determining the most likely sequence
of hidden states in the new document d′. Finally, we return the category associated with
the HMM having the highest probability of hidden state sequence. Calculating the most
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likely sequence of hidden states allows us to analyse documents “over time”, i.e., sentence
by sentence. Additionally, we can consider the sequence of the MPSCD similarity values,
instead of simply using statistic values like the maximum or minimum in a set of MPSCD
similarity values.
In Section 4.6, we evaluate the performance of an HMM-based approach against a

multi-dimensional decision approach, where the multi-dimensional decision approach con-
siders different properties of the sequence of MPSCD similarity values.

4.3 Category-specific HMMs

We generate for each category an HMM to detect the category of a new document.

Definition 4.3.1 (Hidden Markov model). An HMM λ = (Ω,∆, A,B, π) for classifying
documents of some category consists of

• a set of hidden states given by Ω = {s1, ..., sn}, where n = 2, with state s1 repre-
senting related content and s2 representing unrelated content,

• an observation alphabet ∆ = {y1, . . . , ym}, where each observation symbol repre-
sents a range of MPSCD similarity values,

• a transition probability matrix A representing the probability between all possible
state transitions ai,j of the two hidden states s1, s2 ∈ Ω,

• an emission probability matrix B representing the probability to emit a symbol
from observation alphabet ∆ for each hidden state in Ω, and

• an initial state distribution vector π = π0.

Example 4.3.1 (Graphical Representations). Figure 4.2 contains two graphical repre-
sentations of an HMM λ = (Ω,∆, A,B, π) with observation symbols {yl, ym, yh} ∈ ∆
and two states {s1, s2} ∈ Ω. Figure 4.2a shows a one-time slice representation of the
HMM. Figure 4.2b shows the HMM as the corresponding state-transition system, where
observable variables are denoted in grey.

Definition 4.3.2 (Transition Probability). With
∑n

j=1 ai,j = 1, for all i, the entries of
transition probability matrix A between states si, sj ∈ Ω, are given by

ai,j = P (sj |si), (4.4)
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St−1 St
A = P (St | St−1)

OtB = P (Ot | St)

(a) One-time slice graph
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b1(yl)
b2(yl)

ym
b1(ym) b2(ym) yh

b1(yh)
b2(yh)

(b) State-transition system

Figure 4.2: Hidden Markov model with hidden variable St with two possible states {s1, s2}
emitting an observation Ot with three possible values {yl, ym, yh}.

and represented by the following state transition matrix A:

A =


s1 s2 · · · sn

s1 a1,1 a1,2 · · · a1,n
s2 a2,1 a2,2 · · · a2,n
...

...
...

...
...

sn an,1 an,2 · · · an,n


Definition 4.3.3 (Emission Probability). The entries of emission probability matrix
B represent the probability to emit symbol yk ∈ ∆ in hidden state sj ∈ Ω and, with∑m

j=1 bj(yk) = 1, are given by

bj(yk) = P (yk|sj). (4.5)

The semantics of λ is given by unrolling λ for a given number of slices and building
a full joint distribution. For a set of document categories C, H contains an HMM for
each document category in C. All λ ∈ H have the same hidden states Ω and observa-
tion vocabulary ∆ but different transition probabilities and emission probabilities. We
represent the emission probabilities between observations and hidden states using the
following observation matrix B:

B =


y1 y2 · · · ym

s1 b1(y1) b1(y2) · · · b1(ym)
s2 b2(y1) b2(y2) · · · b2(ym)
...

...
...

...
...

sn bn(y1) bn(y2) · · · bn(ym)


Generally, for a corpus D, both, the transition probability matrix A and the emission

probability matrix B for each document category specific HMM is unknown. One famous
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technique for learning both, the transition probability matrix and the emission probability
matrix of an HMM is the Baum-Welch algorithm, introduced by Baum et al. (1970),
which is a special case of the well-known EM algorithm (Dempster et al. (1977)). Using a
set of documents where each document is from a specific category c ∈ C, one can calculate
for a hold-out set the MPSCDs and the corresponding MPSCD similarity values s.t. we
can train one HMM for each category on the data using the Baum-Welch algorithm.
The observation alphabet ∆ requires discretizing similarity values. As a function

f : [0, 1] 7→ ∆, it maps a similarity value x to one of the m symbols in ∆:

f(x) =


y1 0 ≤ x < th1

y2 th1 ≤ x < th2
...
ym thm−1 ≤ x < 1

(4.6)

Generally, the discretization and its thresholds depend on the task of an agent and can
be adapted to each problem individually. In our case study, we use the following setting:
m = 3, th1 = 0.3 and th2 = 0.7 such that f(x) maps MPSCD values to yl, ym, and yh,
referring to low, medium, and high values.
Next, we present an approach for estimating the most probable category of a new doc-

ument by providing the sequence of observable MPSCD similarity values to the corpus-
and category-specific HMMs.

4.4 Detecting the Category of a New Document

To solve the document classification problem, an agent has to identify the most likely
sequence of hidden states from alphabet Ω, given a sequence of observation symbols
from alphabet ∆, in each HMM of the category-specific HMMs. Each of the most likely
sequences is associated with a probability value. The document category is given by
the category for which the HMM with the highest probability for its sequence has been
learned.
The task of determining which sequence of variables is the underlying source of some

sequence of observations is called a decoding task. We calculate for each HMM the most
likely sequence of hidden states using the Viterbi algorithm, which makes use of the
dynamic programming trellis for computing the most likely hidden state sequence S for
an observation sequence O. Before presenting a complete specification of the document
classification approach, let us consider an example of a most likely sequence given a set
of MPSCD similarity values.

Example 4.4.1 (Most likely sequence). Let us assume that we have calculated a set of
MPSCDs for a new document d′ by using Alg. 2 and the corresponding MPSCD similarity
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Algorithm 3 Classifying Documents
1: function docCategoryDetection(Wd′ , H, f)
2: Input: Seq. of triplesWd′ : SCD (t), similarity value (sim), and window (wind′,ρ),

HMM set H, discretization function f
3: Output: tuple s containing most likely sequence S and the HMM λ
4: p← 0 . current highest probability
5: s← initialize . output tuple (S, λ)
6: O ← initialize . observation sequence
7: for each (t, sim,wind′,ρ) ∈ Wd′ do
8: O ← O ◦ f(sim) . discretize
9: for each λ ∈ H do
10: S ← Viterbi(λ,O) . most likely hidden state sequence S
11: y ← prob(S) . probability of S
12: if y > p then
13: p← y
14: s← (S, λ)

15: return s

values are as follows:

Wd = (0.29, 0.41, 0.59, 0.48)

Applying function f(x) on all four values leads to the following observation sequence:

O = (yl, ym, ym, ym)

Assume that the hidden state sequence for a specific configuration of the transition and
emission probability matrices of an HMM is given by

S = (s2, s1, s1, s1).

Figure 4.3 represents the trellis of the observation sequence O, where the thick arrows
indicate the most probable transitions between the hidden states and the dotted lines
represent all possible hidden state transitions.

Algorithm 3 describes how to estimate the most probable category of a new document
using the category-specific HMMs. The input parameters are given by the MPSCD
similarity values in Wd′ (output of Alg. 2), the category-specific HMMs H, and function
f . In line 4 to line 6, Alg. 3 initializes a temporary variable p, the output tuple s, and
discretized observation sequence O. In line 7 to line 8, Alg. 3 calculates the discretized
observation sequence from MPSCD similarity values of d′ using function f .
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Figure 4.3: Trellis of O = (yl,ym,ym,ym), leading to the following most likely sequence of
hidden states: (s2, s1, s1, s1).

Afterwards, Alg. 3 iterates over the given HMMs in H. In each iteration, the algorithm
calculates a most probable sequence S given observables O using the Viterbi algorithm
(line 10). In line 12 to line 14, Alg. 3 tests if the probability prob(S) of the current most
likely sequence S is higher than the previously seen highest probability. If the probability
is higher, Alg. 3 saves the current most likely sequence S and the HMM λ as a tuple
(S, λ) in variable s.
After iterating over all HMMs in H, Alg. 3 terminates and returns the most likely

sequence s that has exhibited the highest probability among all most likely sequences
as well as the corresponding HMM. We then use this output as a basis for the decision
regarding corpus enrichment. Before moving on to decision making, let us consider an
example for how document categories and sequences may interact.

Example 4.4.2. Assume that we have an unrelated document with similarity values
that have led to the following observation sequence as well as the most likely sequence as
output of Alg. 3, meaning the HMM learned on unrelated documents has produced the
most likely sequence with the highest probability:

Ounrel = (yl, ym, yl, yl) (4.7)
Sunrel = (s2, s2, s2, s2) (4.8)

With observations of yl mainly, the most likely sequences of the other HMMs have a much
lower probability as the evidence for unrelated content is very high, which is associated
with low probabilities in them. Given, e.g., an extension of a document, the observation
sequence may look as follows with the HMM learned on extensions yielding the most
likely sequence with highest probability also given:

Oext = (yh, ym, yl, yl) (4.9)
Sext = (s1, s1, s2, s2) (4.10)

The HMM trained on unrelated documents can only explain the last part with high
probability whereas the HMM trained on extensions can explain both parts with high
probability.

48



4.4 Detecting the Category of a New Document

Estimating the category of a new document d′ can help an agent making a decision
on extending a corpus with the new document d′ or not, e.g., if an agent is interested
in new documents containing similar content to documents in the corpus the agent can
simply add new documents classified as similar document.

4.4.1 Automatic Decision Making: Corpus Enrichment

Given corpus D and the corresponding set of SCDs in T (D), an agent has to perform
following steps offline:

(i) Build an SCD-word distribution matrix δ(D) based on the SCDs in T (D).

(ii) Train the category-specific HMMs in H using the documents in corpus D and the
corresponding SCD-word probability distribution matrix δ(D).

(iii) Specify a function f for discretizing similarity values to build an observation alpha-
bet ∆.

(iv) Specify the document category an agent is interested in.

Relevant document category may be extensions of documents for an agent to extend
its own corpus. If a corpus is already very large, an agent may be interested in updating
its documents with newest revisions of the documents. If a task changes and documents
no longer appear to be helpful in solving its task, unrelated documents may provide the
most added value (without any further information about the agent’s information need).
As just indicated, specifications may even change over time when a corpus grows and a
need for specific documents becomes apparent.
Faced with a new document d′, an agent performs the following steps online:

(i) Use Alg. 2 to estimate the MPSCDs similarity values for document d′.

(ii) Use the output of Alg. 3 to determine the category of d′.

(iii) Based on document’s category and the document category an agent is interested
in, add or forgo d′.

Basing the decision on most likely sequences enables an agent to further process the
most likely sequence with the highest probability and analyse documents “over time”, i.e.,
sentence by sentence. As such, this sequence allows for augmenting corpus enrichment
by being able to pinpoint interesting positions in a document, which we consider next.
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4.4.2 Augmenting Enrichment: Positions of Interest

Let us assume that an agent is interested in extending a corpus D with new documents
and that the documents are classified as unrelated documents but share some small parts
containing related content with at least one document d ∈ D. The output of Alg. 3 is
a tuple containing the most likely hidden state sequence S and the document category
λ represented by most likely HMM. Sequence S represents for each window in d′ if the
content is related or unrelated to content of documents in D. We can use the sequence
S to extract information about the content similarity in an SCD window instead of only
having information about the similarity values of the most probably suited SCD relating
to a specific window. If a new document d′ is unrelated to other documents in D but
parts of d′ contain content related to documents in D, then the agent might be interested
in the parts containing related content to identify if document d′ might contain new
content relating to the corpus-specific context, even if d′ is classified as unrelated. We
describe these parts in a new document d′ as Positions of Interests (PoIs).
Identifying PoIs in a new document d′ requires detecting the category of d′. Depending

on the category of d′, an agent might be interested in different positions within document
d′. Thus, we specify the following PoIs depending on the document’s category as follows:

(i) For documents in category sim, sections containing unrelated content represent
PoIs, s.t. an agent can analyse the unrelated content.

(ii) Documents in category ext contain related content in the beginning of the document
which changes to unrelated content when the document extension starts. The
position where the similarity values changes represents the PoI in ext.

(iii) For documents of category rev, the PoI is given by those positions containing mod-
ified (unrelated) content, and

(iv) for documents in category unrel, the sections containing related content represent
PoIs, s.t. an agent can check if the unrelated document adds a value for the corpus,
e.g., by analyzing the queries already performed on the document retrieval system.

4.5 Optimizing Subjective Content Descriptions

In the last section, we have introduced an approach for classifying new documents into
one of four categories. The introduced document classification approach is based on
an initial set of SCDs associated with documents of corpus D as well as the estimated
MPSCDs and their corresponding similarity values for the windows of the new document.
In this section, we present two additional approaches for optimizing the quality of initially
estimated MPSCDs for a new document d′ an agent is faced with. The first approach
adapts the size and position of initial SCD windows. The second approach reduces the

50



4.5 Optimizing Subjective Content Descriptions

documents in the initial corpus based on the document category an agent is interested in
resulting in an new SCD-word probability distribution δ(Cd′), where Cd′ represents the
reduced corpus.

Adapting Subjective Content Description Windows

In Section 3.2, we have introduced Alg. 2 returning Wd containing a set of triples each
containing a located MPSCD, the MPSCD similarity value as well as the corresponding
window. Both, the initial located MPSCDs and the corresponding similarity values are
based on SCD-word probability distribution δ(D) and the position of the windows. We
argue that the MPSCDs associated with d′ represent only a first estimate for d′ because
the position and size of the corresponding SCD windows might be non-optimal. If an
agent is interested in extending its corpus with a document, then the agent benefits from
optimized MPSCDs for d′, e.g., to increase the document retrieval performance.
Thus, we aim to optimize the MPSCDs associated with d′ by iteratively adjusting the

size and position of all windows in a way that the overall similarity values of the M
MPSCDs is at maximum. Algorithm 4 (see next page) presents the iterative MPSCD
optimization approach improving the initial MPSCD similarity values for document d′,
such that the overall MPSCD-similarity value increases.
Algorithm 4 requires the following input parameters: (i) new document d′, (ii) num-

ber M of windows, (iii) initial set of MPSCDs, corresponding cosine similarity values
and window details (Wd′), and (iv) SCD-word probability distribution δ(D). Finally,
Alg. 4 returnsWd′ containing the optimized triple of located SCDs, similarity values and
windows for d′.
In line 5, Alg. 4 calculates the overall cosine similarity of the initial MPSCDs associated

with d′ using the similarities stored in Wd′ . Afterwards, in line 6 to line 19, Alg. 4
iteratively adjusts SCD windows trying to increase the cosine similarity between the
adjusted influence vector and the SCD vector in δ(Cd′). The window adjustment is
performed until a local optimum is reached.The algorithm adjusts each window in Wd′

in the following four different directions without overlapping boundaries: (i) extend left
boundary of the SCD-window to the left side (l+), (ii) extend right boundary of SCD-
window to the right side (r+), (iii) shift left boundary of SCD-window to the right side
(l−), and (iv) shift right boundary of SCD-window to the left side (r−). The first two
window adjustments extend the size of wind′,ρ, while the last two window adjustments
decrease the size of wind′,ρ. We calculate for each possible window adjustment the
MPSCDs and choose the adjustment, for which the overall similarity is maximized.

Proposition 4.5.1. For a corpus-extending document d′ Algorithm 4 estimates the M
(locally) most probably suited located SCDs and finally terminates.

Algorithm 4 optimizes the initial M SCDs in Wd′ by iteratively adjusting the M
windows in a fashion s.t. the overall similarity between the influence vectors of all SCD
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Algorithm 4 Optimizing MPSCDs
1: function OptimizingMPSCDs(d′, M , δ(D), Wd′)
2: Input: document d′, number of SCDs M , SCD-word probability δ(D), seq. of

triples Wd′

3: Define: t∗, sim′, sim∗, ρ, winTd′,ρ′ , sum, sum′

4: Output: W(d′)

5: sum←
∑

(_,sim,_)∈Wd′
sim

6: sum′ ← sum
7: while sum′ ≥ sum do
8: sum← sum′

9: for each (t, sim,wind′,ρ) ∈ Wd′ do
10: sim∗ ← sim
11: for each window adjustment a ∈ {l+, r+, l−, r−} do
12: winTd′,ρ′ ← wind′,ρ
13: Update winTd′,ρ′ based on a
14: sim′ ← maxi

δ(Cd′ )[i]·δ(winT d′,ρ′ )
|δ(Cd′ )[i]|·|δ(winT d′,ρ′ )|

15: if sim′ > sim∗ then
16: t∗ ← arg maxi

δ(Cd′ )[i]·δ(winT d′,ρ′ )
|δ(Cd′ )[i]|·|δ(winT d′,ρ′ )|

17: Update (t, sim,wind′,ρ) ∈ Wd′ with t = t∗ and wind′,ρ = wind′,ρ′

18: sim∗ ← sim′, sim← sim′

19: sum′ ←
∑

(_,sim,_)∈Wd′
sim

20: return Wd′

windows and the MPSCD is maximized for the new document d′. The resulting MPSCDs
in T (d′) depend on the initial position of SCD windows, since we consider in the iterative
optimization only window adjustments of size one and do not change the number of
initially defined SCD windows (M). Thus, the final MPSCDs represent a (local) optimum
for theM SCD windows. Finally, Alg. 4 terminates, since the number of possible window
adjustments in the algorithm is finite.

Augmenting Enrichment: Document Clusters

If an agent is interested in extending its corpus D with a document d′ containing similar
content to documents in D, we can adjust the process for generating SCD for d′ ignoring
SCDs associated with documents in D containing content unrelated to the content of d′.
The first step in estimating most probably suited SCDs for a corpus-extending document
d′ consists of identifying those documents in D having a high topic similarity with d′.
We form a cluster Dd′ of d′-related documents such that all documents d ∈ Dd′ have
a Hellinger distance H of their document-topic probability distributions θd, θd′ being
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smaller than a threshold τ , i.e.,

Dd′ = {d ∈ D | H(θd′ , θd) < τ}. (4.11)

The threshold τ decides on the minimum required similarity between two documents d′

and d, such that document d ∈ Dd′ . The best value for τ depends on the performance
of external applications working with the located SCDs in T (d′). The document-topic
probability distribution of documents in D changes with respect to α, β, and K in the
LDA. The smaller τ is, the higher the topic similarity between the documents in Dd′ is.
Expression (4.11) requires a document-topic probability distribution θd′ for the corpus-
extending document d′ as well as the documents in D. The following three basic strategies
exist to arrive at the document-topic probability distributions,

(i) extend corpus D with new document d′ and generate a new topic model from
D ∪ {d′}, which contains document-topic probability distributions θ for each docu-
ment in D ∪ {d′},

(ii) generate a topic model from D, which contains document-topic probability distri-
butions θ for each document in D, and approximate the document-topic probability
probability distribution θd′ using folding in Gibbs sampling (Geman and Geman
(1984)), or

(iii) generate a topic model from D, which contains document-topic probability distri-
butions θ for each document in D, and approximate the document-topic probability
distribution θd′ using folding in Gibbs sampling as in (ii), while also updating the
overall topic model, known as the online variational Bayes algorithm for LDA (Hoff-
man et al. (2010)).

In the second part of this dissertation we analyze the three strategies in detail and
present advantages and disadvantages for each of the them. However, whichever strat-
egy we use for learning document-topic probability distributions, afterwards we can use
the Hellinger distance between document-topic probability distributions of d′ and all
documents in D to assemble Dd′ .
Now, we can perform Alg. 1 with Dd′ as input. This leads to a new SCD-word proba-

bility distribution δ(Dd) which we use as input for Alg. 2 calculating a new set of SCDs
for document d′.
Next, we evaluate the performance using document clusters in the second part of the

next section.

4.6 Case Study

After introducing the document classification approach to identify the category of a new
document based on documents in a corpus, we present a case study illustrating the po-
tential of document classification and both optimization techniques. We use the sequence
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of observable MPSCD similarity values as evidence in HMMs and compare the technique
against a multi-dimensional classification approach. The multi-dimensional classification
approach analyze five different MPSCD similarity properties like the maximum and the
minimum similarity value of MPSCDs associated with a new document.
Generally, we can generate corpora by collecting documents we might be interested in.

However, the free Wikipedia encyclopedia already contains so called lists representing a
collection of documents for specific subjects.
So, this case study is based on three corpora, each containing documents from lists of

Wikipedia and all corpora contain approximately the same number of words. We have
selected exactly those three different corpora, because the topics of all three corpora are
different. Generally, our approach works for each corpus. The three corpora are:

• EU-cities containing 36 documents about the largest cities in Europe1.

• US-presidents containing 45 documents about presidents of the U.S. between 1789
and 20172, and

• US-universities containing a subset of 50 documents about the state and terri-
torial universities in the U.S. 3.

4.6.1 Preprocessing

We work with an implementation of Alg. 1, Alg. 2 and Alg. 4 and use their results as input
parameters in an implementation of Alg. 3. All documents are preprocessed by: (i) lower-
casing all characters, (ii) stemming the words, (iii) tokenizing the result, (iv) eliminating
tokens from a stop-word list of 337 words, and (v) performing LDA on the preprocessed
documents to generate a topic model from all documents in the corresponding corpus.
Generally, SCDs are manually associated with documents. However, the techniques pre-
sented in this chapter are independent from the SCD itself and only depends on the
corresponding similarity values. Thus, we use Stanford OpenIE (Angeli et al. (2015))
to automatically extract (subject,predicate,object)-triples from the documents acting as
SCDs for all documents within the corpus.
For Alg. 2 and Alg. 4 only stop-words from the documents are removed. Afterwards,

we generate for all four document category and each of the three corpora a training set
and test set. Both data tests are generated in the following way:

Similar Documents (sim): 90% of the corresponding Wikipedia documents act as
training data, i.e., 90% of the documents represent documents in the corpus. The re-

1https://en.wikipedia.org/wiki/List_of_European_cities_by_population_within_city_limits
2https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States
3https://en.wikipedia.org/wiki/List_of_state_and_territorial_universities_in_the_
United_States
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maining 10% of documents from the same corpus are used as a held-out set acting as
test data.

Extending documents (ext): For each corpus, we choose the training set by selecting
the corresponding Wikipedia documents and extend them with text from documents
of the other two corpora, s.t. the content of an extending document is unrelated to
content in the current corpus. For corpus EU, documents from EU-presidents and
US-universities are selected. Documents for the test set are generated in the same
fashion.

Revision documents (rev): The view history function4 in Wikipedia generates a revised
version of a document. The latest version of a document contains modified and additional
sentences, since the latest document represents a revision of an older version of the same
document. The same steps are performed for creating document in the test set.

Unrelated documents (unrel): We randomly choose the training set by selecting 90%
of documents from one corpus and randomly selecting documents from the two other
corpora to generate a test set. Since the documents in the test set are from different
corpora, the content is unrelated to documents in the test set.

For each document category, we take the corresponding training set and learn the transi-
tion and emission function for the category-specific HMMs using the Baum-Welch algo-
rithm. This process results in four HMMs each of them representing the configuration for
one category of document for each corpus. We use Alg. 3 to perform the document clas-
sification of documents in the test set. Precision and Recall represent the performance of
Alg. 3, where TP refer to the number of documents whose document category has been
correctly estimated, FP refer to the number of documents whose document category has
been falsely estimated, and FN refer to the number of documents classified to a category
of a document that was not found.

4.6.2 Document Classification

We conduct experiments to test the performance of the document classification approach
based on the introduced technique to generate corpora and the evaluation approach.
Table 4.1 presents the performance of Alg. 3 using both measures, precision and recall,
for all three corpora. Generally, document classification performs best on unrelated and
extending documents for the three corpora. The transition probability and emission
probability are similar for categories sim and rev for documents in the corresponding
HMMs. The algorithm has never classified revisions and similar documents as unrelated

4https://en.wikipedia.org/wiki/Help:Page_history
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Table 4.1: Document classification performance considering the four document categories
sim, unrel, ext, rev, and the three corpora city, university, president.

Corpus Method Document category
sim unrel ext rev

Precision 0.72 1.0 0.93 0.70
City Recall 0.65 1.0 0.86 0.41

F1-Score 0.68 1.0 0.89 0.52
Precision 0.77 1.0 0.91 0.72

University Recall 0.71 0.96 0.84 0.58
F1-Score 0.72 0.98 0.87 0.64
Precision 0.70 1.0 0.86 0.68

President Recall 0.71 1.0 0.92 0.51
F1-Score 0.70 1.0 0.89 0.58

documents or document extensions, respectively, but sometimes the algorithm has clas-
sified documents from category sim as documents from category rev, and vice versa.
We assume an agent interested in similar documents might accept document revisions
because they are similar to the documents in a corpus. If an agent is only interested in
similar documents or revisions, it must analyze documents of both categories in detail,
e.g., by using positions of interest. Next, we look at the performance of the optimization
techniques.

4.6.3 Window Adaptation

Estimating MPSCDs for new documents requires a predefined number (M) of MPSCDs
an agent might be interested in as well as the size of the corresponding MPSCD windows.
In Section 3.2, we have described Alg. 2 dividing document d′ into M equally sized
windows (line 4). Afterwards, Alg. 2 estimates for each of the M windows the MPSCD
using SCD-word probability distribution δ(D). Obviously, the initial segmentation of
document d′ ignores the content within documents. Thus, we have introduced Alg. 4
adapting the window’s size to increase the quality of SCDs causing an optimization of
the document classification performance. Left plot in Fig. 4.4 presents the performance
of Alg. 4 by comparing the document classification performance based on Alg. 2 and
Alg. 4 for documents in the city corpus. The overall classification performance of Alg. 4
is better than the performance of Alg. 2, and the HMM generated from output of Alg. 4
leads to remarkable increase in detecting documents of category sim and rev. The right
plot in Fig. 4.4 presents the average MPSCD similarity value increase for a document
after optimizing the window size using Alg. 4. Adapting one window will automatically
adapt the neighboring windows and might lead to a decreasing MPSCD similarity value
for the neighboring windows. Generally, Alg. 4 adapts the windows in a way that the
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Figure 4.4: The Left plot presents the classification performance using Alg. 2 and Alg. 4.
The right plot presents the average MPSCD similarity value increase for each document
after optimizing the window size after applying Alg. 4.

sum of all MPSCD similarity values increases and the document category classification
performance increases, too.
We use the FDR to evaluate the performance because we are interested in a high num-

ber of true positives and small number of false positives. The FDR (see Expression (2.8))
slightly increase using Alg. 4, since the algorithm focus on the optimization of overall
MPSCD similarity value increase instead of optimizing the FDR.

4.6.4 MPSCDs for new Documents

Let us assume that an agent is interested in enriching its initial corpus only with similar
documents. Then, the agent can use MPSCDs similarity values to identify the category
of a new document based on the documents in its corpus. Classifying new documents
based on the MPSCDs similarity values might be important for an agent, since the agent
has obtained corpus-specific content description for a corpus-extending document based
on the most probably suited SCDs. But in general a new document is only eminently
related to a subset of documents within a large corpus. Therefore, we are interested in
analyzing the quality of subjective content descriptions for a new document d′ using only
those subset of documents Dd′ from corpus D containing documents having a similar
document-topic probability distribution to d′. Again, we use the FDR analyzing the
performance of calculated MPSCDs.
In Fig. 4.5, we present the FDR of the MPSCDs corresponding to the MPSCD simi-

larity values used to classify documents. Left plot shows FDR of estimated MPSCDs for
documents of category sim using the Hellinger distance to estimate the documents in
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Figure 4.5: Left: False Discovery Rate of MPSCDs for new documents of category sim
contemplating only documents from the corpus having a Hellinger distance of τ . Right:
FDR of MPSCDs for similar new documents contemplating the top-k MPSCDs.

Dd′ , having a distance less than τ . The FDR is best contemplating only documents hav-
ing a Hellinger distance between 0.3 and 0.6. Obviously, ignoring a subset of documents
from D changes the SCD-word probability distribution δ(D). However, contemplating
only documents having a low distance ignore the fact that we are approximating the
document-topic probability distribution for new documents and documents containing
relevant SCDs might not in Dd′ , having a higher distance than the specified value for
τ . The right plot shows the FDR of MPSCDs for documents of category sim, too.
The average FDR with values for τ (0.3 to 0.5) represent the impact of different top-k
MPSCD settings.

4.6.5 Comparison of HMM-based and Multi-dimensional Decision Making

We compare the performance of document classification based on the category-specific
HMMs with the performance of a classical multi-dimensional decision making approach
analyzing the characteristic of MPSCDs similarity values. In the multi-dimensional de-
cision making approach we consider the following five indicators to decide on extending
a corpus with a new document or not:

(i) maximum similarity of all MPSCDs (max. sim.),

(ii) minimum similarity of all MPSCDs (min. sim.),

(iii) maximum difference between highest and lowest similarity value (∆max,min),
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Figure 4.6: Representation of the four document types dsim, dext, drev, and dunrel using
the introduced MPSCD similarity values (left) and topic similarity (right).

(iv) average MPSCD similarity (avg. sim.), and

(v) maximum change between neighboring MPSCD-windows (max. ∆win).

On the left, Fig. 4.6 presents the indicators for the MPSCDs for each type of document.
On the right, Fig. 4.6 presents two variants of comparing a new document with documents
in a given corpus using a topic model generated by LDA. The first variant learns a
new topic model for the corpus including the new document, yielding a document-topic
probability distribution for the new document. The second variant infers the document-
topic probability distribution of the new document using an available topic model of the
initial corpus. Similarity is given by the Hellinger distance between two document-topic
probability distributions subtracted from the value 1.
Inferring the document-topic probability distribution is significantly faster than calcu-

lating a new topic model but makes it impossible to identify the type of a new document
since all similarity values are similar (see right plot of Fig. 4.6). Generating a new topic
model allows for distinguishing an unrelated document and a revision from all types but
makes it difficult to distinguish a similar document from an extension because both doc-
uments share nearly the same document-topic probability distribution leading to almost
identical similarities. Estimating the MPSCDs for a new document and analyzing the
indicators enables classification of a new document in the context of a given corpus and
is prone to outliers.
The values of indicators are corpus-specific and Table 4.2 presents the five indicators

for both corpora. We specify: (i) a high similarity (+) for values between 0.7 and 1,
(ii) an average degree of similarity (◦) for values between 0.3 and 0.7, and (iii) and a low
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Table 4.2: Document Type Indicator Comparision

city corpus president corpus

dsim dext drev dunrel dsim dext drev dunrel

Max Sim. + + + ◦ + + + ◦
Min Sim. + ◦ ◦ − ◦ ◦ ◦ −
∆max,min − ◦ − ◦ − ◦ − ◦
Avg. Sim. + ◦ + ◦ + + + ◦
Max.∆win − ◦ − ◦ − ◦ − ◦

similarity (−) for values below 0.3.
For both corpora new documents of type dsim, dext and drev share high values for the

maximum similarity. Similar documents (dsim) have a noticeable higher minimum sim-
ilarity than all other types of documents. Unrelated documents (dunrel) have a smaller
maximum similarity value compared all other types of documents and the minimum
similarity is small. The maximum similarity changes between neighboring windows
(max.∆win) of document extensions (dext) is similar to unrelated documents while the
maximum similarity change between neighboring windows of revisions (drev) is compa-
rable to similar documents.
In this case study, we have shown the performance of the introduced HMM-based

decision making approach classifying a new document given a corpus. Generally, docu-
ment classification performs best on unrelated and extending documents and it is easy
to distinguish similar documents from the revision of a document. The performance on
unrelated and extending documents is slightly better than on similar documents and re-
visions. As shown, in Table 4.2 it is possible to use a multi-dimensional decision making
approach to classify new documents with respect to a given corpus simply analyzing five
indicators representing specific MPSCD similarity values from the new document. Thus,
a multi-dimensional decision making approach has low cost. However, the performance
of the HMM-based decision making approach is much better.
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Corpus-Driven Document Enrichment
using SCDs

The last chapter has introduced a corpus-controlled decision making approach for new
documents based on an estimated set of MPSCDs for new documents given an SCD-word
probability distribution matrix resulting from the documents in a corpus. The decision
making approach classifies a new document based on the estimated MPSCDs for this new
document. A major advantage of the decision making approach is the resulting set of
SCDs for new documents extending the initial corpus because an agent can directly use
the associated SCDs for additional task. However, the initially associated set of MPSCDs
for corpus-extending documents might be insufficient and associating additional SCDs
with new documents associated with documents in the corpus might add an additional
value to the task of an agent.
Generally, different approaches are available to enrich a document-specific set of SCDs.

A well-known approach for associating additional data to a document is Named-Entity
Linking (NEL). Shen et al. (2015) describe NEL as the task of linking entities available in
an external source, e.g., a KB, to entities mentioned in the text of a document. Having
identified entities in the text of a document, NEL try to identify for an entity in a
document the same entity in a (specific) external source s.t. new entities and relations
from the externalsource might be used to associate new data to the document. We argue
that using external sources to enrich SCD sets with additional data ignores the corpus-
specific context and available SCDs associated with other documents in the corpus as
well adds additional data related to NEs mentioned in the text of a document.
In this chapter, we present an approach enriching sparsely and weakly annotated doc-

uments with additional SCDs associated with related documents within the same corpus.
We assume that associating a document with SCDs from other documents of the same
corpus might add a value for the tasks of an agent, since a corpus represents a specific
context resulting in context-specific SCD enrichment. We introduce two similarities com-
paring documents from the same corpus with each other to decide if two documents are
somehow related. The first similarity, denoted as D-similarity, estimates the similarity
between two documents using the textual content of both documents. The second sim-
ilarity, denoted as T-similarity, compares two documents at the SCD-level. To enrich
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sparsely and weakly annotated documents with SCDs associated with documents from
the same corpus we introduce an unsupervised EM-like algorithm using a combination of
both, the D- and T-similarity. First, the algorithm identifies for a document the set of re-
lated documents. Second, the algorithm assigns each SCD a document-specific Expected
Relevance Value (ERV) representing the relevance of an SCD for the document.

5.1 Similarities

In this section, we introduce the D-similarity and T-similarity. The D-similarity estimates
the similarity between two documents based on both per-document topic probability
distributions. The T-similarity between two documents results from the matching SCDs
associated with both documents.

5.1.1 D-Similarity

As described in Section 2.2, ML-based text-mining approaches denoted as topic models
try to identify hidden semantic structures within the text of documents relating a set
of observed multivariate variables to a set of hidden classes. A document can be rep-
resented in a corpus using a corpus-specific document-topic probability distribution θ.
The D-similarity is based on the idea of topic models and compares the similarity of two
documents by their document-topic probability distributions.
We use LDA, introduced in Section 2.3, to calculate a corpus-specific topic model and

calculate for each document d ∈ D the corresponding document-topic probability distri-
bution θd. The document-topic probability distribution θd of document d is represented
as a topic vector.
We define the D-Similarity between document de and dk, both documents from the

same corpus by:
SimD(de, dk) = 1−H(θde , θdk), (5.1)

where H(θde , θdk) estimates the Hellinger distance between the document-topic proba-
bility distribution of de and document-topic probability distribution of dk. The interval
of D-similarity SimD(de, dk) follows directly from the definition of the Hellinger distance
s.t. SimD(de, dk) ∈ [0, 1]. The higher the D-similarity between two documents de and dk
the more similar the document-topic probability distributions of both documents. If the
D-similarity SimD(de, dk) of de and dk is high it follows that both documents contain
similar content, since each topic is represented by a specific word probability distribution
over the vocabulary VD. We assume that associating SCDs of document dk to document
de might add a value for the task of an agent.
Comparing two documents with each other using the D-similarity requires both doc-

uments to have the same underlying topic model. Generally, we can estimate a topic
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model from all documents in a corpus. But, how to compare the document-topic proba-
bility distributions of two documents with each other using the D-similarity if document
d ∈ D and a new document d′ /∈ D?
The simplest approach is to add d′ to D and then estimate a new topic model from

all documents in the extended corpus. Afterwards, it is possible to compare documents
by their document-topic probability distribution. However, this approach is expensive
because generating a new topic model is time-consuming.
Thus, in Chapter 9, we describe different techniques to compare d ∈ D with d′ /∈ D

using the D-similarity without estimating a new topic model all the time a new document
occurs.

5.1.2 T-Similarity

The T-similarity works at SCD-level and identifies for a document de ∈ D a set of de-
related documents in corpus D based on an ERV of associated SCDs. For each document
d ∈ D exists an SCD set T (d) containing all SCDs associated with document d. As defined
in Definition 2.1.6, an SCD might be represented as a triple containing a subject (s),
predicate (p), and an object (o). We are interested in comparing two documents with
each other using their associated SCDs. Thus, we introduce the T-similarity representing
the similarity between two documents from the same corpus based on their associated
SCDs following the idea that semantically related documents share at least a subset of
SCDs or at least parts of SCDs like subject, object, or the relation between them.
First, we define a similarity function s(ti, tj) calculating a similarity score between two

SCDs ti and tj . We use the similarity function s(ti, tj) to compare the i-th SCD in T (de)
with the j-th SCD in T (dk) using the entities and relations to estimate a similarity score
in [0, 1]. The more similar two SCDs ti ∈ T (de) and tj ∈ T (dk) the higher the returned
value of similarity function s(ti, tj) ∈ [0, 1].
We define similarity function s(ti, tj) by:

s(ti, tj) =



0 if(si 6= sj ∧ pi 6= pj ∧ oi 6= oj)
1
3 if (si = sj ∧ pi 6= pj ∧ oi 6= oj)∨

(si 6= sj ∧ pi = pj ∧ oi 6= oj)∨
(si 6= sj ∧ pi 6= pj ∧ oi = oj),

2
3 if (si = sj ∧ pi = pj ∧ oi 6= oj)∨

(si 6= sj ∧ pi = pj ∧ oi = oj)∨
(si = sj ∧ pi 6= pj ∧ oi = oj),

1 if (si = sj ∧ pi = pj ∧ oi = oj)

(5.2)

The similarity function does not weight any part of an SCD and increases the similarity
value for each matching part between two SCDs. Generally, depending on the specific
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form of SCDs, the similarity function needs to be adopted.
Calculating the T-similarity between SCD set T (de) and SCD set T (dk) requires an

SCD-wise comparison of each SCD ti ∈ T (de) with all SCDs in T (dk) using the similarity
function s(ti, tj) for all ti ∈ T (de) and all tj ∈ T (dk).

MT =



t1 t2 t3 · · · tn

t′1 a1,1 a1,2 a1,3 · · · a1,n

t′2 a2,1 a2,2 a2,3 · · · a2,n
...

...
...

...
...

...
t′m am,1 am,2 am,3 · · · am,n

 (5.3)

MatrixMT (Expression (5.3)) is an m×n matrix, where m is the number of rows and
n is the number of columns. MT represents all possible similarity scores between SCDs
in T (de) and T (dk) where m = |T (de)| and n = |T (dk)|, such that ai,j represents the
similarity score for s(ti, tj), ti ∈ T (de), tj ∈ T (dk). Since, t1 ∈ T (de) does not necessarily
be the same SCD as t1 ∈ T (dk) we mark all SCDs associated with de with a dash. Hence,
we useMT to identify the best match for each SCD in T (de) and all SCDs in T (dk), and
vice versa.
Next, we define similarity vectors used to estimate the T-similarity between both SCD

sets using the values inMT

Definition 5.1.1 (similarity vector). We define the following two similarity vectors vc

and vr:
vc ∈ Rn with vcj = maxi ai,j representing a similarity vector containing for each SCD

in T (de) the highest possible similarity score with respect to the SCDs in T (dk) and
vr ∈ Rm, with vri = maxj ai,j representing the similarity vector containing for each

SCD in T (dk) the highest possible similarity score with respect to the SCDs in T (de).

Example 5.1.1 represents a calculation to estimate the similarity vectors vc and vr.

Example 5.1.1 (similarity vector). Let us assume we have an SCD set T (de) containing
SCDs t1, t2, and t3 and an SCD set T (dk) containing SCDs t′1, t′2, and t′3. Then, matrix
MT represents values from the similarity function defined in Expression (5.2).

MT =


t1 t2 t3

t′1
1
3

1
3

1
3

t′2
2
3

1
3

3
3

t′3
1
3

1
3

1
3

 (5.4)
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We estimate similarity vectors vc and vr using the similarity values in Expression (5.4):
Both vector vc and vr contain three entries. Vector vc contains the maximum of each
column and vr contains the maximum of each row.

vc1 = max{1

3
,
2

3
,
1

3
} =

2

3
vr1 = max{1

3
,
1

3
,
1

3
} =

1

3

vc2 = max{1

3
,
1

3
,
1

3
} =

1

3
vr2 = max{2

3
,
1

3
,
3

3
} =

3

3

vc3 = max{1

3
,
3

3
,
1

3
} =

3

3
vr3 = max{1

3
,
1

3
,
1

3
} =

1

3

Definition 5.1.2 (T-similarity). We use both similarity vectors vc and vr to calculate
the T-similarity which is defined by

SimT (T (de), T (dk)) =
1

2
· (vc + vr), (5.5)

where vc and vr represent the average value of similarity vectors taking the ratio between
high and low similarity scores into account such that two SCD sets T (de) and T (dk)
sharing only a small number of high similarity values and a high number of low similarity
scores for SCDs resulting in a small T-similarity for T (de) and T (dk), respectively. We
normalize SimT (T (de), T (dk)) to the interval [0, 1].

Example 5.1.2 (T-similarity). We use matrix MT from Example 5.1.1 and calculate
vc and vr resulting in:

vc =
2
3 + 1

3 + 1
3

3
=

4

9
vr =

1
3 + 3

3 + 1
3

3
=

5

9

Now, we can directly calculate the T-similarity between T (de) and T (dk) by:

SimT (T (de), T (dk)) =
1

2
· (vc + vr) =

1

2
· (4

9
+

5

9
) =

1

2

5.1.3 Expected Relevance Value

We use both, the D- and T-similarity to define the ERV for SCDs representing the
relevance of an SCD for a document an agent is interested in associating with additional
SCDs. We represent the set of all documents in D being related to document de by Dde
and use T (Dde) referring to the set of all SCDs associated with documents in Dde . For
each document d ∈ Dde we are interested in the ERV of its associated SCDs representing
the relevance of an SCD for document de. We define the ERV of SCDs to estimate only
those SCDs in T (Dde) having a high ERV.
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Definition 5.1.3 (Expected Relevance Value). The Expected Relevance Value of SCD
t ∈ T (Dde) is defined by:

ERV de
t = Sim

Ddet
· Sim

T det
· f(t), (5.6)

where Sim
Ddet

represents the average D-similarity of all documents in Dde being associ-
ated with SCD t, Sim

T det
represents the average T-similarity of all SCD sets associated

with documents in Dde containing SCD t, and f(t) represents the number of occurrences
of an SCD t associated with documents in Dde , denoted by T (Dde).
Since there are three terms in Expression (5.6) the following three settings yielding to

a high ERV of an SCD t.

(i) D- and T-similarity between document de and documents in Dde is high which
means the content of each d ∈ Dde might be similar to de, because the document-
topic probability distribution as well as the SCDs associated with both documents
is similar.

(ii) Many documents in Dde being associated with SCD t.

(iii) The frequency of an SCD t, since enriching the SCD set T (de) of document de with
SCD t associated with many other documents may add value, because the SCD
might be a generic SCD, or a very specific SCD for the de-related documents.

Definition 5.1.3 depends on the SCDs we are interested in and the specific task of an
agent using the SCDs, s.t. the ERV might be slightly adopted for the individual task of
an agent.
In the next section, we use both similarities and the ERV of SCDs to enrich documents

in a corpus that are only sparsely and weakly annotated.

5.2 Iterative SCD Enrichment Algorithm

We present an unsupervised and iterative SCD enrichment algorithm estimating addi-
tional SCDs for a document based on SCDs associated with related documents in the
same corpus. The algorithm is based on the famous EM-algorithm of Dempster et al.
(1977). Dempster et al. (1977) have introduced the EM-algorithm for estimating the
maximum likelihood of parameters handling unobserved variables alternating between
an expectation and maximization step, where the expectation step creates a function
for the expectation of log-likelihood using the present values for the parameters and the
maximization step calculates the parameters maximizing the expected log-likelihood in
the expectation step.
Algorithm 5 introduces an EM-like SCD enrichment algorithm enriching the SCD set

of a document with SCDs of related documents of the same corpus by the following three
steps:
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(i) Identifying for each document d ∈ D a set of related documents (Dd) using both,
D- and T-similarity, where the D-similarity estimates the similarity between two
documents using their document-topic probability distributions and the T-similarity
works at the SCD-level comparing SCDs.

(ii) Iteratively enriching the SCD set of documents in corpus D with additional SCDs
associated with related documents.

(iii) Annotating new and unseen documents using the SCDs associated with related
documents, and vice versa.

The input parameters of Alg. 5 are: (i) document de, (ii) the corresponding SCD set
T (de), (iii) corpus D \ {de}, and (iv) D-similarity selection threshold τ .
The output of Alg. 5 is an enriched SCD set for document de represented as T ′(de).

Using the E-set and M-step, Algorithm 5 adds only SCDs with high ERV to the SCD
set T ′(de) and ignores SCDs with low ERV.

Expectation step. For document de the expectation step in Alg. 5 identifies all related
documents (Dde) based on the average T-similarity (SimT de ) of documents in D and the
D-similarity between new document de and each documents in D. Additionally, Alg. 5
estimates for each SCD t, associated with the de-related documents, the corresponding
ERV (ervt) using Expression (5.6).

Maximization step. In the maximization step, Alg. 5 calculates a new average T-
similarity SimT de (line 17) optimizing the ERVs for SCDs in the next expectation step
after expanding the SCD set associated with de with SCDs associated with related doc-
uments. The average T-similarity of all SCDs is part of the termination condition in
line 5.
Algorithm 5 enriches SCD sets in a corpus-controlled fashion and terminates for each

ε ∈ R+ and a finite set of documents in D.
Let ε be greater than zero and D be a finite set. Then, Alg. 5 terminates if the

condition in line 6 is not fulfilled anymore. In the M-step, Alg. 5 updates the average T-
similarity SimT de . This approach prunes the solution space for the next iteration because
the new average T-similarity leads to a more stringent condition in line 10 compared to
the previous iteration. In each iteration Dde represents the set of documents such that
T (Dde) contains only SCDs having a T-similarity greater than the average T-similarity.
In each iteration we optimize the SCDs in T (Dde) calculating for each of the SCDs a new
ERV. Hence, the algorithm extends T ′(de) only with SCDs best describing the content
of de.
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Algorithm 5 Iterative SCD Enrichment
1: function IterativeSCDEnrichment(de, T (de), D, τ)
2: Input: document de, SCD set T (de), corpus D, threshold τ
3: Output: Enriched SCD set T (de)

4: Define: ε = 0.1 , Dde
, D′de , T (Dde

), T ′(de)
5: Initialize: SimTde = ε, Sim′

T = SimTde − ε
6: while |SimTde − Sim′

Tde
| ≥ ε and SimTde >Sim′

T do
7: Dde ← ∅ . E-Step
8: for each dk ∈ D \ {de} do
9: if SimD(de, dk)>τ and SimT (T (de), T (dk))>SimTde then

10: Dde
← Dde

∪ {dk}
11: for each t ∈ T (Dde

) do
12: ervde

t ← ERV de
t

13: for each t ∈ T (Dde
) do

14: if ervde
t > ervde then

15: T (de)← T (de) ∪ {t}
. M-Step

16: Sim′
Tde

= SimTde

17: SimTde =

∑|Dde
|

k=1 Sim
Tde (T (de),T (dk))

|Dde |

18: return T (de)

Complexity. The complexity of Alg. 5 depends only on the number of documents in the
corpus D (D) and the number of SCDs in T (D) (m). For each document d ∈ D we are
interested in enriching its SCD set with SCDs from the SCD set of related documents.
Algorithm 5 estimates for each document the set of related documents using the D- and
T-similarity and extends T (de) only with the most similar SCDs in T (Dde) instead of
enriching T (de) with all SCDs associated with the de-related documents. This step is
important to reduce the number of SCDs in T (de) adding no value to the task of an agent.
The worst case complexity for calculating for each document d ∈ D both similarities is
in O(m2D) (line 9). Enriching SCD set T (d) for each document d in D (line 11 to 12)
has worst case complexity O(m2D2).

Algorithm 5 calculates for D − 1 documents the D-similarity SimD(de, dk) and T-
similarity SimT (T (de), T (dk)), where the D-similarity has a complexity O(1) given the
document-topic probability distributions in D. The constant complexity is given by the
number of K multiplications of discrete document-topic probability distributions in the
D-similarity. T-similarity has a worst case complexity of O(m2) because it is theoretically
possible that T (de) and T (dk) might contain all SCDs in T (D).

In practice, the document-specific SCD set contains only few SCDs having a relation to
the content of the related document. Hence, each T (di) is small and |T (di)| << m. Ad-
ditionally, for each t in T (Dde) Alg. 5 calculates the ERV in constant time O(1) (line 12).
Afterwards, Alg. 5 filters all SCDs having an ERV less than the average ERV ERV

de
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(line 14 to 15). For both steps, the algorithm iterates over T (Dde) having a theoretically
size of m SCDs. This leads to complexity O(m).
Hence, worst case complexity for calculating the SCDs for each document in a corpus

is given by O(m2D). In total, Alg. 5 has a worst case complexity for estimating the
SCDs of one document of O(D2m2) . Using Alg. 5 for each document in D to update
the document-specific SCDs leads to the complexity O(D3m2).
However, in practice the number of documents dk ∈ D (D′), being similar to document

de, is small (D′ � D) and the rank of the similarity matrix MT (m′) is small, too
(m′ � m). Additionally, the number of iterations for each document is only a fraction
of D (see Section 5.3).

5.3 Case Study

In this section, we present empirical results of the introduced corpus-driven document
enrichment approach enriching sparsely and weakly annotated documents in a corpus
with additional SCDs associated with related documents of the same corpus.
Generally, we might generate corpora by collecting documents we are interested in.

However, the free Wikipedia encyclopedia already contains so called lists representing a
collection of documents for specific subjects. So, in this case study we use the following
three corpora, each containing documents from lists of Wikipedia:

• Dataset 1 (BMW): Documents related to cars from BMW.

• Dataset 2 (Mercedes): Documents related to cars from Mercedes.

• Dataset 3 (US): Documents from US universities and institutions.

More details about the documents we use in each dataset are available in Appendix B.
Corpus D contains for each dataset a set of documents from Wikipedia and each doc-

ument represents one article from Wikipedia. Additionally, we use DBpedia (Lehmann
et al. (2014)) to add data to the SCD set associated to each document in D. The data
in the so called KB from DBpedia is extracted in a crowd-sourced community effort and
mostly about structured content like infoboxes and tables within the Wikpedia articles.
This means if document de contains text from the article car then it follows that T (de)
contains the corresponding data of entity car from the DBpedia KB.
The goal of the corpus-driven SCD enrichment algorithm is identifying additional SCDs

for a document d ∈ D that might add a value for the task of an agent. We assume that the
data available in DBpedia is a good starting point to describe the content of Wikipedia ar-
ticles, because DBpedia contains data extractable from structured content like infoboxes
and tables within the Wikpedia articles. Obviously, we might use any information ex-
traction system as a starting point to obtain content descriptions directly extractable

69



Chapter 5 Corpus-Driven Document Enrichment using SCDs

from the Wikipedia articles. However, the data from DBpedia have a high quality and
we are able to use them directly from the DBpedia KB instead integrating third party
software. Next, we give a brief overview of the preprocessing steps for Wikipedia articles
including details about the hyperparameters for the D- and T-similarity.

5.3.1 Data Preprocessing

We implement Alg. 5 and use the MALLET library, introduced by McCallum (2002), for
topic modeling with the following parameters: (i) α = 0.01, (ii) β = 0.01, and (iii) 1000
iterations for the model in library MALLET. We analyze the performance of Alg. 5 using
different settings for the number of topics within a topic model (k = 5, 10, 20, 30) to
identify the impact of parameter k, representing the number of topics within the model.
Generally, the number of topics within the topic model leading to best results is highly
dependent on the documents in corpus D.
MALLET can be used to preprocess all text documents in corpus D by: (i) lowercasing

all characters, (ii) stemming words, (iii) tokenizing the result, and (iv) eliminating tokens
part of a stop-word list which contains 524 words.
All documents in each corpus, represented by each dataset, require additional prepro-

cessing using the following steps:

(i) Analyzing the data in each SCD set and marking SCDs occurring in at least two
SCD sets of two different documents such that Alg. 5 can theoretically enrich the
SCD set T (de) of document de with correct SCDs meaning that even if we remove
some SCDs from T (de), Alg. 5 has a chance to identify those removed SCDs within
at least one SCD sets of another document in D.

(ii) The second step is about test set generation and contains two sub-steps: (a) Choose
one document de ∈ D and remove 90% of SCDs (r = 0.9) in the corresponding SCD
set T (de) by removing 90% of SCDs which are associated with at least one other
document in D and removing 90% of SCDs which are only available in T (de).
(b) Generating |D| different corpora D1 to D|D|, each containing |D|−1 documents
and generating for each of the |D| different corpora a new topic model.

(iii) Inferring the document-topic probability distribution for document de using param-
eters of the corresponding topic model from documents D \ {de} generated in the
second step. Inference bases on the folding in Gibbs sampling technique. Topic
probability distribution θde of document de enables us to compare document de
with other documents from the same corpus using the D-similarity.

Next, Alg. 5 estimates for each document de the SCDs in T (Dde) associated with de-
related documents and iteratively enriches each SCD set T (de) with SCDs associated
with other documents in Dde \ {de} having a high ERV. Alg. 5 is performed |D| times to
use each of the generated corpora.
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5.3.2 SCD Enrichment

The following four steps are performed to enrich SCD set T (de) of document de with
data from de-related documents:

(i) Estimating the document-topic probability distribution θde of document de.

(ii) Identifying de-related documents based on D- and T-similarity.

(iii) Generating a set Dde containing all de-related documents.

(iv) Calculating the Expected Relevance Value for each t ∈ T (Dde) with respect to de.

Afterwards, Alg. 5 optimizes the SCD set T (d) for each d ∈ D by enriching the SCD set
with new SCDs associated with related documents from the same corpus.
First, we evaluate the performance of Alg. 5 using the following three measures: (i) True

Positive Rate (TPR),(ii) Positive Predictive Value (PPV), and(iii) F-measure.
Second, we analyze the required number of iterations in Alg. 5 yielding to the optimal

SCDs for each document.

Number of topics. As we have assumed, the performance of Alg. 5 highly depends on
the number of topics we use in the topic model for the corpus and the optimal number
of topics leading to best results depends on the documents representing the corpus. For
datasets BMW and Mercedes, Alg. 5 has best results using 30 topics. Interestingly, for both
datasets the SCD performance using only 5 topics varies only slightly from the results
using 30 topics. For dataset US, we have best results using k = 30 and a D-similarity
selection threshold between 0.01 and 0.25. For higher D-similarity selection thresholds,
a number of 5 topics results in a better performance.

Similarities. Identifying de related documents using the T-similarity compares the doc-
uments on the SCD level using SCDs in the SCD set. Figure 5.1 presents the influence
of both similarities, the D-similarity (Fig. 5.1a) and T-similarity (Fig. 5.1b), within the
SCD enrichment process for the BMW dataset. Algorithm 5 identifies for the dataset the
possible number of SCDs using a T-similarity selection threshold which is at most using
a T-similarity between 0.0 and 0.6. Additional plots are available in A.1.
Figure 5.2 presents the number of iterations for all documents in the three datasets

having a fixed D-similarity (SimD = 0.25) and fixed number of topics (k = 30), consid-
ering only those documents fulfilling the condition in line 5 of Alg. 5 at least once. The
median for all three datasets is less or equals five iterations meaning that Alg. 5 quickly
reaches a fixpoint and terminates.
Next, we analyze the performance of Alg. 5 for varying D-similarity selection thresh-

olds. Figure 5.3 presents the performance for all three datasets using the following
parameters: k = 30, r = 0.90, ε = 0.01, SimT de = 0.1. The TPR increases for all
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(a) Influence of D-Similarity identifying SCDs for documents in BMW (lines), Mercedes (dashed),
and US (dotted).
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(b) Influence of T-similarity identifying SCDs for documents in all three datasets.

Figure 5.1: Influence of D- and T-similarity in identifying SCDs.

datasets up to a selection threshold of 0.7 while PPV is slightly decreasing at the same
time. F-Base is the baseline representing F-measure of random guesses.

The PPV in Fig. 5.3 increases with increasing D-similarity threshold for all three
datasets. The TPR seems to be low, but the reason for the low Positive Predictive
Value is the data used as ground truth. Algorithm 5 enriches the SCD set of documents
with SCDs from related documents which are not part of the documents corresponding

72



5.3 Case Study

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

It
er
at
io
n
s

T-Similarity Selection Threshold

Figure 5.2: Number of necessary iterations for documents in dataset BMW until Alg. 5
reaches a fixed point, depending on different input values for the T-similarity.

DBpedia entry. Associating SCDs with a document which are not part of the SCD set we
use as ground truth leads to a high number of false negative SCDs within the evaluation.
However, we are interested in enriching documents with SCDs adding a value for the
task of an agent the SCD set of a document and we are not interested in associating only
SCDs to an SCD set of a document resulting in exactly the same SCDs available in the
DBpedia KB, since DBpedia ignores the task of an agent and the individual collection of
documents. Generally, it is not possible to have only one correct set of subjective content
descriptions for a document, even if two different human experts would annotate the same
document. One reason is given by the different tasks of different annotators annotating
a document and another reason is given by the different background knowledge of both
experts. Thus, only a subset of false negative SCDs might add no value for the task of
an agent working with a set of documents.

5.3.3 Associative Subjective Content Descriptions

Algorithm 5 enriches the SCD set of documents with SCDs associated with related doc-
uments. After performing Alg. 5, we have identified SCDs describing the content of the
corresponding documents but are not available in DBpedia. We denote those kind of
SCDs as associative SCDs. Thus, associative SCDs describe the content of a document,
but the SCDs not linked to the corresponding entity in DBpedia’s KB acting as ground
truth in this case study. Obviously, associative SCDs have a relation to the content of
documents and enrich SCD sets with possibly valuable SCDs based on the set of docu-
ments within a given corpus. Table 5.1 presents some SCDs identified by Alg. 5 which
are not extractable by DBpedia’s KB for entities M41, 1_Series, Z3, and M_Roadster.
However, some of the SCDs are suitably content descriptions for the corresponding

documents and represent associative SCDs. In the evaluation of Alg. 5, we mark asso-
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Figure 5.3: Performance depending on D-similarity for k=30, r=0.90, ε=0.01, SimT de =
0.1. F-Base represents the F1-score for randomly guessing possible SCD for the SCD set
for the corpus containing documents relating to the car brand BMW.

ciative SCDs as false positive SCDs, because they are not in the data acting as ground
truth. However, a large number of false positive SCDs represent associative SCDs adding
a value for different tasks of an agent, since the SCDs describe the documents’ content.
Thus, the results would have been better in practice if human experts had rated the
added value of each SCD, but generally, we are not interested in generating the same
data available in DBpedia, since we involve the goal of an agent within the enrichment
process.

doc_17484 doc_7071
M41,subject,Category:BMW_vehi. Z3,hypernym,Car
M41,hypernym,Car Z3,hypernym,Engine

Z3,configuration,Diesel_engine
doc_3407 doc_45969
1_Series,subject,Cat.:Roadsters M_Roadster,bodyStyle,Coupe
1_Series,conf.,Diesel_engine M_Roadster,hypernym,Car
1_Series,hypernym,Engine M_Roadster,hypernym,Engine

M_Roadster,subject,cat:1960s_auto.

Table 5.1: Example of identified SCDs in BMW using Alg. 5.
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BMW Z3 The content of document de (doc_7071 ) describes the two-seat convertible
and coupe Z3 from car manufacturer BMW. Algorithm 5 enriches the SCD set T (de) with
SCDs (BMW_Z3, hypernym, Car), (BMW_Z3, hypernym, Engine), and (BMW_Z3,
configuration, Diesel_engine). Obviously, the model Z3 is a car, but the authors of the
article do not explicitly write that BMW Z3 is a car even though the word car occurs 8
times in document de. Enriching SCD set T (de) with SCD (BMW_Z3, hypernym, Car)
is beneficial for people searching for car models manufactured by BMW.
The other two associative SCDs (BMW_Z3, hypernym, Engine), and (BMW_Z3,

configuration, Diesel_engine) add a value to document de, too. The engine of all BMW
Z3 models requires fuel and there exists no original BMW Z3 model with a diesel engine.
Associative SCD (BMW_Z3, configuration, Diesel_engine) is wrong if we think about
available Z3 configurations having an original engine. However, enriching SCD set T (de)
with SCD (BMW_Z3,configuration, Diesel_engine) adds value to the task of an agent
offering a document retrieval service, since people searching for the Z3 model containing
a diesel engine might receive document doc_7071 because of the new SCD. It follows
that those people and can directly extract the information from the document’s content
that there exist no original Z3 model with a diesel engine.

BMW Series 1 The content of a second document d′e (doc_3407 ) describes the Series 1
from BMW. Some models of this Series have a diesel engine. The authors of document
d′e mention three times the word diesel in the text but the corresponding DBpedia KB
does not contain SCD (BMW_1_Series, configuration, Diesel_engine). However, Alg. 5
enriches T (d′e) with the associative SCD that is again beneficial for an application like
document retrieval and query answering.

BMW Roadsters Algorithm 5 enriches (BMW_1_Series, subject, Category: Road-
sters) to the SCD associated with doc_3407. This SCD only imprecisely describes the
BMW 1 series. All cars from this Series have four seats and some of the cars are con-
vertible. A short definition of a roadster is the following: open two-seat cars of sporting
appearance or character. We assume that Alg. 5 enriches T (d′e) with this SCD, because
the text in de is similar to some other documents being from category roadsters. There are
models in this series which are convertibles and the associative SCD (BMW_1_Series,
subject, Category: Roadsters) might be useful for people searching for convertibles from
BMW, because many people use roadster and convertible interchangeable.

BMW M41 Engine The content of document doc_3407 describes the M41 injection
Diesel engine produced from 1994 through 2000. Obviously, an engine is no hypernym
for a car and is no vehicle. Thus, both SCDs associated with doc_3407 represent false
positive SCDs.
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Chapter 6

Identifying Subjective Content
Descriptions within Texts

So far, we have assumed that SCDs and documents are separate or at least clearly distin-
guishable. However, an agent in pursuit of new documents may come across documents
where normal document text, i.e., content, and textual content descriptions, i.e., SCDs,
are interleaved. An agent could go through the text and identify the SCDs manually or
create a parser that separates the SCDs from the content by specifying rules for distin-
guishing content and SCDs. However, both approaches are cost-intensive and laborious,
and require intimate knowledge about content and SCDs of documents.
A special class of documents are represented by historical-critical editions representing

an addition to the original text of documents, where (different) philologists add expla-
nations, e.g., add data about the original text or data somehow related to the text.
A historical-critical edition presents text that is as authentic as possible and has been
cleared of errors and the text represent original content interleaved by textual content
descriptions.
Let us assume that an author has written a poem in the 1st century after Christ.

Different philologists might have added explanations to the original poem to explain
the genesis of the text. So, one philologist might have added some explanations in
the 6th century, another philologists might have added further explanations in the 14th

century, and further explanations might have been added in the 19th century by two other
philologist. A historical-critical edition is not only a combination of all explanations but
represents a reliable basis for academic study of the original text cleared of errors (Plachta
(1997)).
An agent with knowledge about the original poem can distinguish poem and comments

within a historical-critical edition. The first problem we tackle in this chapter is that of
automatically identifying inline SCDs (iSCDs) within texts. We turn to the agent’s cor-
pus containing documents to solve the problem of identifying inline SCDs within texts.
Assuming that the unknown document with iSCDs is of the same context as the docu-
ments in the corpus, we can use the corpus-specific SCDs-word probability distribution
to distinguish between content and SCDs. The SCD-word probability distribution allows
for computing most probably suited MPSCDs for the unknown document based on the
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similarity between words in a document and words usually occurring with an SCD. If
the words belong to the content, we expect that an agent can identify a corresponding
MPSCD with a high similarity value. If the words belong to an SCD, which we assume
has a different composition of words occurring together, we expect that the similarity
value of the MPSCD is low. Based on these expectations, we set up an HMM where the
hidden state variable encodes if a word sequence belongs to content or SCDs and the
observation sequence consists of discretized similarity values. Given this setup and the
existing corpus, the agent can train an HMM and then compute a most-likely sequence of
hidden states using the Viterbi algorithm to identify the iSCDs within texts. Once iSCDs
are identified, the agent can use them for further purposes, e.g., translating content and
comments.
The second problem we tackle in this chapter is that of context-specific translation

of content and SCDs for humanities working with historical-critical edition. Different
dictionaries are necessary to extract the sense of a word, since the sense of a word might
change over time and content and SCDs are often from different centuries. Assuming
that an agent has translations for a set of documents, we can create dictionaries s.t. each
dictionary contains for each word exactly one context-specific translation. For a new
document with content and iSCDs identified, we present a context-specific dictionary
selection approach based on n-grams, i.e., sequences of n neighboring words, to identify
the best suited dictionary for the content and for textual content descriptions.
Specifically, the contributions of this chapter are:

(i) an approach to identifying iSCDs within texts based on an HMM, and

(ii) an approach to identifying a suitable dictionary for content and iSCDs.

Additionally, we present a case study based on real-world and simulated data to eval-
uate the performance of both approaches we introduce in this chapter.

6.1 Identifying Inline SCDs

This section introduces the problem of identifying textual SCDs that are interleaved with
content text in a document and presents an HMM-based approach solving the problem.
We refer to SCDs that are interleaved with the text of a document as iSCDs and to the

remaining text as content. Given this new setting, we introduce iSCDs into our notation.

• An iSCD t is a sequence of words (s1, . . . , sn), n ∈ N, si ∈ VT (D) that is associated
with the sequence of words exactly preceding t in d.

• Next to the vocabulary VD of corpus D, there is a vocabulary VT (D) of the words
occurring in the (inline) SCDs t in T (D). The words of both vocabularies may
overlap.
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• A document d is represented as a sequence of words from VD and VT (D) with
subsequences of words from VD and subsequences of words from VT (D) alternating,
where the latter is associated with the preceding window of words. Further SCDs
may be located throughout d.

6.1.1 Inline SCD Detection Problem

The problem at hand consists of an agent being faced with a document containing content
in the form of text and textual SCDs and no markers or way inherently available to
distinguish the two. An important task of an agent is to identify iSCDs within text s.t.
the agent can (i) reconstruct the content of a document containing iSCDs, and (ii) use
the located iSCDs, e.g., to identify similar documents within the corpus.
Problem 6.1.1 introduces the inline SCD problem and Example 6.1.1 illustrates the

problem using a short text.

Problem 6.1.1 (Inline SCD Problem). An agent does not know which subsequences of
words belong to content and which belong to iSCDs for a document d = (wd1 , . . . , w

d
D), wdi ∈

(VD ∪ VT (D)).

Example 6.1.1 (Inline SCD Example). Assume that a new document d /∈ D contains
the following sentence with two iSCDs:

“David Blei professor at Columbia University received the ACM Infosys Foundation
Award renamed in the ACM Prize in Computing in 2013.”

For illustration purpose, the two iSCDs are underlined here. Note that the highlight-
ing is not available in the original document. An agent is faced only with the word
sequence and has to decide which words represent iSCDs. The problem is simple if the
two vocabularies for iSCDs and content do not overlap but the problem becomes increas-
ingly harder the more the two vocabularies share words and those words have similar
frequencies regarding occurrences.

We can formalize the inline SCD detection problem as a classification problem namely
estimating the corresponding category for each word in a sequence of words. In our
setting, we have two categories. One category represents the subsequences in d that are
not part of an iSCD, i.e., content, and another category represents the subsequences in
d belonging to an iSCD.

6.1.2 General Procedure

To solve the inline SCD detection problem introduced in Problem 6.1.1, we work with
two assumptions about corpus D and a new document d containing content text and
iSCDs:
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(i) Document d belongs to the same context as D.

(ii) Vocabulary VD differs at least slightly from VT (D).

Given the first assumption, we can use SCD-word probability distribution δ(D) for d as
well. Given the second assumption, δ(D) works well for estimating MPSCDs for content
words and less well for iSCDs words. Estimating MPSCDs for d using a sliding window,
we expect the following behavior: The MPSCD similarity value for a window over an
iSCD should be significantly smaller than the MPSCD similarity value for a window over
content. We can train an HMM with this behavior to solve Problem 6.1.1. Specifically,
we need to perform the following steps:

(i) Estimate δ(D) for D using Alg. 1 (offline).

(ii) Train an HMM for classifying whether a word belongs to the category “content” or
the category “iSCD” (offline).

(iii) For each new document d:

(a) Estimate the MPSCD sequence over a sliding window along the words of d
using δ(D).

(b) Compute the most probable sequence of states S in the HMM given the se-
quence of similarity values of the MPSCD sequence as evidence and identify
the words in d that belong to category “iSCD” given S.

The following sections present in detail how to estimate the MPSCD similarity value
sequence and classify iSCDs using an HMM.

6.1.3 Estimating a Sequence of MPSCD similarity values

Given a corpus D containing documents associated with a set of location-specific SCDs,
we can generate a corpus-specific SCD-word probability distribution δ(D) using Alg. 1.
Based on δ(D), Alg. 6 allows for calculating a sequence of MPSCDs similarity values
for d by sliding a window (wind,ρ) of size σ over the words in d. Initially, the sliding
window contains the first σ words (wd1 , ..., w

d
σ). Then, we shift the window over the

sequence of words in d by removing the first word (wd1) and extending the window with
the word wdσ+1. We repeat this shifting operation until the end of the document, with
the last window containing (wd(D−σ), ...w

d
D). For the sequence of words in each wind,ρ,

Alg. 6 calculates the MPSCD t and corresponding similarity value sim. Specifically,
Alg. 6 builds a vector representation δ(wind,ρ) for the sequence of words in wind,ρ and
compares the vector with the vector representation of all SCDs in δ(D) using the cosine
similarity. Example 6.1.2 describes the sliding window behaviour and what similarity
values might look like using an example setup.
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Algorithm 6 Estimating MPSCD sequence
1: function estimateMPSCDsequence(d, σ, δ(D))
2: Input: Document d, window size σ, SCD-word distribution δ(D)
3: Output: W: Triple set containing SCDs (t) with similarity values (sim) and

window position (wind,ρ)
4: W ← ∅
5: for ρ← σ

2 ; ρ ≤ #word(d); ρ← ρ+ 1 do
6: Set up wind,ρ of size σ around ρ with t = ⊥
7: δ(wind,ρ)← new zero-vector of length V
8: for each word w ∈ wind,ρ do
9: δ(wind,ρ)[w] += I(w,wind,ρ)

10: t← arg maxi
δ(D)[i]·δ(wind,ρ)
|δ(D)[i]|·|δ(wind,ρ)| in wind,ρ

11: sim← maxi
δ(D)[i]·δ(wind,ρ)
|δ(D)[i]|·|δ(wind,ρ)|

12: W ←W ∪ (t, sim,wind,ρ)

13: return W
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Figure 6.1: Sliding window of size σ = 9 sliding over document d. Words wd9 to wd13
represent an iSCD, accompanied by corresponding similarity values on the right.

Example 6.1.2 (Sliding Window and Similarity Values). Figure 6.1 illustrates the be-
havior of a sliding window wind,ρ for the first 20 words wd1 to wd20 in d with a win-
dow size σ of 9, starting with window wind,wd5

= (wd1 , ..., w
d
9) and ending with window

wind,wd16
= (wd12, ..., w

d
20). In this example, the words w9 to w13 represent an iSCD and

are colored red. Sliding the window from left to right the number of words corresponding
to content and SCD changes.
Figure 6.1 also shows the sequence of MPSCD similarity values on the right (black bars)

for each window depicted to the left. We have a sequence of twelve MPSCD similarity
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values for the corresponding twelve windows, given by:

(0.8, 0.7, 0.6, 0.4, 0.2, 0.18, 0.24, 0.22, 0.22, 0.4, 0.54, 0.7)

In the first window wind,wd5
, only word w9 belongs to an iSCD. Shifting the window to

the right results in a second word belonging to the iSCD. The more words belong to an
iSCD, the lower the corresponding window’s MPSCD similarity value gets. The reason
why the MPSCD similarity value gets lower the more words belong to an iSCD is the
difference in the vocabularies for content and iSCDs.

As shown in Fig. 6.1, iSCDs yield a specific pattern in the sequence of MPSCD simi-
larity values: Similarity values first decrease, when the sliding window slowly moves into
the iSCD, plateau, when the sliding window is squarely in the iSCD, and then increase
again, with the sliding window moving out of the iSCD. Next, we present an approach
to solve Problem 6.1.1 by identifying iSCDs in d using an HMM trained of sequences of
MPSCD similarity values.

6.1.4 Estimating iSCDs

We use an HMM to identify iSCDs using the sequence of MPSCD similarity values in d.
Using a set of documents containing located SCDs, we can calculate MPSCDs and their
corresponding similarity values to train an HMM on this information using the Baum-
Welch algorithm. The discrete observation alphabet ∆ requires discretizing similarity
values. A discretization function f : [0, 1] 7→ ∆ maps a MPSCD similarity value (x) to
one of the m symbols in ∆. The specific discretization depends on the agent’s task and
can be adapted to each problem individually.
To solve Problem 6.1.1, we have to find the most likely sequence of states in an HMM

λ, given a sequence of MPSCD similarity values W. Algorithm 7 describes the workflow
for identifying iSCDs based on such a sequence of similarity values W over the windows
in d. First, Alg. 7 calculates the most likely state sequence by applying the discretization
function f on the similarity values inW, yielding an observation sequence O for λ. Then,
it calculates the most likely sequence of states S in λ given O using the Viterbi algorithm,
which makes use of the dynamic programming trellis for computing the most likely state
sequence S for an observation sequence O. Given S, Alg. 7 reconstructs the iSCDs
by identifying the windows behind those states in S that are equal to s2 (“iSCD”) and
marking the words in each corresponding window as an iSCD. Example 6.1.3 illustrates
estimating the most likely sequence of states using the Viterbi algorithm for MPSCD
similarity values resulting from the twelve windows shown in Example 6.1.2.

Example 6.1.3. Let us assume that Alg. 6 yields the following MPSCD similarity values
for the 12 windows in Example 6.1.2, as shown in Fig. 6.1:

(0.8, 0.7, 0.6, 0.4, 0.2, 0.18, 0.24, 0.22, 0.22, 0.4, 0.54, 0.7)
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Algorithm 7 Estimating iSCDs using MPSCD similarity values and a trained HMM
1: function estimateISCDs(λ, f , W, d, σ)
2: Input: HMM λ, discretization function f , similarity values W, document d,

window size σ
3: Output: SCDs T (d)
4: O ← ()
5: for each similarity value sim ∈ W do
6: O ← O ◦ f(sim)

7: S ← Viterbi(λ, O) . Compute the most likely state sequence
8: T (d)← ∅
9: for each i, state ∈ S do . Iterate over S, maintain an index i
10: if state = s2 then . s2 corresponds to “iSCD”
11: t← (wdi , . . . , w

d
i+σ)

12: T (d)← T (d) ∪ t
13: return T (d)
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Figure 6.2: Trellis corresponding to the MPSCD sequence of Example 6.1.2.

Using the following function for discretization

f(x) =


yl 0 ≤ x < θ1

ym θ1 ≤ x < θ2

yh θ2 ≤ x ≤ 1,

(6.1)

where θ1 = 0.3 and θ2 = 0.7, we get the following observation sequence:

O = (yh, yh, ym, ym, yl, yl, yl, yl, yl, ym, ym, yh)

Let the corresponding state sequence in the trained HMM be given by

S = (s1, s1, s1, s1, s1, s1, s2, s1, s1, s1, s1, s1).

Figure 6.2 represents the trellis of the observation sequence O, where the thick arrows
indicate the most probable transitions between the states and the dotted lines represent

83



Chapter 6 Identifying Subjective Content Descriptions within Texts

all possible state transitions. The hidden iSCD is at position win7, which corresponds
to window wind,ρ with ρ = 7 + b92c = 11. The identified window contains the words
(wd9 , . . . w

d
13), which make up the iSCD in the example.

Correctness By identifying the word sequences that are most probably iSCDs, we au-
tomatically identify which words belong to iSCDs and which words belong to content.
Therefore, we solve Problem 6.1.1 by not only providing which subsequences are iSCDs
but providing those that are most probable given the underlying HMM, which makes
the quality of the solution to a specific instance of the problem optimal in the sense that
given the probabilistic fundamentals of our approach, this calculated solution is the one
leading to the highest probability.

6.2 Context-specific Dictionary Selection

In the last section, we have presented an HMM-based approach to identifying iSCDs
within texts. In this section, we introduce the problem of selecting a suitable dictionary
to translate both, iSCDs and content. Additionally, we present an approach to solve the
problem by automatically selecting suitable dictionaries.

6.2.1 Dictionary Selection Problem

A person interested in translating words in a document has to decide on a dictionary
for unknown words to select a suitable translation. Generally, there is no single transla-
tion for a word since the translation of a word depends on the specific context. Again,
let us consider historical-critical editions representing poems as content and iSCDs as
comments. Translating text from a historical-critical edition is non-trivial since the edi-
tion contains text written from different authors at different times. So, using a single
dictionary to translate the text of a historical-critical edition might lead to non-optimal
translations because a single dictionary ignores the fact that a poem has been enriched
with additional descriptions at different points in time. Thus, an agent might be inter-
ested in selecting the k best suited dictionaries for a poem and each identified iSCD, s.t.
e.g., humanities can the best suited dictionaries to translate the document.
Generally, the dictionary selection problem asks for the top-k dictionaries for a se-

quence of words (w1, . . . , wj) representing the poem or an iSCD, given J corpora {Di}Ji=1

each containing a set of documents and their corresponding translations. Mathematically,
we can describe the problem as follows:

arg max
dict1,...,dictk∈Dict

P (dict1, . . . , dictk|(w1, . . . , wn), {Di}Ji=1) (6.2)
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Algorithm 8 N-gram-based Dictionary Selection

1: function selectDictionary(n, {Di}Ji=1, seq)
2: Input: length of n-gram n, set of corpora {D}Ji , word sequence seq
3: Output: suitable dictionary: dict
4: vseq ← n-gram-frequency of seq
5: s← 0
6: dict← empty
7: for each corpus D ∈ {Di}Ji=1 do
8: vD ← corpus-specific n-gram-frequency
9: sim← vD·vseq

|vD|·|vseq |
10: if sim > s then
11: dict← dict(D)
12: s← sim
13: return dict

6.2.2 Dictionary Selection Approach

A sequence of words in a historical-critical edition might represent the original poem or
an iSCD. Generally, for a word different translations exist and for a human a suitable
translation is only possible if the corresponding context is available. For a new document
containing only words and no SCDs, we can represent the context of each word by its
neighboring words. This section presents an approach to identify the most suitable
dictionaries to translate a word sequence available in d based on the n-grams occurring
within the documents of the J corpora and the n-grams in an iSCD. Thus, for each word
in a sequence of words we create the n-grams by using the neighboring words. Afterwards,
we identify a suitable dictionary for a sequence of words based on the similarity of all
sequence-specific n-grams and all n-grams one can generate from documents of all J
corpora. Finally, the dictionary associated with the corpus containing the most similar
n-grams is selected. Let us assume we have a set of J corpora and for each corpus D
exists a corpus-specific dictionary that has been used to translate the documents, e.g.,
dictionary dict1 is suitable for documents in D1 and another dictionary dict2 suitable
for documents in corpus D2, and so on. Furthermore, we assume a new document d is
available and Alg. 7 has successfully identified the content and comments. Then, we are
interested in selecting a suitable dictionary for content in d and a suitable dictionary for
each iSCD based on the n-grams from the sequences of words referring to the text and
to the iSCDs.
Algorithm 8 represents the technical description for selecting a suitable dictionary for

a word sequence seq. The inputs are the length n of n-grams, all corpora {D}〉Ji=1
, and a

word sequence seq. The output of Alg. 8 is the best suited dictionary dict. Algorithm 8
starts by calculating the frequency vseq of n-grams available in word sequence seq. Then,
Alg. 8 calculates the n-gram frequencies vD for each corpus D by analyzing each document
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in D and computes the cosine similarity between vseq and vD. Alg. 8 stores the current
corpus’ dictionary if it has a higher similarity value as any corpus checked before. In the
end, Alg. 8 returns the stored dictionary.

Correctness We calculate all possible n-grams from a given sequence of words repre-
senting an iSCD or a poem. Additionally, we calculate all possible n-grams for each
document in the J corpora. Thus, we can compare the n-gram frequency vectors from a
sequence of words of new document d with each corresponding n-gram frequency vector
of each corpus. Using a vector representation of the n-gram frequency allows to compare
the frequencies based on the cosine similarity used in line 9 of Alg. 8. Comparing the
n-gram frequency vector of a word sequence with the n-gram frequency vectors of each
corpus yields the most similar corpus. Since each corpus is linked to a corpus-specific
dictionary, we can directly select the best suited dictionary for each sequence of words
in d.

6.3 Case Study

After introducing the HMM-based approach to identifying iSCDs within texts, followed
by the n-gram-based dictionary selection approach, we present a case study illustrating
the potential of both approaches estimating iSCDs within documents for different data
sets as well as selecting suitable dictionaries. We start with a description of data sets
we use in this case study followed by the workflows for analyzing the performance of the
HMM-based iSCDs detection approach and the n-gram-based dictionary selection. Ad-
ditionally, we illustrate the potential of both approaches by evaluating their performance
on the different data sets.

6.3.1 iSCD Detection

This section presents data sets, the workflow and results for the iSCD detection approach.

Data Sets

We use the following seven data sets to evaluate the performance of the HMM-based
approach to identifying iSCDs in a new document.

1. Tamil consists of 91 poems transcribed from old palm leaves (Wilden (2018)).

2. Greek consists of 1 treatise about Aristotle’s Categories (Bekker and others (1831)).

3. US consists of 74 articles about cities in the Unites States of America1.
1US cities – https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
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4. EU consists of 10 articles about cities in Europe2.

5. Arxiv-general consists of 500 randomly selected abstracts from Arxiv3.

6. Arxiv-CS consists of 500 randomly selected abstracts from publications of the Com-
puter Science (CS) category available on Arxiv3.

7. Newsgroups consists of 290 posts from the 20 newsgroups data set containing 18.828
newsgroup posts on 20 topics 4.

For the Tamil data set, we extract the documents from Wilden (2018). For the Greek
data set, we extract the documents from the Alignment of Aristotle’s Categories5 con-
taining a digital copy of the Aristotle’s Categories. Each document is associated with
comments about the content from the original documents and acting as iSCDs. The US
and EU data sets consist of articles from the open and widely accessible online encyclo-
pedia Wikipedia containing text about cities in the US and EU, respectively.
The Arxiv data set contains a subset of 500 randomly selected abstracts from the Arxiv

library. Additionally, for the Arxiv-CS data set we randomly selected 500 abstracts from
the Arxiv library referring to the CS category. The Newsgroups data set represents a
randomly selected subset of the well-known 20 newsgroups data set.
In contrast to the documents in Tamil and Greek, the documents in the other data sets

do not contain iSCDs. Thus, we generate iSCDs for documents in data sets (3) - (7) by
(i) downloading a dump of the English free online dictionaryWiktionary6, (ii) creating an
SCD for each word in a document using the corresponding Wiktionary entry (if available),
and (iii) splicing the SCDs into the document.
After we have downloaded all documents and determined iSCDs we store the doc-

uments in the respective corpora. Next, we use the following standard preprocessing
tasks from the NLP community, (i) lowercasing all characters, (ii) stemming the words,
(iii) tokenizing the result, and (iv) eliminating tokens from a stop word list to transform
the text of the documents into a more digestible form for machine learning algorithms
to increase their performance.
Generally, language changes over time, and modern word stemmers and stop words

might be non-optimal for old texts. Thus, we neither eliminate stop words nor stem
words in Greek. For Tamil, we compare the performance of the unstemmed (unst.)
corpus to a stemmed (st.) corpus by a modern word stemmer7 for Tamil.
Table 6.1 gives an overview about

2European cities – https://en.wikipedia.org/wiki/List_of_urban_areas_in_Europe
3ArXiv – https://www.kaggle.com/Cornell-University/arxiv
420 Newsgroups http://qwone.com/~jason/20Newsgroups/
5Aristotle’s Categories – http://textalign.net/output/ar.cat.tan-a-div-collated-obj.html
6https://www.wiktionary.org
7https://github.com/rdamodharan/tamil-stemmer
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Table 6.1: Characteristics of data sets divided into eight different settings.

Tamil Greek US EU Arxiv News-
Unst. St. general CS groups

|D| 91 91 1 74 10 500 500 290
Avg #word(d) 73,2 73,2 10.458 200,7 318,7 74,4 77,3 133,7
# iSCDs 908 869 143 1.814 757 4.905 4.715 6.541
|VD ∪ VT (D)| 8.015 5.783 3.623 6.688 3.314 10.083 8.843 12.829
|VD| 5.521 4.304 1.894 3.657 1.439 5.776 4.715 7.558
|VT (D)| 2.666 1.987 2.123 3.902 2.232 6.751 6.493 8.332
|VD ∩ VT (D)| 172 508 394 871 357 2.444 2.365 3.061

(i) the number of documents in a corpus,

(ii) the average length of documents, and

(iii) the size of different vocabularies.

Stemming the poems in Tamil yields to less different words in the vocabulary and
more intersecting words between content (poem) and their comments (iSCDs). For ease
of reading, we divide numbers with many digits into groups using a dot as delimiter.

iSCD Detection Workflow

Evaluating the performance of the HMM-based approach to identifying SCDs within
texts requires a setup of the HMM. We use two hidden states (s1,s2) as defined in Defi-
nition 4.3.1 and five observable states y1 to y5. We have tested different setups and five
observable symbols having yielded good results. The thresholds are selected by analyzing
histograms of MPSCD similarity values. Figure 6.3 represents three histograms of MP-
SCD similarity values gained from Alg. 6 for the three corpora. The intervals for y1 to
y5 should be selected from the areas of similarity values having a high frequency to gain
a good HMM-based iSCD detection performance. For all data sets expect Greek, we se-
lect the intervals: y1 = [0.0, 0.05), y2 = [0.05, 0.1), y3 = [0.1, 0.15), y4 = [0.15, 0.20), and
y5 = [0.20, 1.0]. For Greek, we use the following intervals: y1 = [0.0, 0.3), y2 = [0.3, 0.35),
y3 = [0.35, 0.4), y4 = [0.4, 0.45), and y5 = [0.45, 1.0].
We perform the following five tasks on each data set to evaluate the performance of

the HMM-based iSCD detection approach:

(i) Split the data set into multiple parts and use leave-one-out cross-validation result-
ing in training sets of 80-90% of documents and test sets of remaining 10-20% of
documents.

(ii) Form the SCD-word probability distribution δ for the training set using Alg. 1.
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Figure 6.3: Histograms of MPSCD similarity values gained from Alg. 6 for unstemmed
Tamil (left), Newsgroups (center), and Greek (right). Note the different scaling of the
axes.

(iii) Generate an HMM and apply the Baum-Welch algorithm to train the hidden pa-
rameters of the HMM.

(iv) For each document in the test set estimate MPSCDs using Alg. 6, and

(v) Compute the most probable sequence of hidden states in the HMM for the dis-
cretized sequence of similarity values using the Viterbi algorithm.

We use cross-validation and the total average of the precision, recall and F1-score in the
results.
We evaluate the performance of the HMM-based approach by comparing the results

with the following two standard approaches, namely, word-based classification and a
single threshold-based classification.

Word-based Classification For each word, we form a probability distribution represent-
ing how often the word occurs in content (#c) vs. iSCD (#s), i.e., p = #c

#c+#s
and 1 − p. We classify each word by sampling from (p, 1 − p). Words belonging
only to one vocabulary have a (1, 0) probability distribution and can be directly
classified as belonging to either content or iSCD. For words that are not part of
any vocabulary, we randomly assign a category.

Threshold-based Classification Instead of training an HMM on the MPSCD similarity
sequences, we directly classify based on the MPSCD similarity value of a window
sim and a threshold `. If sim < `, we classify the words in the window as an iSCD.
We use the histograms in Fig. 6.3 to choose the values of `. For unstemmed Tamil,
` = 0.05 and for Greek, ` = 0.35 results in best performance for iSCD detection.
For all other data sets, ` = 0.1 yields the best results.

As depicted in Table 6.1, unstemmed Tamil contains only 172 words, representing 2%
of all words, that occur in both vocabularies VD and VT (D). After stemming the words
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in Tamil, this share increases to 8%. In US, EU and Greek VD and VT (D) share around
10% of their words,respectively, while Arxiv and Newsgroups share around 25% of their
words, respectively. Thus, we expect a good word-based classification performance for
data sets sharing less words between VD and VT (D), e.g., for Tamil.
Next, we present the results for the HMM-based iSCD detection approach.

Results

Figure 6.4 presents the performance of the HMM-based, word-based, and threshold-based
approach for all data sets. For the HMM-based approach, we present the performance
of the initial model and the trained model. The initial HMM contains the following
emission probabilities in case of iSCDs:

{y1 : 0.15, y2 : 0.50, y3 : 0.20, y4 : 0.10, y5 : 0.05}

and in case of text:

{y1 : 0.05, y2 : 0.05, y3 : 0.30, y4 : 0.35, y5 : 0.25}.

Unstemmed Tamil yields very low MPSCD similarity values (Fig. 6.3) in contrast to
the other data sets yielding values similar to Newsgroups. Therefore, we slightly modify
the emission probabilities for unstemmed Tamil by increasing y1 and y2. The emission
probabilities encode that a window associated with an MPSCD of a high similarity value
is unlikely being classified as an iSCD.
The word-based classification yields the best F1-Score for US. The precision of the

word-based classification is very high for Tamil and Greek, while the precision is low for
Arxiv. This corresponds to our assumption made before: Less shared words between
VD and VT (D) lead to better precision. The recall of the word-based classification is
considerably lower than the recall of the HMM-based approach. Interestingly, the word-
based classification performance is not as poor as expected for data sets containing more
overlapping vocabulary between VD and VT (D).
The threshold-based classification performance is good for all data sets. Often the

results are similar or even better than the results of the HMM-based approach. However,
for the threshold-based approach it is difficult to determine the best values ` for the
threshold, since the threshold changes for each data set.
The HMM-based approach performs well for all data sets. Mostly, the trained HMM,

the initial HMM, and the threshold-based classification result in similar values. The
difference between the initial and the trained HMM is not as pronounced since the initial
values for the emission probabilities are already of good quality, which reduces not only
the runtime for learning but also has the effect of the initial model performing relatively
well. The discretization function uses intervals close to threshold `, such that threshold-
based classification performs similar well, too.
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Figure 6.4: Classification performance for HMM-, word-, and threshold-based approach.
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Overall, the HMM-based approach yields the best performance in the case study. Even
thought, the threshold-based classification sometimes results in slightly better results for
most data sets. However, choosing a threshold is difficult and training an HMM is much
easier.

6.3.2 Dictionary Selection

This section presents the data sets, the workflow and results for the dictionary selection
approach.

Data Sets

For the evaluation of the dictionary selection approach, we use the entire 20 Newsgroups
data set mentioned above, containing 18.828 documents. On average each document
contains 16 sentences and each newsgroup features 4.942 unique words while sharing
8.639 words with other newsgroups.
Additionally, we use a data set (Shakespeare) containing 39 Shakespeare documents

taken from Project Gutenberg8. On average, each document in Shakespeare consists of
2.526 sentences. The total number of different words in the vocabulary of both data
sets is 139.788, while both data sets share only 9.183 words. 9.826 words occur only in
Shakespeare, and 120.779 words occur only in documents of the 20 newsgroups data set.
For documents in both data sets, we apply the same four preprocessing tasks from the

NLP community already used for detecting the iSCDs, namely lowercasing all characters,
stemming the words, tokenizing the result, and eliminating tokens from a stop word list.

Dictionary Selection Workflow

Given multiple dictionaries and for each dictionary a well suited set of documents, the
dictionary selection problem asks for the best suited dictionaries to translate a document
d. In our scenario d is a poem interleaved with iSCDs. After extracting the content (dp)
and the set of iSCDs (T (d)) using the HMM-based iSCD detection approach, we perform
the following two steps to translate the content in d:

(i) Specify the length of n-grams we use in Alg. 8.

(ii) Perform Alg. 8 to identifying a suitable dictionary for content and iSCDs.

We run all experiments on a virtual machine featuring 8 Intel 6248 cores at 2.50GHz (up
to 3.90GHz) and 16GB RAM.
Using the two data sets we demonstrate the performance of the n-gram-based document

selection approach in two different settings: First, we are interested in selecting the best
8https://www.gutenberg.org/
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dictionary within a modern language dictionary for all 20 newsgroups and an ancient
language dictionary for Shakespeare. Second, we assume to have a context-specific
dictionary for each single newsgroup and we are interested in selecting the best dictionary
within the 20 dictionaries.
For each setting we split the data sets randomly into a training set containing 80% of

the sentences and a test set containing the remaining 20%. After training the models we
measure the accuracy as proportion of correctly selected dictionaries for the sentences in
the test set.
We compare the performance of the n-gram-based approach, introduced in Section 6.2.2,

with the well-known Skip-gram model, introduced by Mikolov et al. (2013a,b). The train-
ing objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. Given a sequence of
training words, the objective of the Skip-gram model is to maximize the average log
probability. We generate for each corpus a Skip-gram model and use distance measures
to calculate the distance between a corpus-specific model and a given sentence from d to
identify a suitable dictionary for a sentence based on the corpus where the corresponding
model has the shortest distance. We analyze the performance of the following distance
measures:

Jaccard Given a sentence, we take each word and query the model for the surrounding
words. The words predicted are then compared to the actual words in the sentence
using the Jaccard index. We use the mean of all Jaccard indices to get the distance
between the sentence and a model.

Model Given a sentence of a document we calculate the distance of each word of the
sentence to all words known by the model. To get the distance between the sentence
and the model we use the mean of the distances for each word.

Sentence This approach is similar to Model, but we do not calculate the distance to all
words known by the model, but only to the words occurring in the sentence. Thus,
we also take each word of the given sentence and calculate the distance within the
model to the other words in the given sentence.

Voting Calculate all three distance measures (Jaccard, Model, Sentence), predict the
most probable model for each of the three measures and perform a majority voting.
To determine the top-n best matching dictionaries, we predict the n most probable
models for each distance measure and then perform a majority voting across the
3n predictions.

Results

Figure 6.5 shows boxplots of accuracies and ratio of predictable sentences. The ratio
indicates for how many sentences the model could explicitly select a dictionary for, i.e.,
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Figure 6.5: Accuracy (left) and ratio of predictable sentences (right) of the n-gram-based
approach for different data sets and different lengths of n-grams.

when using five-grams it may happen that a sentence contains no five-gram known by
the model and therefore no selection is possible.
In both settings, the model can predict all sentences using unigrams, but not while

using five-grams. For Shakespeare, the accuracy is overall high, confirming that modern
and ancient languages feature more differences than different contexts. For Newsgroups,
the accuracy grows with the length of the n-grams while the ratio decreases. Gener-
ally, bigrams provide a good compromise between accuracy and ratio. Whilst rating
the reached accuracy of 0.5 when using bigrams, we have to remember that randomly
choosing a dictionary within 20 would result in an accuracy of around 0.05%.
As stated before, we compare the performance of the n-gram-based approach to the

Skip-gram-based approach. In Fig. 6.6, we show the accuracy and ratio of the Skip-
gram-based approach. The Skip-gram-based approach generally yields lower accuracy
but provides higher ratios than the n-gram-based approach. For the Skip-gram-based
approach, the Sentence distance measure results in the best accuracy. Comparing values
for the best length of the n-grams with the best distance measure, bigrams and Sentence
respectively, the accuracy of the n-gram-based approach is clearly higher while both
approaches lead to similar ratios.
In Fig. 6.7, we illustrate the runtime of both approaches. On the left side, the perfor-

mance of both approaches in term of selections performed per second. The n-gram-based
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Figure 6.6: Accuracy (left) and ratio of predictable sentences (right) of the Skip-gram-
based approach on different newsgroups.

1

10

100

1000

U
nigram

B
igram

T
rigram

F
ive-gram

Jaccard

M
odel

V
oting

Sentence

Length of n-Gram/ Distance Measure

S
el
ec
ti
on

s
p
er

S
ec
on

d

Single Newsgroup against each other

0.00

0.25

0.50

0.75

1.00

1 2 3 4 6 8

Top-n Best Matches considered

A
cc
u
ra
cy

Bigram Sentence

Single Newsgroup against each other

1

Figure 6.7: Speed (left) of both approaches shown as number of sentences processed per
second (logarithmic scaled). Top-n performance (right) using the best parameters of each
approach.

approach performs around 3.000 selections per second while the Skip-gram-based ap-
proach only performs less than 10 selections in the same time.
Last but not least, we present the performance of the top-n best matching dictionaries

on the right side of Fig. 6.7 since an agent might be allowed to return a ranked list of
results for a task. We only consider bigrams and the Sentence distance measure. An
accuracy clearly above 0.5 is already achieved by only considering the top-2 dictionaries.
Overall, the n-gram-based approach shows a good performance, especially when using
bigrams. In comparison to the Skip-gram-based approach, short run times and good
accuracy results are the advantages.
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Chapter 7

Adaptation of SCD-word Probability
Distributions for other Corpora

Adapting data from one corpus to another corpus is the most common setting in the
NLP community and different challenges exist to use data from one corpus in another
corpus. Some well-known challenges are given by (i) different representations in both
corpora for same entities, (ii) a difference in the context and the vocabulary of documents
in both corpora, and (iii) a difference in word-sense distribution, since the sense of a
word might depend on the neighboring words. Over the last decades, forms of transfer
learning have driven progress for various tasks in NER, ranging from self-supervised
learning with auxiliary tasks (Ando and Zhang (2005)), feature alignments (Blitzer et
al. (2006)), and phrase/word clusters (Lin and Wu (2009)) to deep networks (Glorot et
al. (2011)), language model embeddings (Peters et al. (2017)), and pre-trained language
models (Peters et al. (2018)). Also other tasks have benefit from transfer learning, e.g.,
automatic capitalization (Chelba and Acero (2006)), word-sense disambiguation (Komiya
et al. (2017)), and POS-tagging (März et al. (2019)).
Generally, transfer learning techniques involve training a model on data of one domain

and apply the model to data in another domain. In the last decade, interest in unsuper-
vised domain adaptation has increased. Unsupervised domain adaptation is the task of
modifying a model trained on labeled data available in a source domain to obtain better
performance on data available in a target domain, without having labeled data in the
target domain.
Unsupervised Domain Adaption deals with the domain shift problem. Generally, la-

beled data (called source domain) and unlabeled data (called target domain). Both
domains contain similar but different data distributions and the objective is to correctly
infer the labels on the latter. In this chapter an agent is working with two corpora,
denoted as Ds and Dt, where Ds refers to the source corpus containing documents asso-
ciated with located SCDs and Dt refers to the target corpus containing documents not
associated with any SCD. An agent may generate an SCD-word probability distribution
δ(Ds) from documents in Ds but cannot generate an SCD-word probability distribution
δ(Dt) from documents in Dt. Thus, we are interested in associating SCDs from docu-
ments in Ds to documents in Dt, since manually generating new SCDs for documents in
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Dt is a time-consuming and thus expensive task.
Our goal is to use the SCD-word probability distribution δ(Ds) to predict the most

probably suited SCDs associated with documents in the source corpus and associate them
with documents in the target corpus. In our setting, SCDs generate words leading to a
generative model s.t. we can estimate the full joint probability distribution of words and
SCDs for Ds. Only if the full joint distribution of words and SCDs, represented by δ′(Ds),
is the same for the source corpus and the target corpus, an agent can use δ(Ds) directly to
select the MPSCDs and associate them with documents in Dt (see Chapter 3). However,
the full joint distribution of words and SCDs for two different corpora is no the same
and it follows that an agent cannot directly use δ(Ds) to select MPSCDs for documents
in target corpus Dt. Thus, we aim at an adaptation of the source corpus specific full
joint probability distribution of Ds to a target corpus Dt by looking at the following
two different characteristics: (i) word frequency in both corpora, and (ii) topic-word
probability distribution of both corpora. Having adopted δ(Ds) for Dt, represented as
δ̂(Ds), an agent can use SCD-word probability distribution δ̂(Ds) to automatically enrich
documents in target corpus Dt with SCDs associated with documents in source corpus
Ds. Adapting the SCD-word probability distribution for a corpus containing documents
associated without any SCD is an important task, since manually generating SCDs for
those documents is a time-consuming task.
First, in Section 7.1 we define the problem for adapting SCD-word probability distribu-

tion δ′(Ds) to documents in a target corpus Dt. Second, in Section 7.2 and Section 7.3, we
present two approaches for solving the adaptation problem leading to a SCD-word prob-
ability distribution for the target corpus represented as δ̂(Ds). Afterwards, we present a
case study in Section 7.4 illustrating the effectiveness of both adaptation techniques.

7.1 Domain Adaptation Problem

A corpus Ds containing documents associated with SCDs represents a supervised learning
setting. Generally in a supervised learning setting a set of labeled instances {(xi, yi)}Ni=1,
xi ∈ X , yi ∈ Y, where X represent data and Y represent labels. Each labeled instance
(xi, yi) is drawn from a joint probability distribution p(x, y). The joint distribution
p(x, y) can be represented by Bayes’ rule as follows:

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (7.1)

In other words, the joint distribution p(x, y) depends on different distributions. In our
setting, p(x|y) represents the SCD-word probability distribution δ(Ds) generated from
all words of documents in Ds and all SCDs associated with documents available in corpus
Ds. Probability distribution p(y) represents the prior probability distribution p(T (Ds))
of all SCDs associated with documents in Ds, where T (Ds) represents the set of all SCDs

98



7.1 Domain Adaptation Problem

associated with documents in source corpus Ds. We assume the prior probability distri-
bution p(T (Ds)) of SCDs to be uniformly distributed, since a corpus represents a specific
context where each SCD might have the same probability of occurrence. We use p(x) to
represent the prior probability distribution p(V (Ds)) on vocabulary V (Ds). The more
often a word from vocabulary V (Ds) appears in documents in corpus Ds, the higher the
prior probability of the word. Probability p(y|x) represent the conditional probability of
an SCD given words from vocabulary V (Ds). Since both, words and SCDs are observ-
able in the source corpus we can calculate the source corpus specific joint probability
distribution δ′(Ds) = p(V (Ds), T (Ds)) by estimating δ(Ds) using Expression (3.2) and
multiplying the values in δ(Ds) with p(T (Ds)). Following Expression (7.1) we can also
represent δ′(Ds) in the following way:

p(T (Ds)|V (Ds))p(V (Ds)).

Generally, if the target corpus Dt contains the same joint probability distribution
as source corpus Ds, we can directly use δ(Ds) to automatically enrich documents in
Dt with SCDs associated with documents in corpus Ds. However, the joint probability
distribution δ′(Dt) of an unlabeled target corpus Dt is hidden and might differing from the
joint probability distribution of the source corpus, since probability distribution p(V (Dt))
differs from probability distribution p(V (Ds)), or hidden probability distribution δ(Dt)
differs from probability distribution δ(Ds).

In both cases, we cannot directly use SCD-word probability distribution δ(Ds) to enrich
documents in target corpus Dt with SCDs associated with documents in Ds and we need
to adapt δ′(Ds) to δ′(Dt) based on the documents in the target corpus. We define the
following two cases for adapting SCD-word probability distribution δ(Ds) to an unlabeled
target corpus Dt.

Case 7.1.1 (Instance Adaptation). An agent cannot directly use the SCD-word prob-
ability distribution Ds to associate an initial set of SCDs with documents in the target
corpus Dt since target probability distribution p(V (Dt)) deviates from source probability
distribution p(V (Ds)).

Let us assume that source corpus Ds and target corpus Dt contain documents about
the same subject, e.g., the Corona virus. However, Ds contains academic articles and
Dt contains newspaper articles. Then, both corpora contain documents about the same
subject but the content is represented in a different style, since the vocabulary of authors
writing academic article is different from the vocabulary of authors writing newspaper
articles. One reason for the lexical gap between different kinds of documents is given
by the difference in both communities of readers. Obviously, an agent cannot use the
SCD-word probability distribution δ(Ds) for documents in Dt given a lexical gap between
both corpora.
Next, we consider the second case, denoted as labeling adaptation.
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Case 7.1.2 (Labeling Adaptation). An agent cannot directly use the SCD-word prob-
ability distribution Ds to associate an initial set of SCDs with documents in the target
corpus Dt since target probability distribution δ(Dt) deviates from source probability
distribution δ(Ds).

Let us assume that source corpus Ds and target corpus Dt contain documents about
different subjects, e.g., the source corpus Ds contains documents about the Corona virus
and the target corpus Dt contains old manuscripts from the 1st century. Then, the
content of documents from both corpora are contextually different and an agent cannot
use the SCD-word probability distribution δ(Ds) for documents in Dt.
In Section 7.2 and Section 7.3 we present domain adaptation techniques for the instance

adaptation problem and labeling adaptation problem, respectively.

7.2 Instance Adaptation Approach

In case of instance adaptation, the word probability distribution p(V (Dt)) is different
from the word probability distribution p(V (Ds)). Generally, an agent can approximate
p(V (Ds)) and p(V (Dt)). Afterwards, the agent can adapt the SCD-word probability
distribution δ(Ds) based on the difference between p(V (Ds)) and p(V (Dt)) resulting in
an adapted version of δ(Ds) optimized for documents in target corpus Dt. The adapted
version of δ(Ds) is denoted by δ(Dt).
The instance adaptation approach focuses on the adaptation of the probability value

of each word in δ(Ds) based on the difference in word frequencies between both corpora.
Algorithm 9 describes the adaptation approach in detail. For both corpora Alg. 9 calcu-
lates the corresponding word frequency vectors fs and ft to estimate the word probability
distributions p(V (Ds)) and p(V (Dt)) for Ds and Dt, respectively. Afterwards, Alg. 9 es-
timates the difference between both word probability distributions to obtain an instance
adaptation vector v (lines 6-7). Next, Alg. 9 adapts the entries of each row of δ(Ds) by
multiplying each entry with the corresponding entry in v (lines 9-16 ), resulting in an
adapted probability distribution of δ(Ds) used as δ(Dt).

Proposition 7.2.1. Algorithm 9 adopts the SCD-word probability distribution of a source
corpus optimized for the target corpus Dt.

Since the domain adaptation problem in Case 7.1.1 lies in the difference between word
probability distributions and the words of both corpora are available, we calculate the
word probability distributions from both corpora and adapt δ(Ds) according to the differ-
ence between the two corpus-specific probability distributions (see line 8 ), leading to an
SCD-word probability distribution δ(Dt) for the target corpus, which solves the problem
of Case 7.1.1.
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Algorithm 9 Instance Adaptation by Instance Weighting
1: function InstanceWeighting(Ds, Dt)
2: Input: Source corpus Ds, target corpus Dt
3: Output: adapted SCD-word probability distribution matrix δ̂(Ds)
4: v ← new zero-vector of length |V (Ds)|
5: δ̂(Ds)← δ(Ds)
6: fs ← countFreq(Ds)
7: ft ← countFreq(Dt)
8: for each w ∈ VDs do . Calculate weights
9: if w ∈ V (Dt) then
10: v[w]← fs[w] · (1− (fs[w]− ft[w])) ·WF

11: for each row t in δ̂(Ds) do . Reweight δ(Dt)
12: c← 0
13: for each column w in δ̂(Ds) do
14: δ̂(Ds)[t][w]← δ̂(Ds)[t][w] · v[w]
15: c← c+ δ̂(Ds)[t][w]

16: δ̂(Ds)[t]← 1
c · δ̂(Ds)[t] . Normalize

17: return δ̂(Ds)
18: function countFreq(D)
19: f ← new zero-vector of length |V (Ds) ∪ V (Dt)|
20: c← 0
21: for each d ∈ D do
22: c← c+ #words(d)
23: for each w ∈ d do
24: f [w]← f [w] + 1

25: return 1
c · f . Normalize

7.3 Labeling Adaptation Approach

As described before, the joint probability distribution δ′(Ds) is based on the word distri-
bution p(V (Ds)) and the SCD-word probability distribution δ(Ds). Even if documents
in both corpora share the same word probability distribution, the SCD-word probability
distribution of Ds and Dt might be different. Obviously, in this case an agent cannot
directly apply δ(Ds) for documents in Dt.
In Case 7.1.2, we have asked for an adaptation of the SCD-word probability distribu-

tion δ(Ds) s.t. an agent can apply δ(Ds) for documents in Dt. To estimate where and why
δ(Dt) differs from δ(Ds), we would need some prior about the data in the target corpus.
However, the only available data in Dt are the words in the documents themselves, since
no SCDs are associated with documents in Dt. Comparing documents from the source
corpus with documents from the target corpus requires a common ground between doc-
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Algorithm 10 Labeling Adaptation by Instance Pruning
1: function InstancePruning(Ds,Dt)
2: Input: Source corpus Ds, target corpus Dt
3: Output: adapted SCD-word probability distribution matrix δ(CDt)
4: Generate topic models M(Ds), M(Dt) with θDs , θDt
5: Identify topic mapping σ between M(Ds) and M(Dt)
6: CDt ← ∅
7: for each dt ∈ Dt do
8: for each ds ∈ Ds do
9: if Hσ(θdt , θds) < τ then

10: CDt ← CDt ∪ ds
11: Build δ(CDt) . See Alg. 1
12: return δ(CDt)

uments in both corpora. Generally, we can use any word-based document representation
to compare documents from both corpora with each other. A frequently used text-mining
technique to represent documents is given by topic modeling techniques. Thus, we gen-
erate for both corpora Ds and Dt a topic model using the well-known latent Dirichlet
allocation (LDA) approach and refer to the topic models for Ds and Dt by M(Ds) and
M(Dt), respectively. With a topic model M(D), we can represent and compare two doc-
uments di ∈ D and dj ∈ D by their individual document-topic probability distribution
θdi and θdj , e.g., calculating the Hellinger distance between both probability distributions
over K topics and is already defined in Expression (2.12). Based on both corpus-specific
topic models M(Ds) and M(Dt), we can determine documents in Ds having a different
document-topic probability distribution to documents in Dt and remove those documents
from Ds, resulting in a pruned source corpus Ds′ . For Ds′ , we can generate an SCD-word
probability distribution δ(Ds′) that is optimized for documents in target corpus Dt, since
δ(Ds′) is only based on the documents being topically related to the documents in the
target corpus.

Algorithm 10 describes the document pruning approach in detail. Since each corpus
represents a specific context, Alg. 10 generates for the source corpus and the target
corpus a topic model M(Ds) and M(Dt), respectively (line 4 ). Generally, we cannot
directly compare the document-topic probability distribution from a document of cor-
pus Ds with the document-topic probability distribution from a document of Dt because
both document-topic probability distributions are generated from different corpus-specific
models s.t. the first topic of M(Ds) is not the first topic in M(Dt). Thus, we need a
mapping σ between the topics generated from M(Ds) and M(Dt), e.g., by analyzing the
topic coherence, which is referenced in line 5. We give a detailed analysis about topic
mappings in Chapter 9. Next, Alg. 10 generates a cluster CDt containing only those doc-
uments from source corpus Ds having a document-topic probability distribution similar
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to the document-topic probability distribution of documents in the target corpus, i.e.
the similarity is higher than a given threshold τ . Algorithm 10 determines the similarity
between two documents based on the Hellinger distance of their document-topic prob-
ability distributions. To calculate the Hellinger distance between the document-topic
probability distributions of two documents, we need a mapping σ to align the topics
of both probability distributions. If the distance between document-topic probability
distribution θds and θdt is below τ , we add ds ∈ Ds to CDt (line 7-10 ), representing a
sub-corpus containing documents relevant for the target corpus.
Afterwards, Alg. 10 generates an SCD-word probability distribution δ(CDt) for CDt s.t.

δ(CDt) is optimized for the target corpus Dt.

Proposition 7.3.1. Algorithm 10 adopts the SCD-word probability distribution of a
source corpus for a target corpus optimized for the target corpus Dt.

In Case 7.1.2, we have described that the source probability distribution δ(Ds) deviates
from the target probability distribution δ(Dt). Reasons for δ(Ds) not working for Dt lie in
δ(Ds) referencing SCDs not relevant for Dt or SCDs being associated with different words
in the context of Dt. Working only with a subset of documents in Ds has two possible
effects, when comparing δ(Ds′) with δ(Ds): (i) Pruned documents contain SCDs that
are also associated with documents in the reduced corpus Ds′ , resulting in the same set
of SCDs in SCD-word probability distribution δ(Ds′), but different word vector entries.
(ii) Pruned documents contain SCDs not associated with other documents resulting in
a reduced set of SCDs in δ(Ds′). The effects counteract the two main reasons for δ(Ds)
not applying to δ(Dt). As such, instead of using δ(Ds) for δ(Dt), we use δ(Ds′) = δ(CDt).
Next, we present a case study illustrating the effectiveness of both adaptation ap-

proaches for a source corpus containing documents associated with SCDs and a target
corpus containing only documents not associated with any SCD.

7.4 Case Study

After having introduced two unsupervised domain adaptation techniques to adapt the
SCDs-word probability distribution Ds for a target corpus, we present a case study
illustrating the performance of both adaptation techniques. In detail, we analyze the
performance of both adaptation techniques by calculating the MPSCDs for documents
in the target corpus using Alg. 2 before and after adapting the SCD-word probability
distribution δ(Ds) of a source corpus Ds for documents in Dt. Next, we describe the
data sets, necessary preprocessing techniques, and the evaluation workflow. Finally, we
present the results of the domain adaptation techniques.
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7.4.1 Data Sets

We have selected articles out of the open and widely accessible online encyclopedia
Wikipedia to make our experiments reproducible. The data sets contain two sets of
articles, which have been grouped by Wikipedia, representing the specific context of a
corpus. The SCDs associated with documents in one set represent possibly content de-
scriptions for documents in the other set, since the subjects of both corpora are related.
In the first data set, we use documents about presidents of the United States of America

between 1789 and 20171 and documents about prime ministers of the United Kingdom
between 1721 and 20192 as source and target corpus, respectively. Both corpora contain
documents about important political persons. In the second data set, we use documents
about cities in the United States of America3 and cities in Europe4. Both corpora contain
documents about large cities. The number of documents in the source and target corpus
is similar for both data sets.
Generally, there are no SCDs associated with Wikipedia articles, because Wikipedia

is an online encyclopedia trying to provide objective reference work instead of being a
personal reference library containing documents about a specific context. Thus, we have
to associate SCDs to documents from the source and target corpus to evaluate the perfor-
mance of the introduced unsupervised domain adaptation techniques. As stated earlier,
SCDs add additional data to documents, making the content explicitly by providing de-
scriptions, references, or explanations about the content. So, we extract data from the
text of the Wikipedia articles using Stanford OpenIE (Angeli et al. (2015)). OpenIE
tools extract relation tuples (RDF triples) directly from the plain text of an article and
associate the tuples to the position in the document they have been extracted from. As
such, the relational tuples act as located SCDs associated with the documents in this case
study. Generally, it is not relevant whether an SCD is manually or automatically associ-
ated to a document to evaluate the performance of both domain adaptation techniques.
We use automatically generated SCDs to ignore the influence of a single annotator and
focus on the adaptation techniques.

7.4.2 Evaluation Setup

Given each data set, we choose one set of articles to be the source corpus Ds and one
set of articles to be the target corpus Dt. We use the located SCDs associated with
documents in Dt as ground truth to evaluate the performance of domain adaptation. We
concentrate on those SCDs associated with documents in Dt, which also appear in Ds,
as only those can be correctly associated by using δ(Ds) or any adapted version of δ(Ds).

1US president data set - https://bit.ly/2Z1v1G9
2UK prime ministers data set - https://bit.ly/3iKbN2W
3US cities - https://bit.ly/3jUua5H
4European cities - https://bit.ly/34WXMsE
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7.4 Case Study

For the evaluation, we then remove all SCDs associated with documents in Dt and use
the adaptation techniques to adapt the SCD-word probability distribution δ(Ds) of Ds
to estimate the SCD for documents in Dt and compare the result with the ground-truth
SCDs. Specifically, we evaluate the adaptation performance of Alg. 9 and Alg. 10 by
comparing the estimated MPSCDs for documents in the target corpus before and after
adapting the SCD-word probability distribution δ(Ds) using the PPV.
We consider the following four cases using δ(Ds) as well as different adapted versions

of δ(Ds):

(i) Baseline: Using δ(Ds) without any adaptation for documents in Dt.

(ii) Instance adaptation: Using Alg. 9 reweighing the influence values in δ(Ds) based
on the words in Dt using the best weighting factors (line 10 in Alg. 9) identified
before.

(iii) Labeling adaptation: Using Alg. 10 selecting only document from Ds having a
high topic similarity with documents in Dt to generate a target corpus optimized
SCD-word probability distribution from the source corpus.

(iv) Both: Applying both algorithms in sequence, since both probability shifts can occur
simultaneously.

7.4.3 Evaluation Workflow

We download all necessary documents from Wikipedia using a Python script and the
Wikipedia API and store the documents in the respective corpus. Afterwards, we pre-
process the documents by performing the following tasks: (i) lowercase all characters,
(ii) stem the words, (iii) tokenize the result, (iv) eliminate tokens from a stop-word list,
and (v) extract relation tuples using OpenIE. The first four tasks are standard pre-
processing tasks in the NLP community, transforming the text of documents into more
digestible form for machine learning algorithms, to increase their performance.
For each data set, the preprocessing steps result in a source and target corpus contain-

ing documents that are associated with located SCDs. Then, we evaluate the adaptation
performance of both unsupervised domain adaptation techniques by performing the fol-
lowing tasks for each data set:

(i) Identify the SCDs occurring in both corpora to determine the set of SCDs we can
correctly associate to documents in target corpus Dt using the (adapted) SCD-word
probability distribution δ̂(Ds) of source corpus Ds.

(ii) Remove all SCDs associated with documents in Dt s.t. Dt represents a common
reference library, where documents contain only text and no SCDs.

(iii) Calculate δ(Ds) using Alg. 1.
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Figure 7.1: Estimating best weighting factors for data set 1 used in Algorithm 9.
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Figure 7.2: Estimating best weighting factors for data set 2 used in Algorithm 9.

(iv) Estimate MPSCDs for documents in Dt using Alg. 2 with the original SCD-word
probability distribution δ(Ds).

(v) Calculate the baseline PPV for the SCDs of documents in Dt using the original
SCD-word probability distribution δ(Ds) s.t. we can compare the performance of
both domain adaptation techniques with the baseline PPV.

(vi) Perform instance adaptation (Alg. 9) and labeling adaptation (Alg. 10) on the
source corpus and use the adapted versions of δ(Ds) to estimate MPSCDs for doc-
uments in Dt using Alg. 2.

(vii) Calculate the PPVs for SCDs associated with documents in Dt after performing
instance and labeling adaptation and compare the performance of both adaptation
techniques with the baseline PPV.
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(a) Performance of no adaptation, instance adaptation, labeling adaptation, and a combination
of both techniques using first labeling followed by instance adaptation (both) for data set 1. We
use PPV@1, PPV@5, and PPV@10, to represent the PPV performance looking at the top-k =
1,5,10 MPSCDs, respectively.
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(b) Performance of no adaptation, instance adaptation, labeling adaptation, and a combination
of both techniques using first labeling followed by instance adaptation (both) for data set 2. We
use PPV@1, PPV@5, and PPV@10, to represent the PPV performance looking at the top-k =
1,5,10 MPSCDs, respectively.

Figure 7.3: Adaptation performance for both datasets.

7.4.4 Results

This section presents results regarding the weighting factors as well as the domain adap-
tation approaches.
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Weighting Factor We show the effect of different weighting factors for both data sets
in Fig. 7.1 and Fig. 7.2 . For data set 1, higher weighting factors lead to higher PPV.
For data set 2, smaller weighting factors lead to higher PPV. As we have expected, the
PPV for data set 2 is higher than for data set 1 using only Alg. 9.

Domain Adaption Figure 7.3a and Fig. 7.3b presents the performance of the four cases
described previously using the source corpus specific SCD-word probability distribution
δ(Ds) and three adapted versions of δ(Ds).
We evaluate for both data sets the performance of estimating the MPSCDs for doc-

uments in the target corpus considering each of the four cases. Algorithm 2 selects
the MPSCD based on the similarity value of SCDs. The similarity value of the first k
MPSCDs might be almost the same. Thus, we consider the top-k MPSCDs and mark an
estimated MPSCD as true positive, if the estimated SCD is in the top-k MPSCDs. We
use three different settings considering the top-1, top-5 and top-10 MPSCDs, represented
by PPV@1, PPV@5, and PPV@10, respectively.
In case of labeling adaptation, we use 15 topics for the topic model, since the topic

model containing 15 topics has the best quality w.r.t the perplexity of the models and
use τ = 0.6 (Alg. 10 line 7) as threshold to decide if two documents are similar.
As we have expected, the performance using the original SCD-word probability distri-

bution δ(Ds) is low for data set 1, because of the varying context and lexical difference
between documents in source and target corpus. Instance adaptation slightly increases
the PPV in comparison to the baseline. Pruning documents in the source corpus by
Alg. 10 results in even better PPVs. However, the combination of both adaptation tech-
niques leads to best results and the different between PPV@1 and PPV@10 is remarkably
small.
For the second data set, the PPV using the original SCD-word probability distribution

δ(Ds) is clearly higher than for data set 1, since the vocabulary used in source and
target corpus for data set 2 is more similar than for data set 1. Optimizing δ(Ds) using
instance adaptation results in best PPV performance considering the top-10 MPSCDs.
Interestingly, the PPV decreases by performing labeling adaptation. One reason for
the decreasing performance is given by pruning some documents in the source corpus
containing valuable SCDs for documents in the target corpus.
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Interim Conclusion

This part has presented SCDs as a specific kind of subjective annotations for documents
in a corpus. The SCDs represent context-specific data about the content of documents in
a corpus and the SCDs are associated with locations in documents supporting an agent in
corpus-specific document retrieval tasks, e.g., (i) estimating a set of similar documents for
a document, (ii) identifying positions of interest within a document, and (iii) classifying
new documents into different document categories. The document classification of new
documents is based on MPSCDs similarity values.
Compared to available semantic annotation systems, we have focused on document an-

notation approaches using available and subjective content descriptions associated with
documents instead of using externally sources to enrich documents with annotations.
Additionally, we have introduced different techniques to enrich new documents with sub-
jective content descriptions associated with other documents from the same corpus. Thus,
an agent benefits from the introduced approaches and may increase the performance of
its corpus-specific tasks. Furthermore, SCD-based approaches support humans in dif-
ferent tasks, e.g., selecting an appropriate dictionary to identify hidden relationships in
documents.
There exist many possible roads for further work on SCDs. In this dissertation, we have

focused on approaches based on available SCDs associated with documents in corpora.
For new documents containing slightly different content as documents in a given corpus
we cannot guarantee that associating available SCDs to the new document describe the
content, even if an agent might benefit from those SCDs e.g., for classification task.
Thus, another direction of research might be generating new SCDs based on the context
represented by a corpus and available SCDs associated with documents. At the end of
this part, we have covered the first four contributions of this dissertation, namely:

(1) Context-aware classification of documents using SCDs.

(2) Corpus-driven SCD enrichment of documents.

(3) Identifying SCDs within text by defining the iSCD problem.

(4) Context-aware adaptation of SCDs for documents in a target corpus.
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Chapter 8 Interim Conclusion

All approaches presented in this part of the dissertation apply a topic model to estimate
a similarity value of subjective content descriptions. Generally, changing the collection
of documents, e.g., by enriching a corpus with new documents, requires an adaptation of
the topic model. The next part of this dissertation contains an approach on maintaining
topic models and another approach for optimizing the topic modeling performance using
Named-Entity induced links between documents within the topic model.
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Chapter 9

Topic Models for Growing Corpora

In this part, results regarding topic modeling techniques that are relevant for selecting
SCDs are presented. This chapter looks at techniques to compare topic probability
distributions resulting from different topic models with each other. Additionally, this
chapter presents a comprehensive evaluation regarding three different strategies to handle
documents extending an individual collection of documents. In many scenarios, an agent
is not working with a fixed corpus. From time to time an agent might be faced with
new documents and the content of those documents might be relevant for different tasks
of an agent, e.g., document retrieval. However, for a new document no corpus-driven
document-topic probability distribution exists, because the new document was not part
of the corpus while the topic model has been generated from the documents in the corpus.
In Chapter 5, we have presented an approach to enrich documents with SCDs. Unfor-

tunately, for corpus-extending documents containing SCDs, we cannot directly use the
iterative SCD enrichment algorithm, since the algorithm is based on the document-topic
probability distributions (D-similarity) as well as the similarity of SCDs (T-similarity).
An agent faced with a new document needs to estimate the document-topic probability
distribution for the new document based on the corpus-driven topic model s.t. the agent
can use the D-similarity to compare new documents with other documents in a corpus.
Thus, in this chapter we apply techniques to estimate a corpus-driven topic probability

distribution for a new document an agent is faced with and might be interested in to
extend its corpus with. Additionally, we apply different know techniques to update the
initial topic model of a corpus based on new documents extending the initial corpus.
The following paper presented topic model adaptation for growing corpora:

Felix Kuhr, Magnus Bender, Tanya Braun, and Ralf Möller. Maintaining
topic models for growing corpora. In IEEE 14th International Conference on
Semantic Computing, ICSC 2020, San Diego, CA, USA, February 3-5, 2020,
pages 451–458, 2020

The remainder of this chapter is structured as follows: Section 9.1 gives an overview
of the known topic model adaptation techniques for growing corpora and describes the
OnlineLDA approach of Hoffman et al. (2010), OLDA for short, as well as fold-in Gibbs
sampling being detailly described in Griffiths and Steyvers (2004). Section 9.2 describes
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how to estimate the topic probability distribution of a new document and how to compare
different topic models with each other, since it is non-trivial to identify for a topic in one
model the corresponding topic in another model even if the corpus is the same for both
models. Section 9.3 presents an empirical evaluation for different known topic model
adaptation techniques considering their runtime and classification performance.

9.1 Adapting Topic Models

Topic models are statistical models for discovering hidden semantic structures in the
text of documents that are organized in a corpus. Those hidden semantic structures
are also known as topics. As described in Section 2.2.1, topic modeling approaches
reduce documents to a fixed number of topics s.t. an agent can work with the docu-
ments at their topic level, e.g., comparing documents not by the words occurring in
the documents but also by their document-topic probability distribution. Over time,
an agent is faced with new documents and has to decide whether it should extend its
corpus with those additional documents or not. For a new document the agent has no
document-topic probability distribution, since a corpus represents an individual collec-
tion of documents, and generally no topic model has been generated before for a corpus
containing the initial documents of the corpus and the new document. Handling possibly
corpus-extending documents results in two important tasks we are interested in, namely:
(i) estimating the document-topic probability distribution for possibly corpus-extending
documents based on the documents in a given corpus, and (ii) incorporating word dis-
tributions from corpus-extending documents into an available topic model for the initial
corpus. Incorporating corpus-extending documents into a topic model and estimating
the document-topic probability distribution of corpus-extending documents enables an
agent to identify a set of similar documents in the corpus to those new documents based
on the similarity of document-topic probability distributions. Thus, an agent benefits
from a corpus-driven document-topic probability distribution for new documents, since
the agent can automatically associated SCDs with documents that are already associated
with documents in the corpus as well as associating SCDs with new documents extending
a corpus. Generally, the following three strategies are available for estimating a corpus-
driven document-topic probability distribution for new documents extending an initial
corpus:

From scratch after document extension. Extending an initial corpus with a new doc-
ument and estimating a new topic model from the extended corpus. This strategy results
in document-topic probability distribution for the new document, s.t. an agent can com-
pare all documents in the extended corpus by the estimated document-topic probability
distributions. We refer to this strategy by the term LDA, since we use LDA as the topic
modeling approach to estimate a topic model from documents in a corpus.
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Incrementally with model modification. Inferring document-topic probability distri-
bution of a new document based on the available topic-word probability distributions of
the topic model generated from documents in the initial corpus. Afterwards, adapting
the initial topic model based on the new document extending the corpus. We refer to this
strategy by the term onlineLDA, since we use the onlineLDA topic modeling approach,
introduced by Hoffman et al. (2010), to update the initial topic model based on the new
document.

Incrementally without model modification. Inferring the document-topic probability
distribution of a new document is based on the available topic-word probability distribu-
tions of the topic model generated from documents in the initial corpus without adapting
the initial model. This inferering technique is based on Gibbs sampling (Geman and Ge-
man (1984)) and better known as fold-in Gibbs sampling, since a new document is added
into the initial corpus and afterwards Gibbs sampling is performed only on the new doc-
ument fixing the old parameters of the model, s.t. an agent can compare the document-
topic probability distribution of a new document with the document-topic probability
distribution of documents from the initial corpus. Additionally, the topic-word probabil-
ity distribution of the initial model is adopted based on the new documents extending
an initial corpus.

The first two strategies incorporate that a topic model should represent all documents
in its corpus, including new corpus-extending documents, which is why in (i) a complete
new model is learned from scratch after document extension is performed and in (ii) the
initial topic-word probability distribution is adapted based on new documents extending
the corpus. Generally, adapting a topic model is faster than estimating a complete new
model since the existing topic model is not dropped and an agent does not need to
compute a new topic model from scratch. The strategy in (iii) leaves the initial topic
model unchanged, which accepts inaccuracy of the topic model representing all documents
in the corpus in exchange for fast processing of new documents.
All three strategies can handle corpus-extending documents and estimate a document-

topic probability distribution for new documents based on the documents in the corpus,
s.t. an agent can compare documents with each other using their document-topic prob-
ability distribution and finally perform corpus-driven SCD enrichment not only for the
initial documents in a corpus but also for new documents an agent is interested in. How-
ever, the three strategies differ in their performance for various scenarios, e.g., extending
the corpus with a single document, a series of single documents, or a batch of many docu-
ments. Additionally, the three strategies differ in their performance by adding documents
sharing similar content or documents with somehow unrelated content. We analyze the
performance of LDA, onlineLDA, and fold-in Gibbs sampling given varying scenarios an
agent might be faced with.
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Formally, for each document d ∈ D, LDA estimates a discrete document-topic proba-
bility distribution θd over the K topics, which contains for each topic k ∈ {1, . . . ,K} a
value between 0 and 1 s.t. the sum of all values is 1, and a discrete probability distribu-
tion φk for each topic k ∈ {1, . . . ,K} over the words in V, which contains for each w ∈ V
a value between 0 and 1 s.t. the sum of all values is 1. Both probability distributions
represent a corpus-driven topic modelM(D). As already presented in Section 2.2.1 we
define a topic model by:

M(D) = (θd, φk), (9.1)

where d ∈ D, and k ∈ {1, . . . ,K}. For further details, please refer to Section 2.2.1.
Hoffman et al. (2010) have introduced onlineLDA (OLDA) to analyze large collections

of documents. OLDA is optimized for handling streams of documents extending a corpus
and efficiently adapts topic-word probability distributions to calculate document-topic
probability distributions for new documents by approximating the posterior probability in
Expression (2.10) using online stochastic optimization converging to a local optimum of a
variational Bayes objective function. To extend an initial corpus D with a new document
d′, OLDA updates the initial topic-word probability distributions φk, k ∈ {1, . . . ,K} and
the document-topic probability distributions θd, d ∈ D ∪ {d′} by using an EM-algorithm
iterating over the extended corpus until the model performance converges or a fixed
number of iterations is reached. For further details, please refer to Alg. 2 in Hoffman
et al. (2010). In contrast to using the LDA technique for learning a new model, OLDA
reuses the probability distributions of the old topic model by adapting the model based
on the words within the new, corpus-extending documents.
Generally, adapting a topic model given a new document might drag down the perfor-

mance of the topic model on the original documents, though. The probability distribu-
tions estimated by OLDA and LDA are slightly different. In Section 9.3, we evaluate the
difference between both models.
FIGS refers to adding a new document d′ to the initial corpus D and performs Gibbs

sampling (Griffiths and Steyvers (2004)) only for d′ using the words in d′. FIGS does not
adapt the initial document-topic probability distributions θd, d ∈ D and the topic-word
probability distributions φk, k ∈ {1, . . . ,K}. Thus, FIGS is even faster than OLDA, but
ignores the content of new documents for the document-topic probability distributions
already estimated for documents in the corpus. FIGS assigns the most probable topic
for each word w ∈ d′ using the topic-word probability distributions φk, k ∈ {1, . . . ,K}.
Then, FIGS computes for each word in d′ the probability being assigned to each of the
K topics, samples a topic from the document’s topic probability distribution and assigns
the word to the new topic. If d′ contains a new word w not part in any document d ∈ D,
the Gibbs sampling process randomly assigns a topic for this word. The topic assignment
of the words in d′ yields the distribution of topics in d′. FIGS requires only few iterations
taking the topic structure into account, i.e., allocate words of documents to as few topics
as possible.
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Technically, there is no limitation in the number of documents for extending a corpus
using OLDA or FIGS, but the document-topic probability distributions θd, d ∈ D, topic-
word probability distributions φk, k ∈ {1, . . . ,K}, and the optimal number of topics (K)
changes with each corpus-extending document.
Thus, an agent should generate a new topic model after a while.

9.2 Maintaining Topic Models

This section discusses how to compare document-topic probability distributions with each
other and how to compare topic models with each other, where topics are not necessarily
matching one-to-one between different topic models, i.e. the first topic-word probability
distribution of one model and the first topic-word probability distribution of another
model does not necessarily represent the same topic.

9.2.1 Comparing Document-Topic Probability Distributions within a
Topic Model

We can use the Hellinger distance to compare document-topic probability distributions
and topic-word probability distributions for a single topic modelM(D) generated from
the documents in a corpus D, since Hellinger distance allows for measuring the distance
between two probability distributions. Given document-topic probability distributions
θdi and θdj for two documents di, dj ∈ D, the Hellinger distance H(θdi , θdj ) between
θdi and θdj is defined in Expression (2.12). For the readers convenience we present the
Hellinger distance at this position, again:

H(θdi , θdj ) =
1√
2

√√√√ K∑
k=1

(√
θdi,k −

√
θdj ,k

)2
Since the number of topicsK is usually small, it is computationally feasible to calculate

the Hellinger distance H(θdi , θdj ) between two distributions, since we sum over the K
topics by using the Hellinger distance. To compute the Hellinger distance between two
topic-word probability distributions φki , φkj , the inner sum of Expression (2.12) goes over
the words in the vocabulary of D and assumes that the two distributions are indexed
over the same topics, i.e., K topics in case of document-topic probability distributions
θdi , θdj and vocabulary V in case of topic-word probability distributions φki , φkj .
Comparing distributions from two different topic modelsM(D) andM′(D) calculated

from the same collection of documents (D), the assumption may be violated. In case of
topic-word probability distributions φk and φk′ , it is reasonable to assume the vocabulary
is the same since the corpus is the same. Therefore, words in topics can be matched
between φk and φk′ . But, assuming that K is identical for bothM(D) andM′(D), the
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K topics, over which the inner sum iterates, may not be as easily matched. Generally,
topics are only abstract structures representing a probability distribution over the words
in a vocabulary, i.e., φk for all k ∈ {1, . . . ,K} and does not contain any name like
sports or education. Thus, estimating the document-topic probability distributions does
not guarantee that topic k = 1, represented by φ1 in M(D), matches the topic k = 1,
represented by φ1 inM′(D).
Next, we present techniques to match topics from one topic model with topics from

another topic model.

9.2.2 Matching Topics from Different Topic Models

As already mentioned, comparing document-topic probability distributions of documents
with each other from different topic models is difficult, since topics have no names and
the first topic from a model M(D) does not necessarily represent the first topic from
another model M′(D). Thus, we need a technique mapping K topics from one topic
model M′(D) to K ′ topics from another model M′(D) s.t. an agent can compare the
topics from different models with each other. We say the best match between the topics
of two topic modelsM(D),M′(D) is given by the mapping σ of the K topics fromM(D)
to the K ′ topics ofM′(D) that has the minimal sum of the Hellinger distances between
the topic-word probability distributions.
Mathematically, we describe the identification of the best mapping between the topics

of two models as an optimization problem. Expression (9.2) presents the optimization
problem as a minimization problem:

arg min
σ

K∑
k=1

H(φk, φ
′
σ(k)), (9.2)

where σ denotes a mapping function that maps each topic k ∈ {1, . . . ,K} inM(D) to a
topic k′ ∈ {1, . . . ,K ′} inM′(D).
If K = K ′, we may impose bijectivity on σ to require that each topic in M(D) is

mapped to exactly one topic inM′(D), and vice versa. We consider the following three
techniques estimating the best mapping between the topics ofM(D) andM′(D):

(i) Full Permutation: Calculate the Hellinger distance for each possible mapping
between the topics ofM(D) to the topics ofM′(D) to identify the best mapping,
i.e., exactly determine Expression (9.2), yielding a bijective mapping between both
topic models. The complexity of full permutation is given by O(K!TH), where TH
refers to the complexity of calculating the Hellinger distance, which depends on the
number of topics K. Generally, this technique is only applicable for very small K.

(ii) Topic coherence: Estimate for each topic k in topic model M(D) and for each
topic k′ in modelM′(D) those documents having a high document-topic probabil-
ity distribution for the respective topic (top-doc) and compare the topics between
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Figure 9.1: Topic mapping approaches of different topic models estimated for the same
corpus using (a) a random mapping, (b) topic coherence, (c) best permutation, and (d)
minimal Hellinger distance for 50 topic models from the same corpus.

M(D) and M′(D) in both directions using the Jaccard coefficient J on the as-
signed documents. This technique results in two sets, where each set contains for
each topic a set of documents. Additionally, we compare the top-c words of each
topic k in modelM(D) with the top-c words of all topics k′ in modelM′(D) using
the Jaccard coefficient J , resulting again in two sets of document-topic assignments.
Thus, for each topic k in model M(D), we have four possible topic mappings to
topics in modelM′(D). We use a majority vote to map k to k′.

The basic assumption for the topic coherence technique is, that documents char-
acterize a topic. The mapping between topics is not necessarily bijective as two
or more topics from model M(D) might be mapped to the same topic in M′(D)
given the topic-assigned documents. The advantage of this technique is its superior
runtime in O(K2 · TJ), where TJ refers to the complexity of calculating J , which
depends on the number of documents in the corpus.

(iii) Minimal Hellinger distance: Calculate the Hellinger distance between each topic
k inM(D) and all topics k′ inM′(D).

k′ = arg min
k∈{1,...,K′},k′∈{1,...,K′}

H(φk, φ
′
k′)

Again, the mapping is not necessarily bijective. Compared to topic coherence, the
best match is based not on the top-doc documents but on the distribution over all
topics. The complexity is O(K2 · TH), where TH again refers to the complexity of
calculating the Hellinger distance.

We generate 50 topic models from documents in a corpus D to identify the best map-
ping technique, since the inferred document-topic probability distributions of new docu-
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ments and the document-topic probability distributions of the same documents generated
by a new topic model for D∪{d′i}Ti=0 depend on (i) documents in corpus D, (ii) the length
of the documents in D, and (iii) the words in the documents. Generating more than 50
topic models did only slightly change the performance of the comparison. Generally, it
is not relevant that we have used exactly 50 topic models, but using more models reduce
the randomness.
We compare the three techniques and the average distance between randomly selected

mappings for topic-word probability distributions of two topic models M(D),M′(D)
learned for one corpus D (without extending D). Figure 9.1 presents the Hellinger dis-
tance of the matched topics given the mapping σ generated by (a) random mapping –
randomly selecting one mapping for each of the 50 topic models, (b) topic coherence,
(c) best permutation – selecting for each of the 50 topic models only its best mapping,
and (d) minimal Hellinger distance.
The average performance of all mapping approaches is similar having a Hellinger dis-

tance between 0.3 and 0.4. However, the performance of the topic coherence technique
varies the most and the performance of the best mapping from the full permutation
technique the least. The best performance can be reached using the minimal Hellinger
distance in (iii), which is what we will use later for the evaluation. Since the minimal
Hellinger distance allows us to map two topics in M(D) to the same topic in M′(D),
it is possible that the performance of the minimal Hellinger distance is better than the
best results from a full permutation that is a bijective mapping.
Given a way to match topics from different topic models, next we specify two ways to

compare topic models with each other.

9.2.3 Comparing Topic Models

We are interested in evaluating the performance of the three strategies LDA, OLDA,
and FIGS in estimating document-topic probability distributions of a new document an
agent is faced with and possibly might extend its initial corpus D with.
A famous measure in the NLP community for language models is perplexity. The

perplexity of a topic model describes how well the generated model predicts a sample.
The smaller the perplexity of a topic model, the better is the prediction performance of
the model for samples. Besides perplexity, we focus on the document-topic probability
distribution of documents as a measure to compare the performance of the different
strategies.
Generating two topic models from the same collection of documents in a corpus D using

the same initial topic modeling parameters leads to two different topic models distinguish-
ing in their topic-word probability distribution φ and the document-topic probability
distribution θ for each document in D, i.e., the document-topic probability distribution
θd of document d generated by one topic modelM(D) is different from θd generated by
another modelM′(D) from the same composition of documents in D. One reason for the
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difference in the document-topic probability distribution is given by the approximative
inference algorithms estimating the topic-word probability distributions and document-
topic probability distributions. Thus, we say that there is an “excused error” that we
attribute to the approximate nature of the calculations. We call this error a baseline
error berr(M(D),M′(D)) between two topic models M(D) and M′(D). We define the
baseline error by:

berr(M(D),M′(D)) =

∑K
k=1H(φk, φσ(k))

K
,

where H(φk, φσ(k)) represents the Hellinger distance between topic-word probability dis-
tribution φk and the corresponding topic-word probability distribution φσ(k) estimated
by the topic mapping. Generally, calculating Hellinger distance H requires a mapping σ
between both topic modelsM(D), andM′(D) for the inner sum of Expression (2.12).
Having a baseline error, we can define the classification performance K for evaluating

the performance between LDA, OLDA, and FIGS in estimating the document-topic prob-
ability distributions for an extend corpus D′ = D∪{d′i}Ti=0 containing T new documents
as follows:

K(M(D),M′(D)) = max

(
0,

∑
d∈D′ H(θd, θ

′
d)

|D′|
− berr(M(D),M′(D))

)
,

whereM′(D) represents the topic model generated by LDA and represents the ground-
truth for the document-topic probability distributions and topic-word probability distri-
butions. M(D) represents the topic model generated by FIGS (OLDA) so that we can
compare the performance of FIGS (OLDA) with LDA generating a completely new topic
model from an extended corpus, while considering the baseline error. K indicates the
average Hellinger distance of the document-topic probability distributions. The smaller
the classification value of K, the better is the performance of a model.

9.3 Evaluation of Topic Models for Growing Corpora

This section presents an empirical evaluation of LDA, OLDA, and FIGS in the con-
text of growing corpora, where LDA presents the baseline performance. Each of the
three strategies estimates a document-topic probability distribution given the text of
corpus-extending documents. However, the performance of the three strategies differs
in the (i) perplexity for the overall corpus, (ii) held-out set perplexity, (iii) classification
performance, and (iv) runtime for corpora of different size.

9.3.1 Evaluation Scenarios

This evaluation focuses on which strategy performs best for different scenarios, extending
the corpus by adding batches of 1000 corpus-extending documents. We compare the
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performance of OLDA and FIGS against the performance of LDA, acting as the baseline,
on the well-known data set 20Newsgroup (Lang (1995)). The data set contains 20 different
newsgroups, each corresponding to a different topic. However, some of the newsgroups
are closely related, e.g., autos and motorcycles, baseball and hockey, or pc hardware and
mac hardware, resulting in 11 to 13 distinct topics. We look at the following two types
of unseen document:

(Type 1) the categories of unseen documents are not part of the documents in the initial
corpus or

(Type 2) the documents in the initial corpus contain the same categories as the corpus-
extending documents.

We expect FIGS and OLDA to perform better with documents of a known category
compared to documents of an unknown category.
There are different options to add documents to a corpus, e.g, document by document

or a set of documents by a set of documents. We are interested in the following two
settings for OLDA to understand whether documents should be added incrementally to
the corpus or not:

(incr.) Short for incremental, where in each iteration, we add a batch of documents
to the corpus, perform OLDA, and continue with the extended corpus when
adding the next batch of documents in the next iteration. In this evaluation we
add in each iteration a batch of 1.000 documents to the growing corpus.

(init.) Short for initial, where we retain the original corpus and add in each iteration
an increasingly larger batch of documents to the corpus. This means in the first
iteration, we add 1.000 documents to the corpus. In the second iteration, we
add the initial 1.000 documents plus additional 1.000 documents to the original
corpus, and so on. We increase the size of the batches to analyze which size of
a batch results in which performance.

We are interested in the performance for the documents in a corpus and the held-out
set for the incremental and initial techniques extending the corpus, since an agent is
faced with new from time to time and not only once.

Preprocessing We preprocess 18.846 documents in the corpus by (i) lowercasing all
characters, (ii) stemming the words, (iii) tokenizing the result, and (iv) eliminating tokens
part of a stop-word list.

9.3.2 Perplexity

Perplexity is a measurement to estimate how well a probability distribution predicts
a sample. The smaller the perplexity the better a probability distribution predicts a
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Figure 9.2: Perplexity using LDA, FIGS, OLDA incr., and OLDA init. We present
corpus-extending strategy using Type 1. Setting: initial corpus size: 8k, α: 0.1, β: 0.1,
topics: 11, iterations: 10k.

sample. Mathematically, the perplexity is defined as follows:

perplexity(w) = exp

(
− log (p(w))∑D

d=1

∑V
j=1 n

(jd)

)
,

where n(jd) represents the occurrence of the j-th word in document d. The smaller the
perplexity, the better the quality of the model.
We present the topic model perplexity of LDA, OLDA, and FIGS for the following two

cases. In the first case (Type 1), the categories of unseen documents are not part of the
documents in the initial corpus. In the second case (Type 2), the documents in the initial
corpus contain the same categories as the corpus-extending documents. For LDA, a new
topic model is calculated from the initial collection of documents in corpus D and the
set of corpus-extending documents {d′i}Ti=0. For FIGS, we use the available topic-word
probability distributions φk, k ∈ {1, ...,K} and document-topic probability distributions
θd, d ∈ {1, ..., |D|} of the initial corpus D for inferring the document-topic probability
distribution θd′i for each corpus-extending document in {d′i}Ti=0. In the setting of OLDA,
we update the initial topic model after extending the corpus with T corpus-extending
documents {d′i}Ti=0. The performance of OLDA depends on the categories occurring in
the documents of the initial corpus and the categories of the corpus-extending documents.
Generally, the performance of OLDA is worse when the categories of unseen documents
are not part of the documents in the initial corpus.
In Figure 9.2, we evaluate the topic model perplexity of FIGS, LDA, and both variants
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Figure 9.3: Perplexity using LDA, FIGS, OLDA incr., and OLDA init..We present corpus-
extending strategy using Type 2. Setting: initial corpus size: 8k, α: 0.1, β: 0.1, topics:
11, iterations: 10k.

of OLDA considering only unseen documents of Type 1. The corpus perplexity in-
creases with corpus-extending documents for the incremental variant of OLDA. Adding
all batches to the initial corpus and adapting the initial topic model using OLDA init
leads to a similar corpus perplexity as using LDA which calculates a new topic model
from all documents. Generally, the perplexity is lower if the initial corpus contains doc-
uments that share the same newsgroup as the corpus-extending documents (Type 2).
Figure 9.3 presents the evaluation of the topic model perplexity for FIGS, LDA, and
both variants of OLDA considering only unseen documents containing the same cate-
gories as the documents in the initial corpus. Again, the performance of OLDA incr is
worst. For all three other techniques, the corpus perplexity is similar.
In Figure 9.4, we present the perplexity of a fixed hold-out set of documents using

FIGS, LDA, and OLDA for Type 1 (left) and Type 2 (right). Initially, we generate one
topic model from all documents within a corpus D containing 10k documents. In each
step, we extend D with a batch of 1k documents and calculate the perplexity for the new
documents by performing the following steps:

(i) For LDA, adding documents to the initial corpus and calculate a new topic model
from the extended corpus,

(ii) for OLDA incr., in each step adding the new documents to the actual corpus and
update the actual topic model resulting in a new document-topic probability dis-
tribution for all documents in the corpus, and
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Figure 9.4: Both plots show the perplexity using LDA, FIGS and both variants of OLDA
for a held-out set.

(iii) for OLDA init., adding in each step all so far new documents to the initial corpus
and update the initial topic model resulting in new topic probability distributions
for all documents in the corpus, and

(iv) for FIGS, using the initial topic model for estimating a document-topic probability
distribution distribution for new documents without changing the topic distribution
of all other documents in the corpus.

LDA and both OLDA variants have similar held-out perplexity and the performance of
both strategies is better than for FIGS.

9.3.3 Runtime

Now, we take a look at the runtime of the different strategies which is an important
property. Figure 9.5 presents results for comparing the runtime of the different strategies
considering the following three corpora differing in their initial corpus size: (i) small cor-
pus containing 4k documents, (ii) medium corpus containing 8k documents, and (iii) large
corpus containing 18k documents.
We analyze the runtime for each strategy adding three batches to each of the three

different corpora. In case of LDA, we calculate four topic models for each size of the
corpus, i.e., one initial topic model and three additional topic models, where each topic
model is generated after adding one batch of corpus-extending documents to the corpus.
Using FIGS requires only one initial topic model and no additional models, since FIGS

uses the initial topic model to infer the document-topic probability distribution θd′i for
each corpus-extending document in the batch of size T , represented by {d′i}Ti=0. For
OLDA incr, we calculate one topic model from the initial corpus D and update the
probability distributions of the model after adding the corpus-extending documents to
D and go on working with the updated probability distributions of the topic model. For
OLDA init, we always perform the update operation on a topic model representing the
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Figure 9.5: Runtime of FIGS, LDA, OLDA incr., and OLDA init. for large, medium, and
small corpora.

initial corpus D. Thus, in each step updating D with new documents we add the actual
batch of documents and the previous batches to the initial corpus. Afterwards, we use
OLDA to update the topic model to the documents in the extended corpus.
The runtime proportion between LDA, FIGS, OLDA incr. and OLDA init. is the same

for all sizes of corpora. LDA has the largest runtime. FIGS is the fastest technique for
each corpora. Both variants of OLDA have similar runtime performance.

9.3.4 Classification Performance

Next, we compare the classification performance between LDA, both variants of OLDA,
and FIGS. Figure 9.6 present two plots of the classification performance. The initial
corpus contains 8k documents. In both plots, eight batches of 1k documents are added
to an initial corpus using one of the three strategies. Again, the left plot shows the
classification performance for Type 1 and the right plot of Type 2. For Type 1 the
initial corpus contains documents with content from different categories compared to the
corpus-extending documents, and for Type 2 the initial corpus contains documents from
the same categories as the corpus-extending documents.
In Figure 9.6 we can see that the FIGS strategy has the worst classification perfor-

mance which results from non updating of the initial model within the FIGS strategy.
For OLDA, both techniques (incr. and init.) start at nearly the same performance after
adding the first batch of corpus-extending documents. Adding more batches to the initial
corpus, the OLDA incr. becomes better while OLDA init. stays at the same classifica-
tion performance. The adaptation process of OLDA indeed changes the document-topic
probability distribution of documents which results in a better classification performance.
The performance of OLDA incr. is better than for OLDA init.
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Figure 9.6: Classification performance of FIGS and both OLDA variants on corpora of
Type 1 left and Type 2 right.
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Figure 9.7: Classification performance of FIGS and OLDA on the entire corpus compared
to the held-out set.

Generally, an agent is interested in comparing new documents with documents in
a given corpus using document-topic probability distributions. Additionally, an agent
might also be interested in the classification performance of documents which have been
added to the corpus, besides the classification performance of FIGS and OLDA on the
entire corpus. Figure 9.7 presents the classification performance on the initial documents
and the batches of corpus-extending documents looking at the classification performance
on the batches containing the documents extending the corpus. The left plot in Figure 9.7
shows the results for FIGS. As FIGS does not change the underlying model, the entire
corpus reaches a better performance than the the held-out set. By adding more batches to
the initial set of documents, both lines converge since the impact of the additional batches
rise whereas they decrease for the initial documents. In the right plot of Figure 9.7, we
present the results for OLDA on the entire corpus (solid line) and a held-out set (dashed
lines). Additionally, we compare OLDA for the incremental variant (plus) and the initial
variant (cross). In contrast to FIGS, the performance for OLDA incr. and OLDA init. is
better on the held-out set than on the entire corpus and the classification performance
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increases with an increasing number of documents extending to the initial corpus.

9.4 Interim Conclusion: Maintaining Topic Models

Topic modeling techniques can be used to estimate document-topic probability distri-
butions and topic-word probability distribution for documents and topics in a corpus,
respectively. We have evaluated three strategies to incorporate new documents for a
given corpus. The agent might choose one of the three strategies depending on the task
of an agent, since for some tasks it might be acceptable that the performance of the model
decreases but a fast runtime is necessary. We have also compared different techniques
to match the topic-word probability distribution generated from different topic models.
In the context of our evaluation, we have evaluated the performance of LDA, FIGS,
and two variants of OLDA regarding the perplexity of the documents in the corpus, the
held-out set perplexity, the classification performance, and the runtime for corpora of
different size. In conclusion, each of the three strategies has its advantages and disad-
vantages and the best strategy for estimating a topic-word probability distribution for
corpus-extending documents depends on the individual task of an agent. Calculating a
new topic model from all documents in an extended corpus is time-consuming but allows
for an easy comparison between topic probability distributions of documents. OLDA
allows for efficiently updating the initial topic model, accepting an increased corpus per-
plexity. FIGS is fast in estimating a topic probability distribution for new documents
without changing the topic probability distribution of the documents in the corpus. The
evaluation shows that for a small set of corpus-extending documents is might be suf-
ficient to use the FIGS strategy estimating document-topic probability distribution for
corpus-extending documents.
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Enhancing Relational Topic Models with
Named-Entity Induced Links

In this chapter, we analyze the topic modeling performance of the Relational Topic
modeling approach (RTM) considering NEs to create links between documents in a cor-
pus. Generally, topic modeling approaches considering links between documents look
at explicit link structures. However, we argue that the implicit link structure between
documents might increase the performance of a topic model since the modeling approach
considers hidden relations between documents. Instead of introducing a new topic model,
we use the RTM approach, introduced by Chang and Blei (2009), and take advantage of
the available linking function within the model to create links between documents. For
all documents in a corpus, we add a link between two documents if the two documents
share at least one NE. We analyze the topic modeling performance on three datasets,
where each dataset contains a different number of links between the documents.
The following paper presented Named-Entity induced links to enhance relational topic

models:

Felix Kuhr, Matthis Lichtenberger, Tanya Braun, and Ralf Möller. Enhancing
relational topic models with named entity induced links. In IEEE 15th Inter-
national Conference on Semantic Computing, ICSC 2021, Virtual, January
27-29, 2021, pages 451–458, 2021

As previously described, LDA allows for modeling topics of a corpus of documents,
assuming documents to be a mixture of topics, which determine the words of them.
Various topic modeling approaches have been introduced that extend the well-known
LDA approach. The RTM approach extends the LDA approach by modeling links for
each pair of documents in a corpus as a binary random variable that is conditioned on
the content of both documents. For each possible connection between all documents
in D the RTM contains a link variable, and the number of link variables is given by
|D|2. The model can be used to summarize documents in a corpus, predict links between
documents, and predict words within documents, since it is a generative model. Again, in
the RTM approach topics are represented as word probability distributions over the fixed
vocabulary V generated from all words of documents in corpus D. For further details,
please refer to Chang and Blei (2009).
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Given an explicit link structure, RTM can show a better model perplexity compared to
a topic model like LDA, which does not consider any links. Generally, the link structure
may come from a citation network of a corpus of articles, from a network of hyperlinks
in a corpus of web pages, or from a social network of friends in a corpus of postings etc.
and depends on the documents. However, in this chapter the link structure for RTM
come from extractable NEs. Next, we present techniques to compare documents based
on their document-topic probability distribution.
Considering an implicit link structure available from extractable NEs shared between

documents, instead of creating links from explicit metadata like citations or hyperlinks.
We denote this approach as NE-RTM as RTM works with implicit links via NEs. Over the
last years, NEs have been used to improve the quality of discovered topics (Krasnashchok
and Jouili (2018)) or entity prediction (Hu et al. (2013)). The underlying assumption is
that documents in a corpus share topics if documents share NEs, e.g., references to the
same person, place, or company.
To evaluate the performance of NE-RTM two new datasets are collected from the

free online encyclopedia Simple Wikipedia and The New York Times newspaper. Both
datasets have an explicit link structure for RTM through hyperlinks as well as a plethora
of NEs to induce links for NE-RTM. We analyze the linking properties of NEs, their NE
categories – e.g. person or city, and their perceived relevance to answer the question
of which type of NEs should be considered for introducing links between documents
within a corpus. Comparing the prediction accuracy of NE-RTM using different types of
NE-induced links, the results show that additional links can increase the topic modeling
performance. In summary, the contribution of this chapter is two-fold:

(i) Analysis of the properties of NEs improving the performance of the topic model
and

(ii) comparison of the performance between LDA, RTM, and NE-RTM with different
settings for NE-induced links.

The generative process of RTM consists of two parts. The first part is identical to
the generative process of LDA. The second part concerns the links between documents.
Intuitively, documents sharing a similar document-topic probability distribution should
be linked together. A binary variable models the linking between documents, one variable
for each pair of documents. The linking is defined as follows.
For each pair of documents d, d′ ∈ D:

Draw binary link indicator: y | zd, zd′ ∼ ψ(y = 1 | zd, zd′),

where function ψ estimates the link probability between d and d′ and is defined by:

ψ(y = 1) = ι(ηT (zd ◦ zd′) + ν
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where zd = 1
Nd

∑
n zd,n. The ◦ symbol denotes the Hadamad (element-wise) product. As

in Chang and Blei (2009), function ι can be the sigmoid function or alternatively, the
exponential mean function. If ι is the sigmoid function, it models each binary variable as
a logistic regression with hidden covariates, parameterized by coefficients η and intercept
ν. The covariates are constructed by the Hadamard product of zd and zd′ , modeling the
similarity between the topics of d and d′. In case ι is the exponential mean function, the
probabilities returned increase exponentially. RTM contains for each possible connection
between all documents in D a link variable, and the number of link variables is given by
|D|2. In summary, RTM defines a joint distribution over the words in each document
and the links between them.

10.1 Evaluation of NE-RTM

We extend RTM by adding links between two documents if the documents have at least
one NE in common. The assumption is that documents sharing NEs have similar topics
since the same NEs appear in the text. We evaluate the performance using the perplexity
measure on held-out data (see Newman et al. (2009) for details). We fit the parameters
in NE-RTM by performing Gibbs sampling, i.e., the word likelihood is given by:

log (p(w)) =

|D|∑
d=1

|V|∑
j=1

n(jd) log

(
K∑
k=1

θd,kβj,k

)

10.1.1 Datasets

Datasets commonly used for evaluating topic models are Cora (McCallum et al. (2000)),
WebKB (Craven et al. (1998)), or the Proceedings of the National Academy of Science
(PNAS), where citations or hyperlinks determine links. However, these datasets contain
only very few NEs and are therefore not suitable for evaluating NE-RTM. Thus, we
generate three new datasets to evaluate the performance of RTM-NE:

• wiki-sparse-500 : 500 documents randomly selected from the English Simple Wikipedia.
An average article consists of 348 words (241 without stop words). Each document
has only few links to other documents.

• wiki-dense-500 : 500 documents from the English Simple Wikipedia containing
many documents about countries. An average article consists of 692 words (466
without stop words). Documents have a high number of links to other documents.

• nyt-500 : 500 articles from The New York Times. An average article consists of 922
words (619 without stop words). Each document has links to articles containing
related coverage leading to 942 links in total.
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Figure 10.1: Explicit network structure of wiki-sparse-500 (left) and nyt-500 using hy-
perlinks and related coverage links from the New York Times between documents, re-
spectively.

We preprocess all documents by (i) eliminating stop words, (ii) performing word stem-
ming, and (iii) tokenizing the text. Simple English Wikipedia aims to restrict itself to
use simple words and grammar, aimed at children and adults who are learning the lan-
guage. The use of simple language comes in handy for our purposes, as there are not as
many words of low frequency in the data. For documents in the nyt-500 dataset, there
are only few hyperlinks between documents. But there exists related coverage for most
articles, containing links to up to five related articles. We have used the related coverage
to generate the ground truth of links between documents.
Figure 10.1 present the network structure for documents in the wiki-sparse-500 and

nyt-500 dataset. Figure 10.2 contains the corresponding node degree histograms for the
network structure of all three datasets.

10.1.2 Categories of NEs

We use Open Calais (?) to extract NEs from datasets and store the available relevance
value and category for each NE. Open Calais provides many categories besides typical
categories resulting in 36 different categories in the three datasets. Tables 10.1 to 10.3
present for all three datasets the top 10 NE categories (by links) containing the total
number of occurrences, the number of unique names of that type (bucket), and the
number of links that could be created from the corresponding NEs.
In the wiki datasets, categories country, industry-term, position, and continent lead

to most of the links between documents. The links from categories organization and
company lead to only 10% of the number of links using categories country, continent,
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Figure 10.2: Node degree histograms of document network graphs for all datasets.
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position, and industry-term. The nyt-500 dataset also features categories country and
position as the top two categories. However, categories continent and industry-term are
only on the 8th and 9th position, respectively.
We consider different sets of NE-induced links, (i) all categories (all), (ii) only organi-

zation and company (org), and (iii) all categories excluding country, continent, position,
and industry-term (exc), to test the effect of the number of links and different categories
introduced for each dataset.

Table 10.1: Extractable NE categories in wiki-sparse-500.
# category total bucket links
1 Country 827 174 8717
2 IndustryTerm 664 486 1480
3 Position 843 479 1285
4 Continent 105 8 941
5 City 392 238 542
6 ProvinceOrState 205 91 353
7 Organization 456 368 217
8 Technology 262 178 198
9 MedicalCondition 275 219 112
10 Company 316 275 109

Table 10.2: Extractable NE categories in wiki-dense-500.
# category total bucket links
1 Country 3006 257 55011
2 Continent 353 8 11403
3 Position 1128 458 7676
4 IndustryTerm 1139 691 6202
5 Organization 1401 897 4457
6 Region 703 270 3569
7 ProvinceOrState 358 149 2760
8 SportsEvent 235 119 2636
9 City 1003 556 2452

10 NaturalFeature 851 476 1604

We also consider the following three thresholds for the relevance value r of NEs:

(i) all NEs, ignoring the relevance value (all),

(ii) only NEs having a relevance value (r > 0), and
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Table 10.3: Extractable NE categories in nyt-500.
# category total bucket links
1 Country 1544 110 92854
2 Position 3406 1247 47732
3 City 1191 274 35537
4 Organization 2712 974 26512
5 Person 3763 2134 18508
6 Company 1681 815 9009
7 ProvinceOrState 724 101 6805
8 Continent 195 7 5155
9 IndustryTerm 1632 1057 3563
10 PublishedMedium 218 80 2400

(iii) only NEs having a relevance value above 0.2 (r > 0.2).

Next, we present results for NE-induced links for the three different sets of categories
and relevance thresholds.

10.1.3 Empirical Results

As RTM is a predictive model, we can measure the performance by withholding data in
the training phase and examining the likelihood of predicting the held-out ground truth
in a typical machine learning fashion. We generate the held-out set by removing half of
the words from 10% of documents. After we have fitted the model, the topic probabilities
for each document and the word distribution for each topic are known, which allows us
to determine the predicted probability of the held-out data.
In Table 10.4, we present the perplexities for all three datasets using the different

settings for NE induced links for the Relational Topic Model as described above and
the following parameter setting: k = 15, α = 0.1, β = 0.1, and η = 0.1 Additionally,
we provide a baseline for the perplexity using the LDA topic model without any links
(first row) and a basic RTM using only explicit links (second row). Explicit links are
hyperlinks for Wikipedia documents and related coverage references for The New York
Times articles. Rows 3 to 11 contain nine different NE-RTM settings. The bold values
show the best perplexity for each dataset. The italic values represent a perplexity lower
than the perplexity possible with basic RTM. The perplexity of RTM is better than the
perplexity of LDA for all datasets. Additionally, as we have expected, the performance
of NE-RTM is better than the perplexity of RTM using only explicit links. NE-induced
links can enhance the performance of topic models, but simply adding links between
documents sharing NEs does not automatically improve the performance and the choice
of NE categories needs to be considered. Thus, it is no surprise that for all three datasets,
the best perplexity is given by different configurations, since each dataset represents a
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Table 10.4: Topic model performance.

Topic Model Links Relevance dense sparse nyt

LDA 1208.32 1156.91 1576.78

RTM 1196.16 1126.89 1573.71

NE-RTM org all 1193.89 1124.97 1554.80
NE-RTM org r > 0 1195.56 1125.47 1554.91
NE-RTM org r > 0.2 1195.26 1127.19 1570.68
NE-RTM exc all 1192.64 1121.04 1625.36
NE-RTM exc r > 0 1191.45 1120.20 1621.90
NE-RTM exc r > 0.2 1194.03 1128.41 1567.62
NE-RTM all all 1172.22 1207.44 1824.66
NE-RTM all r > 0 1169.37 1207.94 1822.15
NE-RTM all r > 0.2 1194.00 1128.61 1576.14

different characteristic.
Overall, the dataset with most links, wiki-dense-500, benefits the most from added

links through NEs. The best perplexity is given by considering all entities. The nyt-
500 dataset mostly benefits from the (org) setup while (all) leads to worse results than
basic RTM. One reason for this behaviour might be, that only articles about the same
company contain similar text, while documents containing NEs like countries, continents,
or positions appear often in different coherencies within a newspaper. The wiki-sparse-
500 dataset benefits in 2 out of 3 cases but exhibits the smallest change in perplexity
compared to the other two sets. The best perplexity is given by ignoring countries,
continents, positions, and industry-terms. The wiki-dense-500 dataset shows the largest
improvement. The dataset which is linked to a high degree from the start seems to win
the most by adding further links. The links induced by NEs from organizations increase
the perplexity for all datasets except with the wiki-sparse-500 dataset and r > 0.2.

10.2 Interim Conclusion: Named-Entity Induced Links

RTM uses explicit links between documents to improve the performance of a topic model
for a corpus of documents, where the performance is measured by using the model per-
plexity. In this chapter, we have generated links between documents based on matching
NE and have analysed the performance model perplexity compared to LDA and RTM.
The results on three datasets show that the performance of RTM can be increased by
adding links originating from NER. The performance depends on the documents in the
corpus and the NEs used to induce links. Future work might include exploring more
diverse data sets and analyzing the effect of different NE recognizers.
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Conclusion

Manually annotating documents is a major task in corpus linguistics and estimating
valuable data that can be associated with documents in a corpus is an important disci-
pline. In contrast to available annotation systems, this dissertation lay the foundation
for automatically enriching documents in a corpus with context-aware and subjective
content descriptions for documents by considering the individual collection of documents
to support an information retrieval agent on its corpus-specific tasks, e.g., identifying a
set of documents in a corpus being similar to a new document or estimating SCDs for a
new document based on the SCDs associated with documents available in a corpus.
We summarize the contributions that this dissertation has made towards subjective

content descriptions and provide some directions for future work.

11.1 Summary of Contributions

In this dissertation, we focus on associating subjective and context-aware content de-
scriptions to documents in a corpus. We combine different similarities to automatically
enrich documents in a corpus with subjective content descriptions and present different
approaches to enrich documents with subjective content descriptions for various sce-
narios. In this dissertation, we make a number of contributions to subjective content
descriptions and can summarize the contributions as follows:

Context-specific corpus enrichment Since manually generating SCDs and associating
SCDs with documents is a time-consuming and expensive tasks. We introduce (i) a
definition of a holistic (D-similarity) and symbolic similarity (T-similarity) between doc-
uments of the same corpus, resulting in (ii) a definition of a corpus-driven relevance
value for SCDs representing the relevance of an SCD for the content of a document, and
(iii) an unsupervised algorithm using a combination of both similarity values and the
relevance value to enrich sparsely and weakly annotated documents with SCDs of related
documents from the same corpus supporting an agent in its tasks.
Additionally, we show the potential of augmenting and automatically enriching a cor-

pus with new documents while considering the context is explicitly represented by the
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corpus-driven topic-word probability distribution. Estimating the category of a new doc-
ument based on the individual collection of documents in a corpus is non-trivial. Thus,
we use a combination of different HMMs to estimate a predefined category for new doc-
uments by analyzing the most likely sequence of MPSCD similarity values.

Identifying SCDs among Texts We have defined the inline SCD problem, where words
of SCDs are interleaved with the content of documents. Additionally, we present an
approach to identify textual SCDs among the usual text of documents by using the
SCD-word probability distribution which encodes the most likely words to occur with
an SCD, as well as an HMM, which encodes being part of an SCD or not as the hidden
state. Calculating a most probable sequence of hidden states in the HMM then allows
for identifying the most probable windows for inline SCDs.

Context-aware adaptation of SCD-word probability distributions SCDs associated
with documents in one corpus might add a value for the tasks of an agent working
with documents in another corpus. Automatically associating SCDs to documents in
one corpus that are associated with documents in another corpus is non-trivial while
considering the context-shift between both corpora. Thus, we introduce an unsupervised
domain adaptation algorithm adapting the SCD-word probability distribution from a
source corpus to a destination corpus supporting an agent in its tasks with an initial set
of context-aware SCDs for documents in a non-annotated target corpus. The reusability
of SCDs between different corpora is an important property since manually generating
corpus-specific new SCDs is a time-consuming and expensive task.

Maintaining topic models for growing corpora The individual collection of documents
in a corpus might change over time, since an agent might decide to extend its corpus
with additional documents. Changing the individual collection of documents results
in another corpus and requires an adaptation of the similarity between documents as
well as a modified relevance value of each SCD. Thus, we analyze different techniques
to incorporate corpus-extending documents into a given topic model resulting from the
initial documents in a corpus s.t. an agent can identify a set of similar documents in the
corpus for the corpus-extending documents based on the documents’ topic similarity.

Named Entity induced links for relational topic models Relations between documents
provide important data to optimize the performance of topic models. The text of similar
documents might share entities and we assume that documents sharing NEs are some-
how connected to each other. We use the well-known RTM approach to represent the
NE-based relationship between documents in a corpus by adding a link between two
documents sharing a NE. Additionally, we estimate the properties of NEs improving
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the performance of the RTM and compare the performance between LDA and RTM by
considering different settings for NE induced links.

11.2 Future Work

Moving forward from this dissertation, there are a variety of ways to continue research
in context-aware subjective content descriptions for documents. We select the following
two topics that might extend this dissertation.

Dropping out Documents Generally, the size of a corpus is not fixed and an agent
might extend a corpus with new documents or remove some documents from the corpus
for various reasons. In this dissertation, we have analyzed the performance of different
techniques for documents extending a corpus. However, if an agent detects a document
containing fake-news or unimportant content for its task, the agent might remove this
document from its corpus. In Chapter 5, we have introduced an algorithm iteratively
enriching sparsely and weakly annotated documents with SCDs that are associated with
other documents in the same corpus. Generally, the iterative algorithm associates SCDs
with documents based on a relevance value of an SCD. The relevance value depends on
the similarity between SCDs associated with documents and documents. If documents
drop out of the corpus, we might have to update the automatically enriched SCDs,
e.g., if documents contain fake-news, the associated SCDs might contain wrong data.
So, introducing some kind of rollback mechanisms for the iterative algorithm handling
dropping out documents would be a valuable extension of this dissertation.

SCD-based Language Model In this dissertation, we assume that a corpus is available
and the content of documents is accessible. We have performed different operations on
SCDs and documents in a given corpus. However, in some scenarios, it is not possible to
make documents in a corpus publicly available — one well-known reason is the copyright
of a document. Thus, an extension of the SCD-word probability distribution approach is
generating a new language model to estimate the MPSCDs for a new document without
sharing the individual collection of documents in a corpus, but only the model. Generally,
the language model should embed documents of a corpus into an embedding space s.t. the
influence of SCD-word probability distributions can be represented based on proximity
making the original documents in a corpus not needed. The language model might be a
parameterized language model to include parameters like the origin, the county, or the
language of documents.
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Appendix A

Additional Results for T- and D-similarity

A.1 SCD-Enrichment between Documents focusing on
T-Similarity
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Figure 1: Evaluation T-Similarity for dataset 1
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Figure A.1: Evaluating different T-similarity values for dataset 1 (top) and dataset 2
(bottom).
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Figure 1: Evaluation T-Similarity for dataset 3
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Figure A.2: Evaluating different T-similarity values for dataset 3.
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A.2 SCD-Enrichment between Documents focusing on
D-Similarity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

Initial D-similarity threshold in iterative SCD Enrichment algorithm

ppv tpr F-measure F-Base

1

5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0

0.2

0.4

0.6

Initial D-similarity threshold

ppv
tpr

F −measure
F −Base

1

5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0

0.1

0.2

0.3

0.4

Initial D-similarity threshold

ppv
tpr

F −measure
F −Base

1

Figure A.3: Performance depending on D-similarity; k = 30, r = 0.90, ε = 0.01,
SimGde =0.1. F-Base represents the F1-score for randomly guessing possible SCDs for
SCD sets.
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A.3 Number of Iterations in Algorithm 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

It
er
a
ti
o
n
s

T-Similarity Selection Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

It
er
at
io
n
s

T-Similarity Selection Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

5

10

15

It
er
at
io
n
s

T-Similarity Selection Threshold

Figure A.4: Number of necessary iterations for dataset 1 (left), dataset 2 (center), and
dataset 3 (right) until Algorithm 5 reaches a fixed point, depending on SimT .
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Datasets

We use three datasets in the empirical evaluation in Section 5.3. To receive the text
it is necessary to insert the name of a document in the following url: https://en.
wikipedia.org/wiki/<name>. Example: The text of document BMW Z4 is given by the
url: https://en.wikipedia.org/wiki/BMW_Z4.
The following three sections represent the documents for each dataset used in Sec-

tion 5.3.

B.1 Dataset 1: BMW

BMW Z4, BMW X5 (F15), BMW Z4 (E89), BMW M2B15, BMW 7 Series (F01), BMW
8 Series, BMW M30, BMW Z3, BMW M54, BMW N42, BMW N62, BMW 1 Series,
BMW X4, BMW 3200 CS, BMW 321, BMW M78, BMW 3 Series, BMW 501, BMW
Z8, BMW E9, BMW M21, BMW M41, BMW M57, BMW X3, BMW Z1, BMW N47,
BMW B47, BMW M328, BMW i8, BMW M50, BMW S14, BMW 303, BMW X1, BMW
B58, BMW X-Coupe, BMW Dixi, BMW S85, BMW 600, BMW 700, BMW Turbo,
BMW GINA, BMW 327, BMW 503, BMW R100, BMW M6, BMW M Roadster, BMW
P60B40, BMW X7, BMW 801, BMW X, BMW i

B.2 Dataset 2: Mercedes

Unimog 435, Mercedes-BenzW126, Mercedes-Maybach 6, Mercedes-Benz Ponton, Mercedes-
BenzW111, Mercedes-BenzW112, Mercedes-BenzW136, Mercedes-BenzW186, Mercedes-
Benz MB100, Mercedes-Benz TN, Mercedes-Benz Citan, Mercedes-BenzW128, Mercedes-
Benz W105, Mercedes-Benz Bionic, Mercedes-Benz Atego, Mercedes-Benz M110 en-
gine, Mercedes-Benz OM617, Mercedes-Benz SL-Class (R129), Mercedes-Benz W108,
Mercedes-Benz W116, Mercedes-Benz W124, Mercedes-Benz W125 1937 4, Mercedes-
Benz OM601 engine, Mercedes-Benz W154 1938 3, Mercedes-Benz 320A, Mercedes-
Benz 380 (1933), Mercedes-Benz 600, Mercedes-Benz CLK-Class, Mercedes-Benz Vito,
Mercedes-Benz OM605 engine, Mercedes-Benz W25, Mercedes-Benz C11, Mercedes-
Benz W165, Mercedes-Benz W125, Mercedes-Benz W154, Benz Bz.IV, Mercedes D.I,
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Mercedes-Benz AMG C-Class DTM (W204), Mercedes-Benz W25, Mercedes-Benz W125,
Mercedes-Benz M110 engine, Mercedes-Benz E-Class (W210), Mercedes-Benz SLK-Class
(R170), Mercedes-Benz W188, Mercedes-Benz W189, Mercedes-Benz MB100, Mercedes-
Benz TN, Mercedes-Benz OM654 engine, Mercedes-Benz SK, Mercedes-Benz NG

B.3 Dataset 3: US universities

Adams State University, Alabama Agricultural and Mechanical University, Alabama
State University, Albany State University, Alcorn State University, Alfred State Col-
lege, Alfred University, American University, Angelo State University, Appalachian State
University, Arizona State University, Arizona State University Polytechnic campus, Ari-
zona State University Tempe campus, Arizona State University West campus, Arkansas
State University, Arkansas Tech University, Armstrong State University, Athens State
University, Atlanta Metropolitan State College, Auburn University, Auburn University
at Montgomery, Augusta University, Austin Peay State University, Bainbridge State
College, Ball State University, Bemidji State University, Binghamton University, Black
Hills State University, Bloomsburg University of Pennsylvania, Bluefield State College,
Boise State University, Bowie State University, Bowling Green State University, Bridge-
water State University, Brooklyn College, Buffalo State College, Ohio State University
Agricultural Technical Institute, Peru State College, Massachusetts College of Art and
Design, Iowa State University, Kutztown University of Pennsylvania, Purdue University,
Northwest Missouri State University, Emporia State University, Morgan State Univer-
sity, Northern Kentucky University, Rowan University, Cornell University, Eastern New
Mexico University, Southern University at New Orleans
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Datasets 2

We use three datasets in the empirical evaluation in Section 7.4. The following three
sections represent the documents for each dataset. To receive the text it is necessary
to insert the name of a document in the following url: https://en.wikipedia.org/
wiki/<name>. The text of document George Washington is given by the url: https:
//en.wikipedia.org/wiki/George_Washington.

C.1 Dataset 1: U.S. Presidents

George Washington, John Adams, Thomas Jefferson, James Madison, James Monroe,
John Quincy Adams, Andrew Jackson, Martin Van Buren, William Henry Harrison,
John Tyler, James K. Polk, Zachary Taylor, Millard Fillmore, Franklin Pierce, James
Buchanan, Abraham Lincoln, Andrew Johnson, Ulysses S. Grant, Rutherford B. Hayes,
James A. Garfield, Chester A. Arthur, Grover Cleveland, Benjamin Harrison, Grover
Cleveland, William McKinley, William Howard Taft, Woodrow Wilson, Warren G. Hard-
ing, Calvin Coolidge, Herbert Hoover, Franklin D. Roosevelt, Harry S. Truman, Dwight
D. Eisenhower, John F. Kennedy, Lyndon B. Johnson, Richard Nixon, Gerald Ford,
Jimmy Carter, Ronald Reagan, George H. W. Bush, Bill Clinton, George W. Bush,
Barack Obama

C.2 Dataset 2: U.K. Prime Ministers

Sir Robert Walpole, Spencer Compton, Henry Pelham, Thomas Pelham-Holles, William
Cavendish, Thomas Pelham-Holles, John Stuart, George Grenville, Charles Watson-
Wentworth, William Pitt the Elder, Augustus FitzRoy, Frederick North, William Petty,
William Cavendish-Bentinck, William Pitt the Younger, Henry Addington, William
Grenville, William Cavendish-Bentinck, Spencer Perceval, Robert Jenkinson, George
Canning, Frederick John Robinson, Arthur Wellesley, Charles Grey, William Lamb,
Sir Robert Peel, Lord John Russell, Edward Smith-Stanley, George Hamilton-Gordon,
Henry John Temple, John Russell, Benjamin Disraeli, William Ewart Gladstone, Robert
Gascoyne-Cecil, Archibald Primrose, Arthur Balfour, Sir Henry Campbell-Bannerman,
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Appendix C Datasets 2

H. H. Asquith, David Lloyd George, Bonar Law, Stanley Baldwin, Ramsay MacDonald,
Stanley Baldwin, Neville Chamberlain, Winston Churchill, Clement Attlee, Sir Anthony
Eden, Harold Macmillan, Sir Alec Douglas-Home, Harold Wilson, Edward Heath, James
Callaghan, Margaret Thatcher, John Major, Tony Blair, Gordon Brown, David Cameron,
Theresa May
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